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Resumen  

 

El cálculo de la evapotranspiración del cultivo de referencia (ETo) utilizando la ecuación 

FAO56 Penman-Monteith (PM-ETo) requiere datos sobre las temperaturas máxima y 

mínima del aire (Tmax, Tmin), la humedad relativa (RH), la radiación solar (Rs) y el viento. 

velocidad (u2). Sin embargo, los registros de las variables meteorológicas suelen ser 

incompletos o de mala calidad. Con frecuencia, en las zonas montañosas como las de 

los Andes, los sensores ambientales están sujetos a duras condiciones, debido a la 

variabilidad climática diurna / nocturna que genera condiciones desafiantes para el 

monitoreo meteorológico, lo que conduce a la pérdida de datos. Para paisajes de gran 

altitud como los Andes, las variables faltantes de déficit de presión de vapor y radiación 

solar causan un alto impacto en el cálculo de PM-ETo. Para evaluar estas limitaciones, 

en la presente investigación se han considerado varios métodos que se basan en la 

temperatura máxima y mínima para estimar las variables faltantes. Con base en datos 

de tres estaciones meteorológicas automáticas en los Andes tropicales altos (páramo 

húmedo, 3298 - 3955 m s.n.m.), encontramos que la calibración y validación de métodos 

fueron esenciales para estimar Rs. Utilizando el método de De Jong y Stewart (1993) 

(Rs-DS) obtuvimos el rendimiento más alto, un RMSE entre 2,89 y 3,81 MJ m-2 día-1. 

Además, en ausencia de observaciones de HR, reemplazar la temperatura del punto de 

rocío (Tdew) por Tmin fue una alternativa confiable, cuando se aplicó el método de Allen 

et al. (1998) (VPD-FAO) que mostró el mayor desempeño con RMSE entre 0.08 y 0.12 

kPa. Estos resultados arrojaron estimaciones de PM-ETo altamente precisas, con RMSE 

entre 0,29 y 0,34 mm día-1 y RMSE entre 0,12 y 0,18 mm día-1, respectivamente. Como 

era de esperar, cuando faltaban ambas variables, el cálculo de ETo aumentó su error, 

con un RMSE entre 0,32 y 0,42 mm día-1. Una estimación adecuada de ETo en el páramo 

andino contribuye a mejorar la productividad del agua para usos domésticos e 

industriales, agricultura de regadío e hidroeléctrica. 

 

 

 

 

 

Palabras claves: Páramo. PM-ETo. Radiación solar. Déficit de presión de vapor. 

Calibración. 



 

Cristina Alejandra Vásquez Ojeda       3 

Abstract 

 

The computation of the reference crop evapotranspiration (ETo) using the FAO56 

Penman-Monteith equation (PM-ETo) requires data on maximum and minimum air 

temperatures (Tmax, Tmin), relative humidity (RH), solar radiation (Rs), and wind speed 

(u2). Nevertheless, the records of meteorological variables are often incomplete or of 

poor quality. Frequently, in the mountain areas such as those of the Andes, 

environmental sensors are subject to harsh conditions, due to the diurnal/nocturnal 

climatic variability causing challenging conditions for meteorological monitoring, which 

leads to data loss. For high-elevation landscapes like the Andes, the missing variables 

of vapor pressure deficit and solar radiation cause a high impact on PM-ETo calculation. 

To assess these limitations, several methods relying on maximum and minimum 

temperature to estimate the missing variables have been considered in the present 

investigation. Based on data from three automatic weather stations in the high Tropical 

Andes (humid páramo, 3298 – 3955 m a.s.l.), we found that the calibration and validation 

of methods were essential to estimate Rs. Using the De Jong and Stewart (1993) (Rs-

DS) method we retrieved the highest performance, a RMSE between 2.89 and 3.81 MJ 

m-2 day-1. Moreover, In the absence of RH observations, replacing the dew point 

temperature (Tdew) by Tmin was a reliable alternative, when apply the method of Allen et 

al. (1998) (VPD-FAO) which showed the highest performance with RMSE between 0.08 

and 0.12 kPa. These results yielded highly accurate PM-ETo estimates, with RMSE 

between 0.29 and 0.34 mm day-1 and RMSE between 0.12 and 0.18 mm day-1, 

respectively. As expected, when both variables were missing, the ETo calculation 

increased its error, with an RMSE between 0.32 and 0.42 mm day-1. A proper estimation 

of ETo in the Andean páramo contributes to improved water productivity for domestic and 

industrial uses, irrigated agriculture, and hydropower. 

