
Building Microservices for Scalability
and Availability: Step by Step, from

Beginning to End

Vı́ctor Saquicela(B), Geovanny Campoverde, Johnny Avila,
and Maria Eugenia Fajardo

University of Cuenca, Av. 12 de Abril, Cuenca, Ecuador
{victor.saquicela,geovanny.campoverde,johnny.avilam,

mariaeugenia.fajardo}@ucuenca.edu.ec

Abstract. The problem of developing an application based on microser-
vices is gaining traction over monolithic applications. Similarly to REST-
based applications, their architecture may provide benefits in tasks
related to their development and deployment. In this paper, we present
an approach for the development and deploy of applications based on
microservices using the following resources: a microservices technology
software architecture, a continuous integration framework, and an envi-
ronment for the deployment of microservices with high scalability and
availability.

Keywords: Microservices · Continuous integration · Architecture
styles · Scalability

1 Introduction

In recent years, the arriving of new requirements, new technologies, new
paradigms, new methodologies, Web 2.0 applications related to the software
industry, and due to some of the limitations of monolithic applications based
on SOAP services and traditional Representational State Transfer (REST) ser-
vices, microservices-based on REST have increased their presence on the Web,
mainly due to their relative simplicity and their natural suitability for the Web.

However, using microservices still requires much human intervention since the
majority of their software components work autonomously and contain lists of
the available configurations. This makes the microservices-based software devel-
opment process difficult, affecting the efficiency in the development of applica-
tions.

Traditionally, monolithic applications have focused on defining vertical archi-
tectures, and have been normally applied to SOAP and REST services and their
corresponding middleware. More recently, these approaches have started to be
adapted into more lightweight approaches for the development of applications
based on microservices [2,5,6,17].
c© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
J. Mejia et al. (Eds.): CIMPS 2020, AISC 1297, pp. 169–184, 2021.
https://doi.org/10.1007/978-3-030-63329-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63329-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-63329-5_12


170 V. Saquicela et al.

In this paper, the challenge of automating the application development pro-
cess using microservices is addressed by: (1) defining a microservices technology
architecture that allows standardization in the use of latest generation technolo-
gies, (2) defining a continuous integration technologies framework, that allows
development microservices, and (3) defining an environment for the deployment
of microservices, allowing high scalability and availability of applications. The
main contribution of our work is the partial automation of the process of devel-
opment applications using microservices from start to finish.

The remainder of this paper is structured as follows: we first introduce some
background and related work in the context of the development of applica-
tions based on microservices. Then, we describe our approach for microservice
architecture, continuous integration framework, and the environment for deploy
microservices. Finally, we present some conclusions and identify future lines of
work.

2 Background and Related Works

In this section, we present some background information related to the Service
Oriented Architecture (SOA) and specifically, to microservices. We introduce this
topic by describing the current state of the art, and identifying its limitations.

A Web service is a method of communication between two electronic devices
over the web (Internet). The W3C defines a Web service as a software system
designed to support interoperability in machine-to-machine interaction over a
network. It comprises an interface described in a machine-processable format.
Other systems interact with the Web service in a manner prescribed by its
description using messages, typically transmitted using HTTP with an XML
serialization in conjunction with other Web-related standards1.

Essentially, a Web service is a modular, self-describing, and a self-contained
software application that is discoverable and accessible through standard inter-
faces over the network [4,20]. Web service technology allows for uniform access
via Web standards to software components residing on various platforms and
written in different programming languages.

From a technological point of view, the community distinguishes two types of
Web services: classical Web services based on WSDL/SOAP (big Web services,
WS-*) and Web APIs RESTful). The first have defined a stack of standards and
the second are characterized for simplicity.

SOAP relies on a comprehensive stack of technology standards. SOAP plays
a major role in the interoperability within and among enterprises, and serves
as a basic element for the rapid development of low-cost and easy-to-compose
distributed applications in heterogeneous environments [13]. APIs are charac-
terized by their relative simplicity and their suitability for the Web. Web APIs,
according to the REST paradigm [8], are commonly referred to as RESTful ser-
vices. RESTful services are centered around resources, which are interconnected

1 http://en.wikipedia.org/wiki/Webservice.

http://en.wikipedia.org/wiki/Webservice


Microservices from Start to Finish 171

by hyperlinks and grouped into collections, whose retrieval and manipulation
is enabled through a fixed set of operations commonly implemented by using
HTTP. Moreover, RESTful are lighter in their technological stack.

