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Abstract—The transmission network expansion planning
(TNEP) problem consists of determining the necessary infras-
tructure additions, within a planning horizon, to minimize an
investment objective function while meeting some operational
and physical constraints. Even using simplified models to rep-
resent the electric network, the TNEP becomes a very complex,
combinatorial and non-convex optimization problem. In recent
years, the full alternating current (AC) network model has been
proposed to formulate the TNEP problem. Due to its complexity,
more robust and efficient optimization techniques to solve the AC
formulation are required. This paper proposes a new effcient
hybrid metaheuristic technique to solve the TNEP problem.
Additionally, it presents a comprehensive comparative study
including different powerful conventional, emerging and hybrid
optimization metaheuristics techniques applied to solve the static,
long-term TNEP problem, using the AC model, considering both
operating and reactive power compensation costs. Simulation
results are shown for three test systems: Garver 6-bus system,
IEEE 24-bus system and the IEEE 118-bus system.

Index Terms—AC Model, Electric Energy Systems, Hybrid-
metaheuristics, Optimization, Parallel Processing, Transmission
Network Expansion Planning.

I. INTRODUCTION

An electric energy system has to generate, transmit and
distribute electrical energy to supply the demand at every
instant of time, meeting operational constraints. To achieve
that objective in a long-term horizon, the transmission network
expansion planning (TNEP) plays a fundamental role, since it
allows to determine the new transmission circuits to will be
added to the electrical system, in an optimal way [1].

The TNEP problem can be studied from different points
of view. An electricity market-oriented TNEP approach is
developed in [1], [2]. Uncertainty in the TNEP assumptions is
handled in [3]–[5]. In [6], the problem is treated using multi-
objective formulations. Static and multistage TNEP formula-
tions are presented in [7], [8] and [9], [10], respectively. From
a mathematical perspective, all TNEP approaches require two
main components: i) a mathematical model to represent the
electric network and ii) a solution technique applied to solve
the mathematical model [11]. In the specialized literature,
there are different mathematical models to deal with the TNEP
problem, from simplified models such as the transportation
model [12], hybrids models [13] and the DC model [3], [14],

to full non-linear models such as the AC model [7], [9]–[11],
[15].

There are several optimization techniques to solve different
optimization problems generally classified into two groups:
mathematical programming and metaheuristic techniques [1],
[16]. The mathematically based approaches find a solution
using a calculation procedure based on research operations the-
ory providing good quality solutions only when dealing with
convex problems; although, it presents certain disadvantages
due mainly to convergence problems when using complex
models at very large computational time [16]. On the other
hand, the metaheuristic techniques follow an iterative process
of generating, evaluating and selecting candidate solutions,
following logical rules. Some disadvantages of metaheuristics
techniques are the need of tuning parameters and an initial
population generation process. Although the solutions obtained
do not guarantee to be the global optimum, these techniques
allow studying problems of great complexity more simply, ob-
taining solutions of good quality in reasonable computational
time [17]. Besides, researchers seek to improve the search
capability of metaheuristics through hybridization, in such a
way to combine the advantages of different metaheuristics,
while simultaneously minimizing occasional disadvantages
[18].

Currenly, several metaheuristic optimization techniques
have already been successfully applied to the TNEP problem
using simplified models, such as Genetic Algorithm [19], [20],
Differential Evolution [21], Particle Swarm Optimization [22],
Harmony Search [23], Tabu Search [24], Ant Colony [25],
Modified Gray Wolf Optimization Algorithm [26], Hybridiza-
tion of Biased Random-Key Genetic Algorithm with Local
Branching [27], and Hybrid Bat-Inspired Algorithm [28].

In this research work, a new hybrid metaheuristic has been
proposed to solve the TNEP problem in a very efficient and
robust fashion. This metaheuristic is a combination between
the Differential Evolution (DE) and the Continuous Pop-
ulation Based Incremental Learning (PBILc) metaheuristics
to perform a more efficient search and thus cover certain
disadvantages of each metaheuristic. It is worth pointing out
that the application of metaheuristics techniques using the AC
model to solve the TNEP problem is still in an early stage,



and very few tests have been performed in different scenarios
for challenging test systems [1], [7], [29]–[31].

In summary, this research work tries to fill some gaps
proposing the following contributions: i) a new hybrid meta-
heuristic to solve the AC TNEP problem, ii) a performance
comparison among different traditional metaheuristics such as
Genetic Algorithm (GA), Differential Evolution (DE), Particle
Swarm Optimization (PSO), Evolutionary Programming (EP),
new emerging metaheuristics (never used in TNEP prob-
lems so far) such as Teaching-Learning-Based Optimization
(TLBO), Big Bang-Big Crunch (BB-BC) algorithm, Contin-
uous Population Based Incremental Learning (PBILc), Evo-
lutionary programming integrated with Cultural Algorithm
(CAEP), and three hybrid-metaheuristics (DE-PBILc, CE-
PSO and EPSO) applied to solve the TNEP problem using
the AC model, iii) the inclusion of power generation costs
in the objective function and the co-optimization of shunt
compensation, and iv) full robustness and efficiency tests using
challenging test systems with existing and new demanding
scenarios, including dispatchable and non-dispatchable power
generation.

The remaining of this paper is organized as follows. Section
II presents the mathematical formulation used to solve the
TNEP problem. Section III explains the basics of the different
metaheuristics proposed in this research work. Section IV
shows the implementation of the proposed metaheuristics to
solve the TNEP problem. Section V presents simulation results
using three test systems. Section VI presents a summary of the
results obtained. Finally, Section VII presents conclusions and
future research works.

II. MATHEMATICAL FORMULATION

The mathematical model used in this paper to solve the
TNEP based on the AC model has divided into two prob-
lems: i) the expansion master problem and ii) the operational
problem. The formulation of the expansion master problem
(1) allows minimizing the total costs of transmission line
additions, power generation, and load shedding.

min v =
∑

(k,l)∈Ω

ckl · nkl + w (1)

subject to
0 ≤ nkl ≤ nkl; nkl integer (2)

Where v is the objective function. The first term of (1)
considers the cost of added transmission circuits, where ckl
corresponds to the cost of a circuit that can be added between
the buses k and l, nkl is the total number of circuits (existing
and added) between the buses k and l. w is the cost of
active and reactive load shedding; also, it includes the annual
operating cost of existing generators. nkl is the maximum
number of circuits allowed between the buses k and l, Ω is
the set of all rights of way where it is possible to add new
transmission lines.

The operational problem corresponds to the formulation of
an AC optimal power flow, with operational constraints of the
system (3-12).

min w =
∑

(k∈∧)

(α1 · rPk + α2 · rQk + cop) (3)

subject to
P (V, θ)− PG + PD − rP = 0 (4)
Q(V, θ)−QG +QD − rQ = 0 (5)
PG ≤ PG ≤ PG (6)
Q
G
≤ QG ≤ QG (7)

rP ≤ rP ≤ rP (8)
rQ ≤ rQ ≤ rQ (9)

V ≤ V ≤ V (10)
Sfrom ≤ S (11)
Sto ≤ S (12)

The term cop represents the annual operating cost of existing
generators, associated with the level of the generation that
allows supplying the total demand at the lowest possible cost.
cop is represented mathematically by

cop = 8, 760
∑

(k)∈∧

(βk · PGk + γk ·QGk) · CFk (13)

Where 8, 760 is the number of hours in a year, βk cor-
responds to the power generation cost (or operating cost) at
node k ($/MWh); PGk is the total power generated at node
k; CFk corresponds to the capacity factor of the generator at
node k; γk corresponds to the reactive power generation cost
at node k ($/MV ARh). In this paper, the operating cost of
the existing reactive power generation is zero (i.e., γk = 0),
where QGk is the total reactive power generated at node k
and ∧ is the set of all load nodes. α1 is the cost of the
active load shedding; rP is the active load shedding; α2 is the
cost of shunt compensation; rQ is the reactive load shedding,
which in this formulation also represents the reactive power
compensation needed in some buses. PG, QG, and PG, Q

G
,

are the vectors of maximum and minimum real and reactive
power limits of existing generators, respectively. rP , rQ and
rP , rQ are the maximum and minimum limits of active and
reactive power of fictitious generators. V is the vector of
voltage magnitudes with the maximum V and minimum V
limits of 105% and 95% of the nominal value, respectively.
θ is the phase angle vector. PG and QG are the existing real
and reactive power generation vectors. PD and QD are the real
and reactive power demand vectors. Sfrom, Sto and S are the
apparent power flow vectors (MVA) through the branches in
both terminals and their limits, respectively.