 

 

 

 

 

 

Keywords: Páramo. PM-ETo. Solar radiation. Vapor pressure deficit. Calibration. 
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1 Introduction  

 

The páramo is the most important ecosystem in the high Tropical Andes for water 

resources supply (Hofstede et al., 2014). The Andean páramo covers over 30,000 km2 

of northern South America (Wright et al., 2018). It is the primary water source for 

communities located near this ecosystem, which include major cities in Colombia, 

Ecuador, and Perú (Buytaert et al., 2006). Its vegetation consists mainly of tussock 

grasses, cushion plants, and patches of woody species such as Polylepis sp. and 

Gynoxys sp. that occur only in sheltered locations and along water streams (Buytaert et 

al., 2006). This ecosystem serves as a sponge that captures precipitation, stores, and 

releases the water gradually to the surrounding areas (Llambí, et al. 2012) producing a 

sustained streamflow during the year. This water resource is intensively used for irrigated 

agriculture, industry, rural, and urban drinking water systems, hydro-power production, 

and for sustaining aquatic ecosystems (Célleri and Feyen, 2009; Llambí et al., 2012). 

Particularly an important economic function of water in Andean ecosystems is to irrigate 

agriculture in downstream areas. At present, irrigation represents 71.2%, which becomes 

the activity that consumes the most flow in our country. Compromising almost all of the 

water sources located in high altitude areas for irrigation (Ministerio de Agricultura y 

Ganadería et al., 2019). 

Although evapotranspiration may not be a limiting factor for water use in cold and humid 

regions, the increasing demand for water resources due to population growth, 

urbanization, and irrigated agriculture require a reliable estimate of evapotranspiration to 

improve the yield and water productivity. A common approach for calculating 

evapotranspiration is the estimation of ETo, which is the most useful for countless 

scientific and management applications, such as water balance studies at different 

scales, evaluation of water resources, and development of watershed management 

plans. Likewise, ETo plays a key role in crop water, irrigation planning and management, 

as well as in studies related to the analysis of climate change and water conservation 

(Paredes et al., 2020, 2017; Todorovic et al., 2013). 

According to the Food and Agriculture Organization (FAO56) (Allen et al., 1998), the 

Penman-Monteith equation (PM) is the most recommended method to determine ETo.  

This method is a global standard based on meteorological data (Allen et al., 1998) and 

their applications all over the world have been quite successful (Jabloun and Sahli, 2008; 

Ochoa-Sánchez et al., 2019; Paredes et al., 2020, 2017; Paredes and Pereira, 2019; 

Todorovic et al., 2013). Nevertheless, the major limitation of the Penman-Monteith 
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equation reported in many studies is the requirement of meteorological variables (air 

temperature, relative humidity, solar radiation, and wind speed) that are often incomplete 

or of poor quality (Córdova et al., 2015; da Silva et al., 2018; Karimi et al., 2020; Paredes 

and Pereira, 2019; Santos et al., 2020; Sentelhas et al., 2010; Tomas-Burguera et al., 

2017). This usually happens when a sensor breaks or malfunctions (e.g., due to weather 

conditions, lack of maintenance, or electronic failure). Frequently, in the mountain areas, 

like the Andes, sensors are subject to harsh environmental conditions, due to the high 

climatic variability during the day causing challenging environmental conditions for 

meteorological monitoring, which leads to data loss. Accordingly, the application of PM 

faces the problem of data unavailability.  

Research has developed a variety of tools and procedures to overcome the unavailability 

of data by using empirical equations, most of them relying on maximum and minimum 

temperature. For instance, the procedures by George H. Hargreaves and Zohrab A. 

Samani (1982), the equations proposed in FAO56 (Allen et al., 1998), the equations by 

Castellví et al. (1997), among others. However, these methods require local calibrations 

to obtain satisfactory performances as several studies have shown in various climate 

types ranging from hyper arid to humid (Karimi et al., 2020; Paredes et al., 2017; Raziei 

and Pereira, 2013; Ren et al., 2016; Todorovic et al., 2013). The approach of these 

studies was the calibration of the KRS coefficient of the George H. Hargreaves and 

Zohrab A. Samani (1982) method to estimate solar radiation when the variable was 

missing, and a correction in the minimum temperature to estimate actual vapor pressure 

in the absence of relative humidity data. In all cases, their results showed that the PM-

ETo method had greater precision in both arid and humid climates when missing data 

was estimated. Nevertheless, Todorovic et al. (2013) found that for good ETo 

performance, the correction applied in the minimum temperature was only necessary for 

hyper-arid, arid, semi-arid, and dry subhumid climates and not for humid conditions. 

Moreover, Ren et al. (2016) found that the calibrated coefficient of the method to estimate 

solar radiation varied with climatic aridity. The errors of estimates were higher when the 

range of variation of ETo was higher, which occurred more often for hyper-arid and arid 

climates contrarily to sub-humid locations. In addition, Karimi et al. (2020) also found that 

the effect of using estimated values of solar radiation on PM-ETo calculation caused 

greater error than using estimated values of wind speed. 