The Representational State Transfer (REST) is an architecture style for
applications within distributed environments and applies especially to Web Ser-
vices. The creation of the adjective RESTful accomplished a simple ability to
express whether something works accordingly to the principles of REST [8].
REST is an architecture style rather than a concrete architecture. RESTful
APIs are characterized by resource-representation decoupling, so that resource
content can be accessed via different formats.

The REST architectural style proposes a uniform interface, that if applied
to a Web service induces desirable properties, such as performance, scalability,
and modifiability, enabling Web services that facilitates working on the Web. In
REST architectural style, data and functionality are considered resources. These
resources are accessed using Uniform Resource Identifiers (URI), and exploited
using a set of simple, well- defined operations.

The concept of microservices appears as a natural evolution of REST services
within the Web. A Microservice is a small piece of code than can be deployed,
executed, tested, and scaled independently [19]. The goal of a microservice is to
abstract the whole functionality of a system component in a single application,
making it easier to maintain and integrate with the remaining components.

Like any other application, depending on the system requirements and the
development team knowledge, microservices can be developed in a wide range of
programming languages and use a variety of technologies to complete the tasks
for which they were created.

Regarding microservices architecture, authors of [5] apply a systematic map-
ping study methodology to identify, classify, and evaluate the current state of the
art on architecting microservices. This study allows classifying, comparing, and
evaluating architectural solutions, methods, and techniques specific for microser-
vices.

Traditionally, monolithic systems have been developed aiming to group the
functionality and its services in a single code base. Due to the simplicity of its
structure, developing monolithic applications is usually less expensive than its
alternatives. However, an application that concentrates all its functionality is not
necessarily better, especially if it tends to grow up in complexity, users, develop-
ers and payload. Monolithic applications have enormous disadvantages compared
to the use of microservices. On one hand, the implementation of new functionali-
ties and maintainability can be as complex as extensivity of the system. A single
change in the code may imply that many developers have to intervene to analyze
the impact of the change and give their approval [3]. On the other hand, the use
of resources can be oversized since the entire system is seen as a single module,
thus being able to waste resources on components that do not necessarily require
it, leaving aside components that need large amounts of resources to function
properly [6]. For this reason, migrating to a microservices architecture is viable
since the system is easily upgradeable and modifiable, because it is composed



172 V. Saquicela et al.

of small software components that work independently. Morevoer, the facility
to add resources to the services according to the needs that each one presents
allows achieving better performance in both, the functionality of the system and
the flow of information.

The Continuous Integration process is a highly accepted practice within the
software development industry. Although there is no established framework to
serve as a guide, one can find a wide variety of useful implementations that can
be adapted according to the needs of each software development company. As
explained in [17], the use of these practices allows teams to make continuous
deliveries of products in short periods, being more productive and effective. As
indicated in [21], the easiness at functionalities and changes delivery is one of the
biggest advantages of applying a continuous integration process. For instance, if
there is an error in a recent deployment or change, the development team receives
feedback immediately so that the necessary corrective measures can be taken to
update the change, and upload it again to the application server. Additionally,
it is important to indicate that this process is of great help when using agile
frameworks such as Scrum2 since it allows product deliveries to be iterative and
immediate, making it possible for stakeholders to observe constant progress of
the project and that any change can be easily personalized [23].

The microservices architecture success corresponds directly to the adequate
coordination and joint work of all the teams involved in the development, as
well as in quality assurance and operations. Thus, it is necessary to use a set
of good practices and recommendations that allow working with agile develop-
ment methodologies, which would make it possible to quickly deliver functional
software components. This concept is known as DevOps, where the terms of
development and operations are combined to generate a much more flexible
and robust component where all teams collaborate properly, and everything is
perfectly orchestrated and automated to convey a system from development to
production deployment [7,24]. Another important feature of DevOps relies on
the proper use of tools that allow controlling and automating each of the stages
of the software development life cycle, which in turn will allow us to generate
an own framework where agile development methodologies are included, within
a continuous integration process.