Equations (14) and (15) represent the power flow AC
formulation, where elements of vectors P (V, θ) and Q(V, θ)
appear in (5) and (6) and correspond to the nodal active and
reactive power balances.

Pk(V, θ) = Vk ·
∑
k∈M

Vl · [Gkl · cosθkl +Bkl · sinθkl] (14)

Qk(V, θ) = Vk ·
∑
k∈M

Vl · [Gkl · sinθkl −Bkl · cosθkl] (15)



Sfrom and Sto can be calculated as follow:

Sfromkl =

√
(P fromkl )2 + (Qfromkl )2 (16)

Stokl =
√

(P tokl )
2 + (Qtokl)

2 (17)

The calculation method of Gkl, Bkl, P
from
kl , P tokl , Q

from
kl

and Qtokl can be found in [15].
In the operational problem ((3)-(12)), the shunt compen-

sation is modelled by the reactive load shedding (α2 · rQk).
The cost of shunt compensation is a linear function of the
variable cost, which provides approximated costs for both
capacitive and inductive reactive power needed in load nodes.
The cost of shunt compensation is always positive, so when
capacitive compensation (positive power injection) is obtained,
the cost coefficient α2 is modelled as positive, while when
inductive compensation (negative power injection) is obtained,
the coefficient of cost α2 is modelled as negative. A further
explanation on shunt compensation can be found in [7], [29].

The load shedding cost corresponds to a strategy intended
to penalize the objective function using fictitious generators
of active and reactive power that must be added in all load
nodes (PQ nodes) in case the existing generators or a certain
transmission topology can not supply the entire demand (load
not served or not attended) [7]. Therefore, it also helps the
optimization algorithms to converge more easily. In a certain
iteration i of the metaheuristic algorithm, some generated
transmission topologies (as many as the size of the population)
are evaluated through an AC optimal power flow (3 - 12). If
a particular transmission topology is feasible, the AC optimal
power flow will converge even in case of constraint violation.
A constraint violation is initially met by the AC optimal
power flow through generation redispatch (which is the most
economical way). If this is not possible, the AC optimal power
flow will use fictitious generators (the most expensive way).
In this case, the following situations may arise [7]:

1. There is no active power load shedding (rP = 0).
It means that the fictitious generators do not generate ac-
tive power. This situation is only possible when the current
topology satisfies the system’s active power needs and, there
are no constraint violations. However, it does not necessarily
mean that the current topology is the optimal one since in
further iterations more economical plans that also meet all the
constraints may be found.

2. There is an active power load shedding (rP > 0). It
means that the fictitious generators do generate active power
and some constraint violations are present. In case this option
is allowed, the production cost (α1) of the fictitious generators
can be set, for instance, as the actual cost of the energy not
supplied or a cost higher than the current transmission expan-
sion cost of that topology (say the cost of the most expensive
transmission plan). By setting the fictitious generators with the
actual cost of the energy not supplied, we are accepting that
the final transmission plan could have some load shedding.
Setting that cost to a much higher value is a way to penalise

(1), and the optimization algorithm in further iterations will
discriminate those “expensive” plans. This is, in turn, a way
of rejecting load shedding in the final plan.

3. There is no reactive load shedding (rQ = 0). It means
that the fictitious generators do not generate reactive power.
Therefore, there is no constraint violation related to reactive
power. This condition can be achieved in two situations. The
first one is the case where the current transmission topology
provides the reactive power paths with the load needs, so
there is no need for additional reactive power sources in the
system. The second situation is related to defining unbounded
reactive power sources. It is possible to achieve this condition
by setting the production cost α2 of the fictitious generators
to zero (α2 = 0).

4. There is reactive load shedding. Reactive power is
produced when there is some related constraint violation. It
happens when the current transmission topology does not
meet the reactive power requirements of the system, so there
is a need for reactive power compensation (rQ > 0). This
condition requires that the cost of shunt compensation is
always positive. In this case, the coefficient cost is α2 > 0
in case of capacitive compensation and α2 < 0 in case of
inductive compensation.

If a certain transmission topology is not feasible, the AC op-
timal power flow of the operational problem will not converge.
Even when the formulation of this problem is defined having in
mind the creation of feasible solutions due to the load shedding
approach, sometimes unfeasible solutions can occur mainly
if the power generation range of the fictitious generators
is too strict. In that case, a way of avoiding unfeasible
solutions is to set large power generation limits. Additionally,
some unfeasible solutions can appear when scenarios without
allowing shunt compensation are analysed because there is
no support of reactive power from the fictitious generators
(rQ = 0) and the current transmission topology is not able to
handle it. Therefore, in general, the way to tackle unfeasible
solutions is to set w in (1) to a very high value to penalise the
objective function and discriminate that topology.

III. METAHEURISTIC TECHNIQUES

A. Differential evolution (DE)

This algorithm is based on populations, where each indi-
vidual within the population undergo cross over and mutation
before competing with individuals in the current generation.
The steps of the DE are explained in Algorithm 1. DE has
already been applied to solve the TNEP problem. More detail
of this metaheuristic technique applied to the TNEP problem
used in this paper can be found in [29].

B. Continuous Population Based Incremental Learning
(PBILc)

The PBILc is based on competitive learning. At each
generation, it determines both the most relevant and irrelevant
characteristics of individuals in each population, and it learns
from these characteristics to generate new individuals through



Algorithm 1 Pseudocode of the DE algorithm.
Step 1: Initial population. Randomly initialize a ini-
tial population x0 = [x0

1, x
0
2, . . . x

0
i , . . . , x

0
m] of m in-

dividuals, where each individual is represent by x0
i =

[x0
i,1, . . . , x

0
i,j , . . . x

0
i,n], where n corresponds to the dimen-

sion of the problem.
while the stopping criterion is not satisfied do

for i = 1 : m do (m is the size of the population)
Step 2: Differential mutation. Generate a donor

vector vki from the a perturbation in each individual i:

vki,j = xkb + F · (xk1,j − xk2,j + xkb − xk3,j) (18)

Step 3: Crossover. Generate a trial vector uki from
the information sharing of the individuals of the current
population xki and the donor vector vki :

if r < Cr | J = jrand then

uki,j = vki,j (19)

else

uki,j = xki,j (20)

end if
Step 4: Selection. Compare the trial vector uki with

each individual of the current population xki , to determine
which individual survives to the next generation:

if f(ui) < f(xi) then

xk+1
i = uki (21)

else

xk+1
i = xki (22)

end if
end for

end while
*F ∈ [0, 2] is the mutation rate, Cr ∈ [0, 2] is the crossover factor, xk

b is

the individual with the best solution, J = jrand is a random value between [0, n],

and it guarantees that at least one component of the donor vector vki exchanges

information to uk
i . xk

1 , x
k
2 , x

k
3 ∈ [1,m] with x1 6= x2 6= x3.

sampling a probability vector. The steps of the PBILc are
explained in Algorithm 2 [32].