DevOps emerges as a movement to improve communication, collaboration,
and integration between the development and IT operations teams [22]. Automa-
tion is a crucial concept for DevOps success, since every process in the software
development cycle must be automated: application building from the code on the
repository, automated tests, automated integration and automated deployment
on each environment from development to production. From here, it is clear
that continuous integration and continuous delivery are techniques that enable
DevOps on any development team.

Continuous integration is a common practice in software development indus-
try. In [16] a continuous integration process is proposed using Jenkins, using a
master-slave configuration within a real-life scenario for automating test exe-

2 https://www.scrum.org/.

https://www.scrum.org/


Microservices from Start to Finish 173

cution and releasing code to production environments on multiple sites and
multiple platforms. In [15], Jenkins is used for creating pipelines to completely
automate continuous integration and continuous delivery process for High-
Performance Computing (HPC) software. Here, every commit is automatically
transformed in releasable software ensuring that all of them passes through the
same validation and building process and eliminating possible errors in the circle
when it is made manually. In [1], authors approach how to take advantage of
Jenkins flexibility and plugins for evolving from pure continuous integration to
continuous delivery. Here, Jenkins is used as orchestrator between several tools
that help in CI/CD like Artifactory, chef, puppet Sonarqube and others. Finally,
in [12] a pipeline from CI/CD with docker is presented. A continuous integra-
tion process produces docker images that pass through a validation process and
if there are no errors, the same images are deployed by continuous delivery tools.

In this work, an efficient work model is presented, which starts from the cre-
ation of a microservice within a continuous integration process until it becomes
part of a scalable and robust architecture for highly available environments.
Additionally, we describe the use of open source technologies at each stage and
show how they help in the automation of the entire process. Finally, it is expected
that this document will be taken as a reference guide for software projects that
wish to implement innovative technologies that allow the horizontal growth of
their systems due to the versatility of the use of microservices.

3 Microservice Software Architecture

We present an architecture approach for developing scalable, maintainable, and
robust microservices based on the Spring Boot framework and its compatible
libraries, as shown in Fig. 1, to become an ordered guide for the developed of a
microservice. Observe in the figure that the architecture is divided into layers.
From the security to the data connection layer, all these layers will be briefly
described below. In this work, we assume that there are functional and non-
functional requirements acquired at some earlier stage in the software develop-
ment process. Based on these requirements, the microservice will be formed of
all or some of the components described in the figure.

3.1 Microservices with Spring Boot

Spring Boot3 is a software development framework used to create microservices-
based applications in Java. It also helps developers to build, deploy, and run
standalone applications with a minimal effort and very simple configurations.
Spring Boot brings many benefits such as autoconfiguration and a large number
of compatible libraries and starter dependencies that make easy the software
development cycle. Therefore, Spring Boot was selected as the standard for the
development of applications based on microservices by the development team of
the “University of Cuenca” in Ecuador.
3 https://spring.io/projects/spring-boot.

https://spring.io/projects/spring-boot


174 V. Saquicela et al.

Fig. 1. Proposed microservice architecture

3.2 RESTful Services

RESTful services are widely used in the software industry due to its simplicity.
REST adopts all the web precepts like its architecture and its HTTP protocol
which provides functionalities for communication between system components,
like well-defined actions (GET, PUT, POST, DELETE), package forwarding,
cache memory and, encryption and security, each of them are important for
building fast, robust, scalable and secure service-based applications.

RESTful services can be implemented easily in Spring Boot taking advan-
tage of its auto configurable characteristics and its starter dependencies. As a
matter of fact, developers will be able to build and publish RESTful services
using just a few annotations in the code. Therefore, RESTful services is the
architectural style used in this work for the development of applications based
on microservices.

3.3 Business Logic

Business Logic is the core of each application, this layer comprises all the func-
tionalities, which are called when a REST service is invoked. The business logic
takes the data received at the REST layer, proceeds to validate and sends the
results to the persistence layer for insertion, update, deletion or query objects.