C. Hybridization of Differential Evolution and PBILc (DE-
PBILc)

This metaheuristic is a combination of the Differential Evo-
lution (DE) and the Continuous Population Based Incremental
Learning (PBILc) metaheuristics. It aims to combining DE
(which uses the difference of the parameter vectors to explore
the search space) and PBILc (which employs probabilistic
models based on competitive learning) to perform a more
efficient search and thus to cover certain disadvantages of
each metaheuristic. The traditional selection and crossover
operators are not effective enough to obtain optimal or near-
optimal solutions and exhibit poor performance in high dimen-

Algorithm 2 Pseudocode of the PBILc metaheuristic.
Step 1: Initialize initial population (similar to the DE)
and probabilistic model. The n-dimensional probabilistic
model p used is based on a normal distribution function
model p(µ, σ), so the value of the initial mean p(µ0) =
µ0

1, ..., µ
0
n is generated from a normal random distribution

within the search domain [xmin, xmax] and the initial stan-
dard deviation p(σ0) = σ0

1 , ..., σ
0
n is set in order to obtain

diversity of individuals.
while the stopping criterion is not satisfied do

Step 2: Update probability vector. The probability
vector p(µk, σk) will be updated based on:

for j = 1 : n do

µkj = (1− η) · µkj + η · (xk(1,j) + xk(2,j) − x
k
(1,j)) (23)

σki = (1− η) · σki + η

√√√√Nbest∑
i=1

(x(i,j) − µkbest)2

Nk
best

(24)

end for
Step 3: Generate the next population. The next

generation is generated using a random normal distribution:
for i = 1 : m do (m is the size of the population)

xk+1
i,j = N(p(µkj ), p(σkj )) (25)

end for
end while

*η ([0, 1]) is called learning rate. Nbest represents the number of individuals

with the best solutions, µbest is mean of the Nbest individuals, and xk
(1,j), xk

(2,j)

represent the first two individuals with the best solutions.

sional problems. In this new hibrid metaheuristic, a double
differential mutation is used to accelerate the optimization
process without losing robustness or efficiency. To start the
optimization process, a combination probability (pcomb ∈
[0, 1]) is established. Each individual is generated using DE
if a randomly generated number r (generated between [0, 1])
does not exceed the pcomb. Otherwise, the individual will be
generated using PBILc (see Algorithm 3). Additionally, when
DE is used to generate an individual, at the time of applying
the differential mutation, it is possible to decide between two
types of differential mutation based on the decision whether a
randomly generated number does not exceed the probability of
mutation (pdouble−mut ∈ [0, 1]). The two differential mutation
applied are: DE/best/2 strategy and trigonometric mutation
[33].

D. Genetic Algorithm (GA)

The GA is an optimization technique inspired by imitating
the genetic processes of living beings [34]. Such optimization
technique is widely implemented on various optimization
problems and specifically to solve the TNEP problem (using
simplified models) obtaining good quality results [19], [27].
GA begins with an initial population of randomly generated
individuals. Within the population, each individual is assigned



Algorithm 3 Pseudocode of the DE-PBILc metaheuristic.
Step 1: Initial population (similar to the DE).
while the stopping criterion is not satisfied do

for i = 1 : m do (m is the size of the population)
if r ← N [0, 1] < pcomb then

Step 2: Apply double differential mutation.
xk1 , x

k
2 , x

k
3 , x

k
4 → selected randomly

if r ← N [0, 1] < pdouble−mut then

vki,j =
xk
1,j−x

k
2,j−x

k
3,j

3 + (p2 − p1) · (xk1,j − xk2,j) +

(p3 − p2) · (xk2,j − xk3,j) + (p1 − p3) · (xk3,j − xk1,j) (26)

else

vki,j = xkb + F · (xk1,j − xk2,j + xkb − xk3,j) (27)

end if
Step 3: Apply Crossover. Section III-A

else
Step 4: Apply PBILc (Generate individual.

Section III-B)
end if
Step 5: Apply Selection (section III-A)

end for
Step 6: Update probability vector. Section III-B

end while
p1 = f(x1)k/p′; p2 = f(x2)k/p′; p3 = f(x3)k/p′ and p′ =

f(x1) + f(x2) + f(x3); xk
b is the individual with the best solution.

with an aptitude value (in this work the aptitude value is the
objective function value). Subsequently, the individuals with
the best aptitude values are more likely to be selected (using
selection by a tournament with probability [34]) to share the
genetic information to the following generations through the
crossing (using uniform crossing [34]) and mutation operators
(using uniform distribution [34]).

E. Big Bang-Big Crunch Algorithm (BB-BC))

This algorithm is inspired by the theories of the universe
(cosmological theories), from the birth of the universe in the
big bang to the death of the same in the big crunch. Details
of this metaheuristic can be found in [35].

F. Evolutionary programming (EP)

EP is inspired in the theory of evolution, where the next
generation is created only by mutation (no recombination
applies) [34]. EP has already been applied to solve the TNEP
problem. Details and settings of this metaheuristics applied to
the TNEP problem can be found in [36].

G. Cultural Algorithm (CA)

The cultural algorithm is based on the idea of the cultural
evolution of a society, noting that the population evolves from
parents to children and also evolves culturally since culture
can be transmitted to the next generation as a hereditary
process [34]. The previous idea was taken to introduce in the

evolutionary process of the EP the cultural algorithm (named
CAEP). CAEP has already been applied to solve the TNEP
problem. Details and settings of this metaheuristics applied to
the TNEP problem can be found in [36].

H. Particle Swarm Optimization (PSO)

PSO is an optimization technique inspired by the social
behaviour of the movement (direction and speed) the flight
of flocks of birds. PSO (version LPSO) has already been
applied to solve the TNEP problem. Details and settings of
this metaheuristics applied to the TNEP problem can be found
in [7].

I. Hybrid Evolutionary Particle Swarm Optimization (EPSO

EPSO was developed to overcome difficulties related to
the premature convergence and slow finish that are common
in Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO). The hybrid algorithm combines concepts of evolution-
ary computation and multiagent population taking advantage
of the standard blocks that are typical in GA and PSO
techniques. Also, the Hill-Climbing method is used to improve
the exploitation in the search space. EPSO has already been
applied to solve two different approaches to TNEP with very
promising results. Details and settings of this metaheuristics
applied to the TNEP problem can be found in [37], [38].

J. Cross-Entropy Method and Evolutionary Particle Swarm
Optimization (CE-PSO)

CE-PSO is a combination of the Cross-Entropy (CE)
method (exploration) and the Evolutionary Particle Swarm
Optimization (exploitation) to improve state exploration and
exploitation. Additionally, this metaheuristic presents a simple
iterative algorithm (based on the Two-way Analysis of Vari-
ance (ANOVA)) which is used to fine-tune EPSO‘s strategic
parameters to consistently obtain close-to-optimal solutions.
This metaheuristic has already been applied to solve the TNEP
problem where a special recombination operator for handling
transmission network investment decisions in EPSO also is
presented. Details and settings of this metaheuristics applied
to the TNEP problem can be found in [37].

IV. TNEP IMPLEMENTATION

This section describes the implementation of the meta-
heuristics described in the previous section to solve the TNEP
problem using the AC model. Figure 1 shows the flow chart
of the implementation.

1) Network data: Network data are the initial system data.
The dimension of the problem n is given by the number
of right-of-ways, where it is possible to add circuits. The
initial topology is xmin and the maximum number of
circuits per right-of-way is xmax.

2) General parameters: These parameters are necessary for
the convergence of the algorithm, as the number of
individuals of the population m, the maximum number
of iterations or generations Imax.

3) Parameters of metaheuristics: The parameters of the
metaheuristics that have been already applied to solve



Fig. 1. Flow chart for solving the TNEP.

the TNEP problem were taken from their respective
references, while for the rest of the metaheuristics the
parameters were established based on a trial and error
method to obtain the best results for most tests. Table I
shows the parameters used by the different metaheuristics
for all test systems.

4) Initial population: The initial population is randomly
generated.

5) Reducing the evaluations of the objective function: This
method was implemented only to the DE-PBILc meta-
heuristic and is based on employing less optimal power
flow and speed up the optimization process since the
greatest computational effort in solving the TNEP prob-
lem is given in solving the optimal power flow formula-
tion (3-12) [29]. The main idea behind this improvement
is that in a first stage it is enough to know the cost of each
topology (only lines cost) without the need to solving
the optimal power flow. If each topology i (test vector)
presents a lower value (only lines cost), this topology
will calculate an optimal power flow. Otherwise, it will
be penalized with a high value in such a way to consider
a topology with a poor solution in the selection step
(section III-C step 5).