3.4 Persistence

Data is the main component of any Information System, every application needs
to use data stores to persist, access, or analyze information, data stores can be
relational databases, NoSQL databases and others [9].



Microservices from Start to Finish 175

Spring (Predecessor of Spring Boot) has created various projects to create
frameworks that help in the data interaction between applications and data
stores in different technologies. Spring Data gather all these previous projects
in a unique project whose goal is to simplify the data access over the different
data store technologies, in a few related Spring Boot starter dependencies.

In the architecture proposed in this work, Spring Data JPA4 is used for
object persistence, Spring Data JPA is the implementation of JPA technology
for Spring Data. JPA, widely documented in [11], is a standard for data persis-
tence implemented by the most important data providers or ORMs, among them
particularly hibernate5, which facilitates data persistence by mapping objects in
database relations (a mapped object is known as an entity). To achieve this, JPA
uses well-defined annotations over the code to define entities, fields, and rela-
tions in a database. Spring Data JPA can be easily implemented in Spring Boot
projects just including the Spring starter data JPA dependency on the project
and annotate the code to define entities. Spring Data also provides repository
classes to interact between entities and the database.

3.5 Security

Security is a crucial aspect in microservice-based applications. When compared
to monolithic applications, security tends to become complex in microservices
as the application grows and uses more components and services. Microservices
security must be approached in two ways [18]: the first one is directly related to
the number of microservices and the network monitoring that must be imple-
mented in every service; the second one is related to internal communication
between the different components of an information system, and how a vulnera-
bility in just one component could compromise the security of the entire system.
To analyze the first point, it becomes necessary to understand that although
microservices break the problem down into small, easy-to-maintain parts, it
granulates security and increases complexity as new components appear in the
system. In large systems, security control could become a very complex task if a
robust set of monitoring and control tools is not implemented. Securing a large
network of microservices involves an analysis of each packet transmitted in each
communication interaction, and looking for any anomalies in data transmission.
Additionally, security of every microservice is also important to analyze, since
the presence of a vulnerability could introduce incorrect information and com-
promise the integrity of the data, no only in that microservice but in the whole
system. This happens since if a component sends wrong data to another, then the
second component will introduce wrong data too and generate a chain reaction
that damages the data of the entire information system.

To deal with security in microservices, as in the architecture shown in Fig. 1,
JWT (JSON Web Token)6 is selected as access control, security, and autho-
rization mechanism for the communication and information exchanging between
4 https://spring.io/projects/spring-data-jpa.
5 https://hibernate.org/.
6 https://jwt.io/.

https://spring.io/projects/spring-data-jpa
https://hibernate.org/
https://jwt.io/


176 V. Saquicela et al.

the different components in a system. JWT is an open standard used in secure
data ransmission, it sends information through an encrypted JSON which has
a header, a payload, and a secret key. The encrypted JSON is sent as a token
on the header of the HTTP request, then, the microservice decrypts the token
and validates it using the same encryption algorithm and secret key that were
used for the token creation. Fiunally, the microservice only executes the request
whether the token is correctly validated.

3.6 Indexing

Full-text search requires the implementation of complex algorithms called search
engines. Fortunately, there are free and open source search engines that can be
implemented over hibernate in Spring Boot like Apache Lucene7, Elasticsearch8,
or Solr9.

Full-text search is achieved in basically two steps, first, data is scanned and
all the words are indexed in an index store, and then, the search is executed over
the indexes and not over the data. Full-text search does not only looks for exact
string matching, search engines can found words that sound similar, have similar
writing, words that may be synonyms, or even that result from the conjugation
of verbs. The engine then sorts the results by relevance and displays them to the
end-user.

To use full-text search in Spring Boot developers only have to import the
correct dependencies depending on the technology of indexes what they want to
use and annotate the entities and fields as indexed.

3.7 Cache

Spring Boot brings the possibility of including a cache between the microser-
vice and the data store, this cache is used for storing the results of a function
execution in an intermediate memory.

When a function with the annotation @Cacheable is executed, this technology
stores the returned results and the parameters used for the execution, after that,
if the function is called again with the same parameters, the microservice will
return the results directly from its cache instead of executing the process.