6) New population: The new population generated at each
iteration by the different metaheuristics is limited within
the search domain (initial topology xmin and the maxi-
mum allowed number of circuits per right-of-way xmax).

7) Population evaluation: In this step, each individual
(topology) is evaluated to determine the value of the
objective function. The population is evaluated in parallel
using the ”Matlab Parallel Computing Toolbox” to solve
simultaneous operational problems. In this case, each
worker of the parallel toolbox performs a certain number
of optimal power flows, which speeds up the whole
process of evaluating the function.

8) Stopping Criterion: In this paper, for all the proposed
metaheuristics, the maximum allowed number of itera-
tions was used as a stopping criterion.

V. RESULTS

The performance of the different metaheuristics to solve
the TNEP problem is evaluated. Three test systems are used,
namely Garver 6-bus system, IEEE 24-bus system and 118-
bus system. To compare the performance of the different
metaheuristics and the quality of their results, three main
criteria were considered. The first one is the success rate,
which is an indicator of robustness since it determines the
percentage of runs for which the optimal value is obtained. In
this research work, at least 70% of success rate is considered as
a reasonable robustness indicator. The second criterion is based
on the standard deviation calculated from ten simulations,
which is indicative of the convergence variability (high or low
random search component) of the metaheuristic. The third one
corresponds to the average number of iterations, which is a
statistical average of the number of iterations required in each
simulation until a local minimum, the global minimum or a
known reference value are obtained. The latter demonstrates
the metaheuristic’s efficiency. Besides, the best and worst
(the minimum and maximum cost of the objective function
for all the tests, respectively) solutions found are presented.
In this research work, load shedding is not allowed in the
final plans. The metaheuristics were implemented in MATLAB
[39], running on an Intel i5, 3.1 GHz, 8GB RAM, hardware
platform. MATPOWER [40] is used to solve the AC optimal
power flow formulation ((4)-(12)). The parameters used in the
different metaheuristics are shown in Table I. Different test
scenarios have been defined for each test system to test the
feasibility of this approach:

a) Unlimited shunt compensation: in this scenario, the
reactive power generation limits of fictitious generators are
set in a wide range, where the reactive power cost α2 = 0.
In this case, the reactive power generation can be dispatched
freely whenever needed.

b) No shunt compensation: in this case, the reactive power
generation limits of fictitious generators are set to zero.

c) Limited shunt compensation: this scenario allows reac-
tive power generation from the fictitious generators within a
predefined range. The generated reactive power cost is set to
a nonzero value.

d) Considering the active power cost in the objective func-
tion: in this case, the active power cost of existing generators
is included in the objective function using cost βk.

Other scenarios can be created by setting the annual op-
erating cost βk in scenarios a), b) and c) above. The test
systems are considered for both dispatchable generation and
non-dispatchable generation. Furthermore, simulations using
the DC model are also performed in such a way as to compare
the results obtained.

A. Garver 6-bus system

This system has 6 buses, 15 candidate branches, with a total
power demand of 760MW and 152MVAr, 1,100MW of max-
imum power generation and the maximum allowed number
of circuits per right-of-way is five. The complete data can
be found in [14]. As for the scenarios considering operating



Table I
Parameters of metaheuristics.

Metaheuristic GA BB-BC EPSO PBILc EP CAEP DE LPSO DE-PBILc CE-PSO

Parameters

pm = 0.03
pcross = 0.75
pc = 0.5

pselec = 0.7
melite = 1

d1 = 1

nhillC = m/4
nhc = m/4 (small systems)
nhc = 10 (big systems)

pelite = 0.6
r = 3

χ = 0.729
c1 = 2.05
c2 = 2.05

η = 0.05
Nbest = m/2
µ0 randomly
σ0 = 2

melite = 1

β = 0
γ = 0.2

β = 0
γ = 0.2

B = [xmin, xmax]
M = 12m%
α = 0.5

F = 0.7
Cr = 0.6

χ = 0.729
k1 = 2.05
k2 = 2.05
NR = 1

F = 1
Cr = 0.2
η = 0.05

Nbest = m/2
µ0randomly
σ0 = 2

melite = 1
pdouble−mut = 0.3

pcomb = 0.9

Nelite = 20
σ = 0.9

pcomunication = 0.8
rmutation = 0.4

indexRo = m−Nelite

max iterce = 20
init = 1

weights = rand(m ∗ 0.25, 4) ∗ 1.5

Table II
TNEP results for Garver system with dispatchable generation.

Added lines Scenarios
DC1 A1 A2 A3 A4

2-3 0 0 0 0 0 0 2 2
2-6 0 0 1 2 3 2 2 2
3-5 1 1 1 1 1 2 3 4
4-6 3 3 2 1 0 2 3 4
Total Cost (M$) 110 110 110 110 110 160 30,395.32 30,428.14
Total Active Power
Generation (MW) 760 779.89 774.64 774.85 781.48 772.23 766.51 766.18

Total Active Power
Gen. Cost (M$) - - - - - - 30,145.32 30,128.14

Cost Lines (M$) 110 110 110 110 110 160 250 300
Shunt Comp. - Yes Yes Yes Yes No Yes No
Total Shunt
Comp. (MVAr) - 251.46 197.07 183.61 260.05 - 191.03 -

Bus 2
Comp. (MVAr) - 96.69 70.04 51.73 98.57 - 70.75 -

Bus 4
Comp. (MVAr) - 82.21 54.31 57.23 83.24 - 51.5 -

Bus 5
Comp. (MVAr) - 72.54 72.36 74.64 78.23 - 68.76 -

costs, the capacity factors are CF1 = 0.6, CF3 = 0.6, and
CF6 = 0.7. The operating costs ($/MWh) of each generator
were set to: β1 = 0.005, β3 = 0.007 and β6 = 0.0085.

1) Dispatchable generation: For this case, four scenarios
were considered: i) scenario with unlimited shunt compen-
sation at load nodes (A1), where the shunt compensation
limits were set from -1,000 to 1,000MVAr, ii) scenario without
allowing shunt compensation (A2), iii) and iv) scenario A3 and
A4 similar to scenario A1 and A2 but considering the power
generation cost. The results for each scenario are listed in
Table II. Additionally, the final plan using the DC model was
obtained (DC1). The tests were performed for a population of
60 individuals, 150 iterations allowed and performing 10 tests.

For the base case (scenario A1), four final topologies present
the smallest value found with a total investment cost of
$110M for each of them. For each one of the four topologies
a total shunt compensation of 251.46MVAr, 197.07MVAr,
183.61MVAr and 260.05MVAr is required, respectively. The
result where the lines l3−5 = 1 and l4−6 = 3 are added agree
with the topology obtained in [7], [14], but the other three
additional topologies are feasible too. This scenario shows
that the four topologies can be considered as the optimal final
topology. The scenario A2 presents a greater total investment
cost ($160M) concerning the scenarios A1 ($110M). This
higher cost is because the system does not allow to add
compensation shunt. For the scenario A3, incorporating the
operating cost, the final plan presents a total investments
cost of $30,395.32M, where $250M corresponds to lines
investments and $30,145.32M corresponds to the operating
cost. Also, the obtained plan requires shunt compensation of
191.03MVAr, located at nodes 2, 4 and 5 with 70.75, 51.5

Table III
Success rates of the metaheuristics for Garver system (scenario A).