Cache increases the performance of the microservice when it is used in the
right way. However, it may involve data integrity errors if it is used without
previous analysis of the methods that will use the cache, and the data retention
time in this memory.

3.8 Data Audit

A data audit is directly linked with security, every change in data must be stored
in history together with information about it, the old and new values, the user
7 https://lucene.apache.org/.
8 https://www.elastic.co/.
9 https://lucene.apache.org/solr/.

https://lucene.apache.org/
https://www.elastic.co/
https://lucene.apache.org/solr/


Microservices from Start to Finish 177

who made the change, the time when the data was updated, the computer IP
address where the change was made and other relevant information. Spring Boot
uses Hibernate Envers10 technology and annotations to achieve data audits.

3.9 Connection Pool

The last layer in the proposed architecture in Fig. 1 is the connection pool. The
connection pool is a technique for sharing database connections between multi-
ple clients for achieving better performance in data accessing and storing. The
application uses it because when a request comes to the microservice, database
connections have been already opened to attend that request and the application
does not spend time opening and closing connections with the database.

In microservices, connection pools are mandatory due to the number of clients
that could be requesting information. When a large number of clients are trying
to open a connection to a database, it could result in a timeout error because
the limit of permitted connections was exceeded. Connection pools deal with this
problem maintaining a constant number of open connections and coordinating
the requests of the clients among them. HikariCP11 is widely used in Java appli-
cations due its simple configuration and flexibility. HikariPC reuses the database
connection properties used by Spring Boot, hence, it is enough to add certain
additional parameters in the configuration file and HikariCP will automatically
be able to manage the connections between the microservice and the database.

4 Continuous Integration Process

The development of microservices adapts perfectly to the continuous integration
cycle, due to its facility to encapsulate specific functionalities in a single module.
In Fig. 2, a continuous integration framework is presented, where all the compo-
nents and tools utilized are open source, which have been tailored to meet the
full cycle from development to deployment of a microservice to an application
server. As the Figure shows, the continuous integration cycle involves several
stages, ranging from the creation of the code by the development team, through
versioning tools, integration, and deployment, implementation of microservice in
a server, monitoring, and reporting. In the figure, the software quality compo-
nent is omitted, since there is currently a unit dedicated exclusively to the entire
automatic testing and validation process.

4.1 Development Teams

Microservice development starts with cloning the initial archetype from an
archetype repository to the developer machines. This initial code contains all

10 https://hibernate.org/orm/envers/.
11 https://github.com/brettwooldridge/HikariCP.

https://hibernate.org/orm/envers/
https://github.com/brettwooldridge/HikariCP


178 V. Saquicela et al.

Fig. 2. Continuous integration cycle

the necessary libraries so that the members of the development team can con-
nect their databases, external information repositories, and libraries. Eclipse12,
NetBeans13, or Spring Tools can be used to edit the code and local tests, being
Eclipse IDE the most recommended due to its adequate customization to work
with SpringBoot and Java. These IDE’s provide the necessary tools to perform
the coding, compilation, and testing of the developed microservices before they
are sent to a test or production environment.

4.2 Version Control System

A fundamental part of the continuous integration process is the implementation
of a version control system, which mainly serves to keep versions of the code in an
external repository and which can be accessed by all members of a development
team. As explained in [10], a version control system allows you to maintain
full control of all the changes that have been made in the source code of the
applications. Each action carried out in the code is recorded in such a way that
the author, time, and date of the changes can be known exactly. The version
control system implemented in the cycle presented is Git using the GitLab tool14,
12 https://www.eclipse.org/.
13 https://netbeans.org/.
14 https://about.gitlab.com/.

https://www.eclipse.org/
https://netbeans.org/
https://about.gitlab.com/


Microservices from Start to Finish 179

which in turn acts as an information repository. Here, the code developed by the
programmers is consolidated with all the changes and made it available so that
it can be uploaded to an application server.