Algorithm GA BB-BC PBILc EP CAEP DE LPSO DE-PBILc CE-PSO EPSO
Scenario Success Rate (%)

A1 30 60 100 100 100 100 100 100 100 100
A2 60 30 100 100 100 100 100 100 100 100
A3 100 0 100 100 100 100 90 100 100 100
A4 100 0 100 100 100 100 100 100 100 100

and 68.76MVAr, respectively. On the other hand, scenario
A4 presents a total investments cost of $30,428.14M, where
$300M corresponds to lines investments and $30,128.14M
corresponds to the operating cost. The previous results indicate
that the overall cost has two components, namely due to
the expansion itself and due to the further operation of the
system. Therefore, in some situations, the obtained expansion
plan may exhibit a higher cost than of other expansion plans.
However, the operational cost is low, in such a way that the
final plan could be beneficial, presenting a higher cost by
added transmission circuits, but savings due to less operational
cost. On the other hand, the final plan obtained using the DC
model matches with that of the literature [14], [20] and this
final plan is exactly the same final plan obtained using the
AC model (with added lines in l3−5 = 1 and l4−6 = 3),
however, the AC model provides three additional final plans
to the previous one with their respective shunt compensation.

Table III shows the success rates of the metaheuristics for
each scenario A analyzed, where the majority of metaheuristics
are robust (success rates > 90%), except the metaheuristics
GA and BB-BC, which for some cases does not present
reasonable robustness (scenario A1 and A2) and even the
BB-BC cannot find the minimum value found by the rest of
metaheuristics (scenarios A3 and A4). Table IV shows the
performance results of metaheuristics for scenarios A1 and
A3. Table IV shows that among the robust metaheuristics, the
DE metaheuristic is the one that requires the least number
of evaluations of the objective function (Eval.F.O). Also,
EPSO requires a low number of iterations to converge (< 27
iterations). GA and PBILc require the greatest number of
iterations (> 68 iterations) to find the minimum value (see Fig.
2). In addition, almost all metaheuristics have low convergence
variability (Standard Deviation of < 12). Only GA and CE-
PSO presents high convergence variability (Standard Deviation
of 39 and 22, respectively).

The advantage in terms of the computational time from the
use of parallel processing is shown in Table V. For parallel
processing, 2 and 4 workers are used. The results in the Table
V show that as the number of workers increases, the computa-



Table IV
Metaheuristics performance for Garver test system, scenario A1 and A3, with a population of 60 individuals, 150 iterations allowed and performing 10 tests.

Scenario A1 A3 A1 A3 A1 A3 A1 A3 A1 A3 A1 A3 A1 A3 A1 A3 A1 A3 A1 A3
Metaheuristic GA BB-BC PBILc EP CAEP DE LPSO DE-PBILc CE-EPSO EPSO
Success Rate
(%) 40 100 60 10 100 100 100 100 100 100 100 100 100 90 100 100 100 100 100 100

Eval. F.O 4,177 3,445 500 420 4,158 4,476 2,904 3,288 1,952 2,178 752 1,494 1,350 1,873 887 2,322 1,272 1,197 1,541 5,208
Stand. Deviat.
Iter. 39 7 1 0 10 12 10 10 4 4 5 3 5 6 5 4 22 10 2 11

Average Iter. 68 57 8 7 69 75 48 55 33 36 25 25 22 31 34 39 32 30 6 27
Lowest Cost
(M$) 110 30,395.32 110 30,490.3 110 30,395.32 110 30,395.32 110 30,395.32 110 30,395.32 110 30,395.32 110 30,395.32 110 30,395.32 110 30,395.32

Higher Cost
(M$) 148 30,395.32 151 30,694.8 110 30,395.32 110 30,395.32 110 30,395.32 110 30,395.32 110 30,396.11 110 30,395.32 110 30,395.32 110 30,395.32

Cost Lines
(M$) 110 250 110 211 110 250 110 250 110 250 110 250 110 250 110 250 110 250 110 250

Total Gen.
(MW) 774.64 774.64 774.64 769.08 774.64 774.64 774.64 774.64 774.64 766.51 774.64 766.51 774.64 766.51 774.64 766.51 774.64 766.51 774.64 766.51

Gen. Cost
(M$) - 30,145.32 - 30,279.3 - 30,145.32 - 30,145.32 - 30,145.32 - 30,145.32 - 30,145.32 - 30,145.32 - 30,145.32 - 30,145.32

Fig. 2. Convergence process for scenario A1 with 60 individuals.

tional time required is further reduced; for example, the LPSO
metaheuristic using serial processing requires 5.06min to solve
the TNEP problem and as the number of internal workers
increases, the computational time required is further reduced
(2.4min and 1.48min with 2 and 4 workers, respectively).

2) Non-dispatchable generation: In this case, two scenarios
were considered: i) shunt compensation with 10,000$/MVAr
(B1) in nodes 2, 4 and 5, and ii) the last one scenario
(B2) similar to the previous one but considering the power
generation cost. Shunt compensation limits were set at -1,000
and 1,000 MVAr. Additionally, the final plan using the DC
model was obtained (scenario DC2). Table VI shows the final
plan found for each scenario. The tests were performed for
a population of 60 individuals, 200 iterations allowed and
performing 10 tests.

Scenario B1 presents a final plan with an investment cost
of $170.63M, with a cost of $170M in transmission circuits
additions, similar to the previous scenario, but with a shunt
compensation cost of $0.63M. The total amount of shunt
compensation is 63.96MVAr in nodes 2, 4 and 5 with 12, 6.14
and 45.7MVAr, respectively. For scenario B2, the final plan
presents a total investments cost of $36,483.4M, where $341M
corresponds to lines investments and $36,142.4M corresponds
to the operating cost. The previous results indicate that the
overall cost has two components, namely due to the expansion
itself and due to the further operation of the system. Therefore,
in some situations, the obtained expansion plan may exhibit
a higher cost than of other expansion plans. However, the

operational cost is low, in such a way that the sum of the
two terms results in overall optimal value.

The final plan obtained using the DC model matches with
that of the literature [14], [20], however, this plan (with
$200M) is more expensive than the scenario using the AC
model (scenario B1 with $170.63M), since the apparent power
flow limits in transmission lines for the AC model are higher
than the correspondingly active power limits of the DC model.
Also, this difference is explained by the unlimited reactive
power compensation allowed in all load nodes.

Table VII shows the performance results of metaheuristics
for scenarios B1 and B2, where only EP, CAEP, DE and
DE-PBILc are considered robust (success rates >= 70%),
highlighting among them the CAEP, DE and DE-PBILc
metaheuristics with a success rate of the 100%. In another
hand, again GA and BB-BC present poor robustness (low
success rate). Moreover, the success rate has been reduced
for some metaheuristics (with respect to scenario A), which
is because the problem with non-dispatchable generation is
a problem of greater difficulty. One of the metaheuristics
that presents a notable reduction in robustness is CE-PSO,
which had a success rate of 100% for scenario A, while
for scenario B its success rate is 40%. Additionally, Table
VII shows that robust DE is the one that requires the least
number of evaluations of the objective function (Eval.F.O).
Also, another efficient metaheuristic, CAEP, requires between
34-35 iterations to find the minimum value, while GA and
PBILc require the largest number of iterations (>65 iterations)
to find the minimum value. In addition, almost all of the most
robust metaheuristics EP, CAEP, DE and DE-PBILc present
low convergence variability (Standard Deviation < 12), except
EP which presents high convergence variability.

B. IEEE 24-bus system

The system consists of 24 buses and 41 rights-of-way. The
maximum allowed number of circuits per right-of-way is five,
with a total power demand of 8,550MW and 1,740MVAr.
The complete data for the system can be found in [14]. The
scenario with unlimited shunt compensation was considered
for both dispatchable and non-dispatchable generation (C1
and C2, respectively), and the last two scenarios similar
to the previous ones but considering the power generation
cost (scenarios C3 and C4). As for scenarios considering



Table V
Computing time for Garver system (scenario A1) using parallel processing.

Numbers of
workers

Metaheuristic
GA BB-BC PBILc EP CAEP DE LPSO DE-PBILc CE-PSO EPSO

1 (Serial) Time
(min)

4.7 4.6 5 5.08 4.8 1.08 5.06 1.3 2.9 15.4
2 2.46 4.58 2.45 5.05 2.3 0.8 2.4 1 1.58 9.2
4 1.5 4.43 1.46 4.7 1.48 0.65 1.48 0.8 1.3 5.9

Table VI
Expansion plans for Garver system with non-dispatchable generation.