4.3 Integration and Deployment

Once the code is available in GitLab, it must be compiled to generate a functional
microservice. Jenkins tool is used for this task and the ones that follow. It is in
charge of automating much of the continuous integration process as explained
in [5]. Jenkins is the tool in charge of connecting with the GitLab repository,
obtaining the code of the branch corresponding to the environment one may
want to deploy, and generating a software component called an artifact. This
component is created using Maven15, which is a tool to create compiled software
packages in Java language. This artifact is stored in its artifact repository as an
image. Additionally, it is important to indicate that the necessary libraries for
compilation are obtained from an artifact repository called Jfrog Artifactory16,
where additionally own libraries are stored.

4.4 Implementation

The next step in the continuous integration process is to create a container
with the compiled image of the microservice using Docker. To do this, Jenkins
downloads the image from the artifact repository, accesses the server where the
container is going to be deployed using ssh, and runs a command to create a
container of Java with the code of developed microservice. At the end of this
process, the container is deployed on the server where the command was executed
and it will be available for use through the ports assigned by the server. The
container with the microservice installed internally will start taking its internal
configurations. In case that we want to extract the configurations so that they
work in an external repository, a container volume would be necessary. The
advantage of extracting the configuration is that it will be easily maintainable
without the need to recompile the microservice, avoiding starting the continuous
integration process again.

4.5 Reports

Reports are generated automatically by Jenkins and sent out to the operations
and development team. These reports contain the result of the entire continu-
ous integration process, including indicating whether there were any errors in
the compilation or in the deployment. Reports generation is very important
since it serves as feedback for both, the development and the operations teams,
because, it helps improve the continuous integration process. The continuous
integration process contemplates the phases from the beginning in the creation
15 https://maven.apache.org/.
16 https://jfrog.com/artifactory/.

https://maven.apache.org/
https://jfrog.com/artifactory/


180 V. Saquicela et al.

of the microservice to its deployment in any environment, including, the develop-
ment, testing, pre-production, or post-production. Additionally, it is important
to emphasize that each stage of the continuous integration process is accom-
panied by the use of free software tools, flexible, and that easily integrate to
automate all processes. In this way, the development teams will only upload
their changes to the version control system and these will be reflected directly
in an application server after the whole process has been completed.

5 Microservice Life Cycle

A microservice follows a continuous integration process to be deployed in a server
application. This section explains how a microservice interacts in a real produc-
tion environment where it communicates with other microservices or external
services like information repositories, databases, etc. To this end, an architecture
based on microservices for high availability applications has been implemented.
In Fig. 3, the architecture model is presented, it corresponds to the successful
implementation of architecture at the University of Cuenca, where monolithic
systems were no longer used to work with microservices in a balanced and easily
scalable environment. This has been possible due to the creation of a highly avail-
able environment where a load balancer, a discovery server, centralized indexing,
centralized logs, and centralized cache, are all available; all these, using Docker
containers within an OpenStack infrastructure.

5.1 Load Balancing

In the proposed architecture, a load balancer is implemented since in a real
application, there are thousands of request that need to be efficiently handled
and with a fast response. The load balancer takes all the multiple requests and
send it to different instances of the microservices, and the microservices use a
second internal load balancer to send request among them.

Once a request has been sent from a web application, mobile application, or
another service, a load balancer called Ribbon takes such request and, using the
round robbin method, sends it to an instance of the microservice. To determine
which instance the request should be sent to, the load balancer uses a proxy
server called Zuul17. This server contains the information provided by a discov-
ery tool called Eureka18, which describes in detail all the microservices deployed
with their respective instances. If the microservice needs the information from
another microservice, it uses a second load balancer with Zuul to send a request
and obtain a response. This architecture does not use the same load balancer for
external and internal requests, because it is necessary to have an isolated envi-
ronment for the security of the internal communication of the different instances
of the microservices.

17 https://github.com/Netflix/zuul.
18 https://github.com/Netflix/eureka.

https://github.com/Netflix/zuul
https://github.com/Netflix/eureka


Microservices from Start to Finish 181

Fig. 3. Microservice life cycle

5.2 Centralized Configuration Server

As we have explained in previous sections, microservices use files to keep all the
configuration isolated from the code. Nonetheless, when we have many instances
from the same microservice, the scenery changes due to the difficulty to maintain
as many files as instances. Fortunately, a centralized configuration server has
been implemented to deal with this problem. This server, implemented with
GitLab, has all the configuration files for all the microservices deployed. If a
new instance of a microservice needs to be created, it takes the configuration file
from the server and uses it to start. Thus, it is very easy to make any change
to the configuration of a microservice, since by modifying the file corresponding
to its configuration, all of these instances will inherit this new change while
maintaining consistency.

5.3 Centralized Indexing

The indexes are implemented to improve responses to full-text queries. We have
multiple instances of a microservice, each instance may, at a certain point in
time, have different indexes because data insertions may occur for any of their
instances, giving the end-user the feeling that the system has some error or that
the data is inconsistent. To solve this problem in a balanced microservices envi-
ronment, a centralized index system using Elasticsearch, Hibernate, and Lucene
has been implemented. These tools allow each inserted data to be indexed in a



182 V. Saquicela et al.

common space for all instances of a microservice, in such a way that the same
response information is always available when the request goes to any instance.

5.4 Centralized Cache

Managing an independent cache in each microservice instance is just as inefficient
as having indexes in each instance. To see this note that if data is updated only
in the cache of the instance where the request was entered will be updated, it
gives the feeling of inconsistency in the data. Eventually, all caches will have the
same information since the queries will be entered by any entity and, if they are
not found in the cache, they will access the database to obtain the information
and leave the new data loaded in the cache. To deal with this problem, the
use of a Redis19 cluster is proposed, which is a service created and optimized
to centralize the cache. The implementation of this cache cluster guarantees
that all the instances of a microservice will always have the same information
available, thus ensuring that the user obtains correct data and, above all, with
an immediate response capacity to any update and query of records.

5.5 Centralized Logs

The administration of logs is very important in the management of computer
systems as well, since, it allows developers to know in detail each of the actions
that have been carried out. In a microservices architecture, we are once again
tempted to deal with the problem of multiple instances that may exist. Each
instance generates its respective logs, which implies that if one want to audit any
microservice, one must access the logs of each instance to obtain the complete
record of events. The solution to this problem is to implement a centralized
log system, which allows the events of all the instances of a microservice to be
registered in a single place. Thus, in the proposed architecture, the Graylog20 tool
is used, which uses Elasticsearch as its search engine on a Mongo21 database that
is responsible for storing all events. Graylog is able to recognize all the instances
of the same microservice, organize their logs properly, group them and store
them in the database, in such a way that the people in charge of monitoring will
see a single event repository for each microservice.

6 Conclusions and Future Work

In this work, a complete cycle for the implementation of a microservices in
high availability environments has been presented. The process begins with the
creation of the microservice-based on an archetype and then becomes part of
a continuous integration process where it will circulate through various stages

19 https://redis.io/.
20 https://www.graylog.org/.
21 https://www.mongodb.com/.

https://redis.io/
https://www.graylog.org/
https://www.mongodb.com/


Microservices from Start to Finish 183

until it reaches a production environment where it will be deployed in a highly
available and easily scalable architecture. One of the main advantages of using
a microservices architecture like the one that has been proposed, is that the
systems can grow horizontally, incrementally, and quickly because the software
deliveries are continuous.

The future works that are considered for the process mentioned above are the
following: the implementation of exhaustive automatic quality tests to measure
the overhead, performance, availability, and scalability of the architecture; the
process formalization, evaluation using operational metrics and monitoring in a
determined period allow improving the described process.

Acknowledgments. This work was carried out at the Direction of Information and
Communication Technologies of the University of Cuenca, with the support of several
people.