Added lines Scenarios
DC2 B1 B2

2-6 4 3 5
3-5 1 1 2
4-6 2 2 3
5-6 0 0 1
Total Cost (M$) 200 170.63 36,483.4
Total Power Gen. (MW) 760 784.39 773.36
Total Cost Power Gen. (M$) - - 36,142.4
Cost Lines (M$) 200 170 341
Total Shunt Comp. (MVAR) - 63.96 0
Comp. cost (M$) - 0.63 0

operating costs, a capacity factor CF = 0.6 was set for all
generators. The operating costs ($/MWh) of each generator
were set to: β1 = 0.002, β2 = 0.0016193, β7 = 0.0012468,
β13 = 0.0013928, β15 = 0.0016193, β16 = 0.001236,
β18 = 0.0014253, β21 = 0.0014253, β22 = 0.0016193
and β23 = 0.0011892. Additionally, the final plan using
the DC model was obtained for both dispatchable and non-
dispatchable generation (DC3 and DC4, respectively).

The final plans for each of those scenarios are shown in
Table VIII. The tests were performed for a population of 60
individuals, 500 iterations allowed and performing 10 tests.
The results obtained for the scenario C1 presents a total
investment cost of $48M (only lines). This final plan requires a
total compensation of 1,993.89MVAr. On the other hand, when
considering the generation cost (scenario C3), the final plan
presents a total cost of $63,162.97M, where $580M represents
the investments in line additions and $62,582.97M represents
the operating cost. The results obtained for the scenario C2
presents a total investment cost of $98M (only lines), and
when considering the generation cost (scenario C4), the final
plan presents a total cost of $65,667.07M, where $254M
represents the investments in line additions and $65,413.07M
represents the generation cost. Previous results indicate that,
when considering the cost of operation, the final plan could
be beneficial, presenting a higher cost by added transmission
circuits, but savings due to less operational cost.

The final plan obtained using the DC model matches with
that of the literature [14], [20], however, this plan (with
$152M) is more expensive than the scenario using the AC
model (scenario C1 with $48M). A similar result is presented
for the non-dispatchable generation, where the final plan for
the scenario DC4 (with $256M) is more expensive than the
scenario C2 with an investment of $98M. The lower cost
of the resulting plan for the AC model compared to that
of the DC model is due to the allowed unlimited reactive
power compensation in all load nodes and the apparent power
flow limits in transmission lines, which are higher than the

Fig. 3. Convergence process of metaheuristics for scenario C1.

corresponding active power limits of the DC model.
Table IX shows the success rates of the metaheuristics for

each scenario C analyzed, where most metaheuristics have
reduced their robustness if compared to the Garver 6-bus
system (Fig. III), and only DE and DE-PBIL are considered
robust (success rate > 70%). The most significant reduction in
robustness is presented in EP since this metaheuristic is robust
on low dimensionality systems (Garver 6-bus system with the
success rates > 70%), but as the dimensionality grows this
metaheuristic reduces its robustness (IEEE 24-bus system with
the success rates = 0%).

Table X shows the performance results of metaheuristics for
scenarios C1 and C3. Table X shows that DE and DE-PBILc
(robust metaheuristics) present similar efficiency for scenario
C1 since they require between 92 and 100 iterations until
finding the minimum value, but in scenario C2, DE-PBILc
requires only 116 iterations to find the minimum value while
DE requires 199 iterations. Therefore, DE-PBILc is proved
again as a robust and efficient optimization technique. Also,
DE-PBILc presents a low convergence variability (Standard
Deviation < 13). The convergence process of one test for
scenario C1 is shown in Fig. 3, where although EPSO is not
robust, this metaheuristic is efficient since it requires only 7
iterations to converge to the minimum value. However, this
minimum value is higher than that found by other meta-
heuristics; therefore, this optimization technique presents a
fast but premature convergence. On the other hand, GA and
EP present a slow convergence process (considered inefficient
metaheuristic).

Again, the results of using parallel processing are shown in
Table XI, considering 1, 2 and 4 workers with a population of
60 individuals and a maximum iteration number of 500. Table
XI shows that all metaheuristics require greater computational
time when working with serial processing (1 worker), and



Table VII
Performance of the metaheuristics for the Garver system, scenarios B1 and B2 with 60 individuals.

Scenario B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2
Algorithm GA BB-BC PBILc EP CAEP DE LPSO DE-PBILc CE-PSO EPSO
Success Rate
(%) 50 70 20 10 70 100 70 100 100 100 100 100 100 90 100 100 40 40 30 100

Eval. F.O 5,903 3,964 600 780 5,511 4,056 4,071 2,454 2,100 2,070 1,393 1,506 2,286 1,800 1,509 2,130 2,842 1,462 11,175 7,236
Stand. Deviat.
Iter. 30 28 3 0 12 9 18 8 4 3 5 3 13 12 10 4 51 12 39 12

Average Iter. 97 65 10 13 91 67 67 40 35 34 48 25 38 30 49 36 84 39 58 38
Lowest Cost
(M$) 170.63 36,483.4 170.63 36,527.8 170.63 36,483.4 170.63 36,483.4 170.63 36483.4 170.63 36,483.4 170.63 36,483.4 170.63 36,483.4 170.63 36,483.4 170.63 36,483.4

Higher Cost
(M$) 269.61 36,497.54 242.34 36,636.61 208.14 36,483.4 202.44 36,483.4 170.63 36,483.4 170.63 36,483.4 170.63 36,489.9 170.63 36,483.4 252.04 36,499.3 234.4 36,483.4

Cost Lines
(M$) 170 341 170 261 170 341 170 341 170 341 170 341 170 341 170 341 170 341 170 340

Total Gen.
(MW) 784.39 773.16 784.39 778.1 784.39 773.16 784.39 773.16 784.39 773.16 784.39 773.16 784.39 773.16 784.39 773.16 784.39 773.16 784.39 773.16

Gen. Cost
(M$) - 36,142.4 - 36,266.8 - 36,142.4 - 36,142.4 - 36,142.4 - 36,142.4 - 36142.4 - 36,142.4 - 36,142.4 - 36,142.4

Shunt Comp.
Cost (M$) 0.63 0 0.63 1.02 0.63 0 0.63 0 0.63 0 0.63 0 0.63 0 0.63 0 0.63 0 0.63 0

Total Shunt
Comp. (MVAr) 63.96 0 63.96 102 63.96 0 63.96 0 63.96 0 63.96 0 63.96 0 63.96 0 63.96 0 63.96 0

Table VIII
Expansion plans for the IEEE 24-bus system.

Added lines Scenarios
DC3 DC4 C1 C2 C3 C4

1-2 0 0 0 0 2 0
1-5 0 1 0 0 0 1
4-9 0 0 0 0 1 0
5-10 0 0 0 0 1 0
6-10 1 1 1 1 2 2
7-8 2 3 2 2 4 3
10-11 0 0 0 0 1 0
10-12 1 1 0 1 0 0
11-13 0 0 0 0 1 1
15-21 0 0 0 0 1 0
15-24 0 0 0 0 1 0
14-16 1 1 0 0 0 0
14-23 0 0 0 0 2 1
16-17 0 1 0 0 0 0
20-23 0 1 0 0 0 0
Total Cost (M$) 152 256 48 98 63,162.97 65,667.07
Total Active Power
Generation (MW) 8,549.99 8,549.99 8,853.82 8,840.31 8,731.68 8,770.8

Total Active Power
Gen. Cost (M$) - - - - 62,582.97 65,413.07

Lines Cost (M$ 152 256 48 98 580 254
Total Shunt Comp. (MVAr) - - 1,993.89 2,233.58 1,830.82 1,724.38

Table IX
Success rates of the metaheuristics for IEEE 24-bus system.

Algorithm GA BB-BC PBILc EP CAEP DE LPSO DE-PBILc EPSO CE-PSO
Scenario Success Rate (%)

C1 40 0 70 0 60 90 80 100 70 60
C2 50 0 100 0 80 100 90 100 100 40
C3 30 0 20 0 30 100 30 70 20 0
C4 100 0 80 0 80 90 30 100 90 50

important computing time savings result from using parallel
processing.