References

1. Armenise, V.: Continuous delivery with Jenkins: Jenkins solutions to implement
continuous delivery. In: 2015 IEEE/ACM 3rd International Workshop on Release
Engineering, pp. 24–27. IEEE (2015)

2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
DevOps: migration to a cloud-native architecture. IEEE Software 33(3), 42–52
(2016)

3. Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S.T., Mazzara, M.: From mono-
lithic to microservices: an experience report from the banking domain. IEEE Soft-
ware 35(3), 50–55 (2018)

4. Curbera, F., Nagy, W., Weerawarana, S.: Web services: Why and how. In: Work-
shop on Object-Oriented Web Services-OOPSLA, vol. 2001 (2001)

5. Di Francesco, P., Malavolta, I., Lago, P.: Research on architecting microservices:
trends, focus, and potential for industrial adoption. In: 2017 IEEE International
Conference on Software Architecture (ICSA), pp. 21–30. IEEE (2017)

6. Djogic, E., Ribic, S., Donko, D.: Monolithic to microservices redesign of event
driven integration platform. In: 2018 41st International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO), pp.
1411–1414. IEEE (2018)

7. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Software 33(3),
94–100 (2016)

8. Roy Thomas Fielding. Rest: architectural styles and the design of network-based
software architectures. Doctoral dissertation, University of California (2000)

9. Gutierrez, F.: Pro Spring Boot. Springer (2016)
10. Hethey, J.M.: GitLab Repository Management. Packt Publishing Ltd. (2013)
11. Keith, M., Schincariol, M., Keith, J.: Pro JPA 2: Mastering the JavaTM Persistence

API. Apress (2011)
12. Mironov, O.: DevOps pipeline with docker (2018)
13. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-

puting: a research roadmap. Int. J. Cooperat. Inf. Syst. 17(2), 223–255 (2008)
14. Jiménez Quintana, J.Y.: Proposed environment for the continuous integration of

performance tests



184 V. Saquicela et al.

15. Sampedro, Z., Holt, A., Hauser, T.: Continuous integration and delivery for HPC:
using singularity and Jenkins. In: Proceedings of the Practice and Experience on
Advanced Research Computing, pp. 1–6 (2018)

16. Seth, N., Khare, R.: ACI (automated continuous integration) using Jenkins: key for
successful embedded software development. In: 2015 2nd International Conference
on Recent Advances in Engineering & Computational Sciences (RAECS), pp. 1–6.
IEEE (2015)

17. Shahin, M., Babar, M.A., Zhu, L.: Continuous integration, delivery and deploy-
ment: a systematic review on approaches, tools, challenges and practices. IEEE
Access 5, 3909–3943 (2017)

18. Sun, Y., Nanda, S., Jaeger, T.: Security-as-a-service for microservices-based cloud
applications. In: 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 50–57. IEEE (2015)

19. Thönes, J.: Microservices. IEEE Software 32(1), 116 (2015)
20. Tsalgatidou, A., Pilioura, T.: An overview of standards and related technology in

web services. Distrib. Parallel Databases 12(2–3), 135–162 (2002)
21. Vassallo, C., Palomba, F., Gall, H.C.: Continuous refactoring in CI: a prelimi-

nary study on the perceived advantages and barriers. In: 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 564–568. IEEE
(2018)

22. Waller, J., Ehmke, N.C., Hasselbring, W.: Including performance benchmarks into
continuous integration to enable DevOps. ACM SIGSOFT Software Eng. Not.
40(2), 1–4 (2015)

23. Zhao, Y., Serebrenik, A., Zhou, Y., Filkov, V., Vasilescu, B.: The impact of contin-
uous integration on other software development practices: a large-scale empirical
study. In: 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 60–71. IEEE (2017)

24. Zhu, L., Bass, L., Champlin-Scharff, G.: DevOps and its practices. IEEE Software
33(3), 32–34 (2016)


	Building Microservices for Scalability and Availability: Step by Step, from Beginning to End
	1 Introduction
	2 Background and Related Works
	3 Microservice Software Architecture
	3.1 Microservices with Spring Boot
	3.2 RESTful Services
	3.3 Business Logic
	3.4 Persistence
	3.5 Security
	3.6 Indexing
	3.7 Cache
	3.8 Data Audit
	3.9 Connection Pool

	4 Continuous Integration Process
	4.1 Development Teams
	4.2 Version Control System
	4.3 Integration and Deployment
	4.4 Implementation
	4.5 Reports

	5 Microservice Life Cycle
	5.1 Load Balancing
	5.2 Centralized Configuration Server
	5.3 Centralized Indexing
	5.4 Centralized Cache
	5.5 Centralized Logs

	6 Conclusions and Future Work
	References