C. IEEE 118-bus system

The 118-bus system is considered a very challenging test
system as far as transmission expansion planning is concerned.
It consists of 118 buses, 177 transmission lines, 9 transformers,
54 generators, total active and reactive power demand of
3,733MW and 1,462.98MVAr respectively. The maximum
allowed number of circuits per right-of-way is eight. The
complete data for the original system can be found in [41]. The
data presented in [41] have been modified since the original
system (Z scenario) does not require the addition of transmis-
sion lines (Table XII). Therefore, the line ratings have been
reduced to create line congestion in the initial network. The
analyzed scenarios of the modified system comprise a mix of
dispatchable and non-dispatchable generation. As for scenarios

considering operating costs, a capacity factor CF = 0.6 was
set for all generators. The operating costs ($/MWh) of each
generator were set to: β4 = β6 = β8 = β15 = β19 = β24 =
β27 = β31 = β34 = β40 = β42 = β72 = β73 = β85 = 0.002,
β10 = β12 = β25 = β49 = β54 = β69 = β80 = β89 =
β92 = β99 = β100 = 0.0012, β18 = β32 = β36 = β46 =
β55 = β56 = β62 = β76 = β77 = β82 = β104 = β105 =
β111 = β112 = β113 = 0.017, β91 = β110 = β116 = 0.0022,
β74 = β90 = β103 = β107 = 0.0037, β26 = β87 = 0.0010,
β59 = β61 = 0.0013, β65 = β66 = 0.0008 and β70 = 0.0015.

In this system, four scenarios were analyzed: i) shunt
compensation with 1,000$/MVAr at load buses (D1), ii) no
shunt compensation (D2), and the last two scenarios D3 and
D4 are similar to the previous ones but considering the power
generation cost. Shunt compensation limits were set to -1,000
and 1,000MVAr. The final plans found for each scenario are
shown in Table XII, with a population of 100 individuals,
3,000 iterations allowed and performing 10 tests. Scenario D1
presents a total investment cost of $27.89M, where $27.7M
corresponds to the addition of lines and $0.19M to the shunt
compensation cost. On the other hand, scenario D2 presents a
total investment cost of $45.1M corresponding to the addition
of lines. Scenario D1 presents a lower total investment cost
as compared to scenario D2 since part of the reactive demand
is supplied by the shunt compensators. Scenario D3 presents
a total cost of $43,233.002M where $337.8M represents the
addition of lines and $42,922.14M corresponds to the system
operating cost. Also, the obtained plan require $0.011M per
shunt compensation cost. The increase in the cost for added
lines (compared to scenario D1) results in important savings
during the operation of the system. On the other hand, although
the scenario D4 requires a lower investment cost due to
the addition of lines ($310M) concerning the scenario D3
($338.7M), this increase in the cost for added lines results
in important savings during the operation of the system.

The metaheuristics that presented the best performance for
the previous test systems were considered to solve the IEEE
118-bus system scenarios (PBILc, DE, CAEP, LPSO, EPSO,
CE-PSO and DE-PBILc). Table XIII shows the success rates
of the metaheuristics for each scenario D, where only the
DE-PBILc is robust for almost all scenarios, while the other



Table X
Performance of the metaheuristics for scenarios C1 and C3 (IEEE 24-bus system) with 60 individuals and 500 iterations allowed.

Scenario C1 C3 C1 C3 C1 C3 C1 C3 C1 C3 C1 C3 C1 C3 C1 C3 C1 C3 C1 C3
Metaheuristic GA BB-BC PBILc EP CAEP DE LPSO DE-PBILc CE-PSO EPSO
Success Rate
(%) 40 30 10 10 70 20 10 10 60 30 90 100 80 30 100 70 60 10 100 20

Eval. F.O 21,336 21,288 900 480 9,882 9,060 19,980 29,640 15,020 27,520 2,086 11,970 5,565 7,200 2,444 6,960 2,325 3,540 2,257 50,565
Stand. Deviat.
Iter. 85 100 0 0 17 12 0 0 97 31 10 23 9 41 6 13 37 0 8 57

Average Iter. 349 349 15 8 164 151 333 494 250 458 95 199 92 120 100 116 68 108 7 260
Lowest Cost
(M$) 48 63,162.9 70 63,448.1 48 63,162.9 51 63,168.9 48 63,162.9 48 63,162.9 48 63,162.9 48 63,162.9 48 63,181.1 70 63,162.9

Higher Cost
(M$) 78 63,167.6 148 63,873.5 78 63,171.08 134 63,218.5 70 63,167.5 70 63,162.9 70 63,193.2 48 63,163.4 70 62,603.1 70 63,186.8

Cost Lines
(M$) 48 580 70 414 48 580 51 649 48 580 48 580 48 580 48 580 48 578 70 580

Total Gen.
(MW) 8,853.82 8,731.68 8,851.11 8,755.75 8,853.82 8,731.68 8,853.15 8,724.27 8,853.82 8,731.68 8,853.82 8,731.68 8,853.82 8,731.68 8,853.82 8,731.68 8,853.82 8,732.13 8,851.11 8,731.68

Gen. Cost
(M$) - 62,582.9 - 63,034.1 - 62,582.9 - 62,519.9 - 62,582.9 - 62,582.9 - 62,582.9 - 62,582.9 - 62,586.8 - 62,582.9

Total Shunt
Comp. (MVAr) 1,993.89 1,833.21 2,662.65 2,009.18 1,993.89 1,833.21 2,009.26 1,807.83 1,993.89 1,833.21 1,993.89 1,833.21 1,993.89 1,833.21 1,993.89 1,833.21 1,993.89 1,827.87 2,662.65 1,833.21

Table XI
Computing time for IEEE 24-bus system (scenario C1) using parallel processing.

Numbers of
workers

Metaheuristic
GA BB-BC PBILc EP CAEP DE LPSO DE-PBILc CE-PSO EPSO

1 (Serial) Time
(min)

22.4 24.1 28.5 26.7 25.6 3.5 25.7 4 13.03 94
2 15.3 13.5 14.3 15.8 14.6 2.8 15.7 3.6 9.5 55.4
4 10.1 9.1 8.5 9.4 8.5 2.1 9.2 2.3 4.9 36.6

Table XII
Expansion plans for IEEE 118-bus system.

Added lines Scenario
Z [41] D1 D2 D3 D4

4-5 0 0 0 0 1
3-5 0 0 0 1 1
8-9 0 1 2 2 2
8-5 0 1 1 1 1
9-10 0 1 1 1 1
15-17 0 0 0 1 1
25-27 0 0 0 1 1
30-17 0 0 0 1 1
26-30 0 0 1 2 2
34-37 0 0 0 1 1
38-37 0 0 1 1 1
63-59 0 0 0 1 1
63-64 0 0 0 1 1
38-65 0 0 0 2 1
64-65 0 0 0 1 1
69-75 0 0 0 1 2
77-78 0 0 0 1 1
82-83 0 0 0 1 1
85-86 0 0 0 2 2
86-87 0 0 0 2 1
80-99 0 0 0 1 1
94-100 0 1 0 1 1
Total Cost (M$) 0 27.89 45.1 43,233.002 43,233.5
Total Active Power Gen. (MW) 6,387.34 6,400.08 6,369.45 6,361.69 6,364.9
Total Active Power
Gen. Cost (M$) - - - 42,894.291 42,923.5

Lines Cost (M$) 0 27.7 45.1 338.7 310
Shunt Comp. No Yes No Yes No
Shunt Comp. Cost (M$) - 0.19 - 0.011 -

Table XIII
Success rates of the metaheuristics for IEEE 118-bus system.

Metaheuristics PBILc CAEP DE LPSO DE-PBILc CE-PSO EPSO
Scenario Success Rate (%)

D1 20 0 80 0 90 20 50
D2 0 0 80 0 100 20 100
D3 0 0 0 0 70 0 0
D4 0 0 0 0 60 0 0

metaheuristics (PBILc, DE, CAEP, LPSO, EPSO and CE-
PSO) showed lower success rates. As far as the scenarios,
a significant reduction in robustness is noted for DE, since it
is robust for scenarios the D1 and D2 (success rate = 80%),
but significantly reduces its robustness (success rate = 0%)
in more complex the scenarios (D3 and D4). Regarding the
dimensionality, the most significant reduction in robustness are

presented by LPSO and CAEP since those metaheuristics are
robust on low dimensionality systems (Garver 6-bus system
with the success rates > 60%), but as the dimensionality
grows those metaheuristics reduces its robustness (IEEE 118-
bus system with the success rates = 0% for all of the scenar-
ios). Additionally, Table XIII shows that the EPSO is highly
robust only for scenario D2 (success rate = 100%) while
it loses its robustness significantly for the other scenarios.
Even for scenarios D3 and D4, EPSO is not able to find the
optimal solution found by the other metaheuristics (success
rate = 0%).

The results of the metaheuristic performance are shown in
Table XIV. The metaheuristic with the highest efficiency and
robustness is DE-PBILc since it allows to find the minimum
cost solution in fewer average iterations presenting the highest
success rate. Although DE is robust for scenarios the D1
and D2, it is not efficient since it requires 1688 iterations to
find the minimum value while DE-PBILc only requires 283
iterations. In addition, DE-PBILc presents a low convergence
variability (20 < Standard Deviation). On the other hand,
EPSO is efficient and robust only for scenario D2 since it
has a success rate of 100 % and it finds the minimum value
in 38 iterations (on average). For the other cases, since EPSO
is not robust, its efficiency cannot be measured. Fig. 4 shows
the convergence process for each metaheuristic where EPSO
presents a fast convergence. On the other hand, DE and CAEP
present a slow convergence process.

To test the advantages of parallel processing, the computing
time was registered using the different metaheuristics (see
Table XV ), considering 1, 2 and 4 workers with a population
of 100 individuals and a maximum iteration number of 3,000,
noting that the computing time is significantly lower when the
number of workers increases for all metaheuristics.

VI. SUMMARY OF THE RESULTS

The results section showed that:



Table XIV
Metaheuristics performance for the IEEE 118-bus system, with a population of 100 individuals, 3,000 iterations allowed and performing 10 tests.

Scenario D1 D2 D3
Metaheuristic PBILc CAEP DE LPSO DE-PBIL EPSO CE-PSO PBILc CAEP DE LPSO DE-PBIL EPSO CE-PSO PBILc CAEP DE LPSO DE-PBIL EPSO CE-PSO
Success Rate
(%) 20 10 80 10 90 50 20 10 10 80 10 100 100 20 10 10 10 10 60 20 10

Eval. F.O 62,100 276,800 16,167 22,700 10,790 11,074 4,025 49,900 267,900 18,887 27,900 12,363 17,478 32,975 70,200 228,700 172,740 38,500 40,500 289,870 67,485
Stand. Deviat.
Iter. 0 0 317 0 7 28 15 0 0 239 0 9 31 604 0 0 0 0 20 23 0

Average Iter. 621 2,768 1,688.2 227 283 36 70 499 2,679 2,208.2 279 298 38 650 702 2287 2879 385 405 935 1,343
Lowest Cost
(M$) 27.89 427.8 27.89 62.38 27.89 27.89 27.89 53.2 530.9 45.1 63.1 45.1 45.1 45.1 43,241.1 43,602.2 43,294.7 43,255.3 43,233 43,240.8 43,247.03

Higher Cost
(M$) 60.77 495.6 32.09 119.25 32.94 48.5 56.5 113.9 536.4 49.5 102.7 45.1 45.1 83.7 43,290.4 43,648.3 43,740.8 43,273.7 43,235.8 43,265.9 43,391.6

Cost Lines
(M$) 27.7 426.5 27.7 61.6 27.7 27.7 27.7 53.2 530.9 45.1 63.1 45.1 45.1 45.1 285.3 742 359 270.5 338.7 321.4 305.9

Total Gen.
(MW) 6,400.08 6,380.4 6,400.08 6,401.8 6,400.08 6,400.08 6,400.08 6,374.5 6,357.7 6,369.4 6,368.5 6,369.4 6,369.45 6,369.4 6,368.5 6,357.7 6,366.4 6,371.7 6,361.6 6,364.1 6,366.6

Gen. Cost
(M$) - - - - - - - - - - - - - - 42,955.8 42,859.8 42,935.7 42,984.8 42,894.2 42,919.4 42,941.1

Fig. 4. Convergence for scenario D2 118-bus system.

Table XV
Computing time for the IEEE 118-bus system (scenario D1) using parallel

processing.

Numbers of
workers

Metaheuristic
PBILc CAEP DE LPSO DE-PBILc EPSO CE-PSO

1 (Serial) Time
(h)

15.8 16.6 1.4 16.6 13.52 30.2 13.6
2 9 8.5 1.3 9.7 8.1 20.1 3.5
4 4.8 4.7 1.2 4.9 3.5 10.8 2.1

1) In the Garver 6-bus system, the most metaheuristics are
robust (success rate > 90%), efficient (low number of
iterations to converge), and low variability of conver-
gence (standard deviation < 12), except GA and BB-
BC. While the problem is more complex (Garver with
non-dispatchable generation), some metaheuristics reduce
their robustness (PBILc, EPSO, and CE-EPSO). On the
contrary, CAEP, DE, and DE-PBILc present the highest
success rate (100%) and lowest variability of convergence
(Standard Deviation < 10) for all scenarios.

2) For the IEEE 24-bus system, only the DE-PBILc and DE
metaheuristics maintain acceptable robustness (success
rate > 70%) for all the analyzed scenarios, where DE-
PBILc presents the lowest variability of convergence
(standard deviation < 13) and the highest efficiency
(iterations< 116 to converge) if compared to DE (stan-
dard deviation < 23 and iterations< 199, respectively).

3) For the most challenging system, the IEEE 118-bus
network, only DE-PBILc is robust for all scenarios,
presenting as well low variability of convergence and a
low number of iterations to converge, if compared to

the other metaheuristics. Some metaheuristics such as
DE and EPSO are robust only for some cases and the
rest of techniques (PBILc, CAEP, LPSO, and CE-EPSO)
presents poor robustness for all scenarios.

4) When the TNEP problem, considering both expansion
and operation cost, is compared to that considering only
lines cost, the final plan obtained presents a higher cost
due to the added transmission circuits, but that higher
cost is compensated with savings during the operation of
the system.

5) As the dimension of the problem increases, the use of
parallel processing is very favorable since the saving in
computational time is significant.

VII. CONCLUSION

In this article, a new very robust and efficient metaheuristic,
named DE-PBILC, was presented. It is a hybridization be-
tween DE and PBILc. Its robustness and efficiency were tested
thorough an exhaustive performance comparison against some
conventional (GA, LPSO, DE, and EP), and top emerging (BB-
BC, EPSO, PBLIc, CAEP, CE-PSO) optimization techniques
applied to solve the static TNEP problem using the AC model.
Well known test systems with challenging scenarios were
used to obtain the results. The most reliable and efficient
optimization technique is DE-PBILc since it maintained its
robustness and efficiency even for large-scale systems and
the most complex scenarios when compared to the other
metaheuristics. Therefore, it can be concluded that DE-PBILc
is efficient to solve simple (Garver 6-bus system and IEEE 24-
bus system) and much more complex and realistic test systems
(IEEE 118-bus system). Besides, the proposed TNEP formula-
tion increased the complexity of the problem by incorporating
reactive power compensation and the power system operating
cost in the objective function. Results in some scenarios
showed that an increased investment cost in transmission
circuits and/or shunt compensation can be compensated by
a smaller operating cost. Additionally, it was proved the
computational effort is reduced when the parallel processing
is used. Future work may consider the implementation of
techniques that improves the performance of metaheuristics
algorithms. Also, more complex formulations can be proposed
to test the benefits of this new hybrid metaheuristic.
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