Unlike the most common methods reviewed above, in various studies, a large number 

of empirical methods are compared to estimate the missing variables (Bandyopadhyay 

et al., 2008; Besharat et al., 2013; Jabloun and Sahli, 2008; Li et al., 2013; Tabari et al., 

2016). Nonetheless, there is a shortage of information for high-elevation landscapes like 
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the Andes, contrary to the information available in low and arid areas. Using daily data 

recorded from eight weather stations in North Africa (Tunisia), Jabloun and Sahli (2008) 

evaluated the performance of the PM-ETo method with limited data and revealed that 

estimating solar radiation with  Allen. R (1995) method that takes into account the 

elevation effects on the volumetric heat capacity of the atmosphere, it gave accurate 

estimates of ETo in all the studied regions. Furthermore, the use of minimum temperature 

was a good alternative when relative humidity measurements were lacking. The use of 

the mean annual wind speed of the location led to acceptable ETo estimates, especially 

for high ETo rates. Under cool, arid, and semi-arid conditions in Iran, Tabari et al. (2016) 

estimated solar radiation using 12 models and then compared daily PM-ETo values 

derived from both measured and estimated solar radiation. The results indicated that 

using estimated Rs, the PM-ETo method performed well for semi-arid and arid climates. 

In cold conditions, the PM-ETo accuracy decreased despite the calibration of the models. 

To the best of our knowledge, there is only one previous study that examined the impact 

of missing meteorological variables on PM-ETo calculation in the high Tropical Andes. 

Córdova et al. (2015) evaluated the PM-ETo equation with limited data using 

meteorological variables of two weather stations in the high Tropical Andes (Ecuador) 

and found that the maximum error in ETo calculations was observed when solar radiation 

and relative humidity were missing, while wind speed had a much lower impact. Finally, 

they concluded that there is an urgent need for the development of alternative methods 

in these sites to estimate accurate values for missing variables. Nevertheless, there is a 

knowledge gap to estimate the missing variables and this makes PM-ETo subject to high 

uncertainty. Thus, the first step to achieving this is to develop or calibrate equations to 

estimate the missing variables and then evaluate its impact on PM-ETo.  

Therefore, the objectives of this study are (a) To calibrate and validate methods to 

estimate Rs, (b) To evaluate the performance of methods to estimate Vapor Pressure 

Deficit (VPD) and, (c) To evaluate the impact on PM-ETo calculation when Rs and/or VPD 

are missing for the paramo ecosystem. 

 

2 Study Area and Data 

 

In the Tropical Andes of southern Ecuador, the headwater catchment of Quinoas covers 

an area of about 94.1 km2 and an elevation range of 3150 to 4425 m a.s.l. (Fig. 1). The 

Quinoas catchment is characterized as a Páramo ecosystem. This bioma stores large 

amounts of water that is captured from rainfall events, drizzle, and fog interception (Beck 
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et al., 2008). The climate is influenced by air masses of both the Pacific and the Amazon 

basin (Buytaert et al., 2006). A bimodal precipitation seasonality is presented, in 

connection with the meridional displacement of the Intertropical Convergence Zone 

(ITCZ) and its double passage throughout the year over the deep tropics (Garreaud, 

2009). This corresponds to the months from March to May and October where the 

maximum values of precipitation are recorded (Carrillo-Rojas et al., 2016).  Annual 

precipitation is between 946 and 1120 mm. The Table 1 describes the daily values of 

different meteorological variables. These values coincide with those reported by Córdova 

et al. (2015) and Carrillo-Rojas et al. (2016) in the same study site. 

Meteorological data were collected along an altitudinal gradient (3298 - 3955 m a.s.l.) 

during the six-year period 2014-2019 from three automatic weather stations (AWSs): 

Chirimachay, Virgen del Cajas (hereafter denoted as Virgen) and Toreadora. All 

measurements were made at 2m above ground level. Each station recorded data at a 5-

minute frequency for average temperature (Tavg), Tmax, Tmin, average relative humidity 

(RHavg), maximum relative humidity (HRmax), minimum relative humidity (HRmin), u2 and 

Rs. The values were aggregated on a daily scale. Due to the presence of gaps in the 

database, preprocessing was performed, excluding days with missing data. The amount 

of missing data was 3.7%, 2.5%, and 6.8% for Chirimachay, Virgen, and Toreadora 

AWSs, respectively. The sensors used in the study are described in Table A1, Appendix 

A. 

 

Fig. 1. Study area and the location of weather stations in the Quinoas Ecohydrological 

Observatory. 
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Table 1 
Summary of daily meteorological variables during the study period 2014 – 2019. 

Station  
name 

Latitude 
and 

Longitude 
(UTM) 

Elev. 
(m 

a.s.l.) 

Tavg 

(°C) 
Tmax  
(°C) 

Tmin 

 (°C) 
RHavg 
(%) 

RHmax 

(%) 
RHmin 

(%) 

Rs  

(MJ m-2 
day-1) 

U2m 

(m s-

1) 

ETo 
(m
m 

day-

1) 

Chirimachay 
9688896;-

705704 
3298 8.73 19.48 -1.35 85.26 100 8.81 10.12 1.38 1.88 

Virgen  
9623820;-

701111 
3626 6.68 17.94 -3.92 83.01 100 9.52 11.56 1.58 1.98 

Toreadora 
9692227;-

697619 
3955 5.46 17.15 -2.44 83.98 100 6.30 11.88 2.18 1.92 

 

 

3 Methods  

 

We followed the flowchart presented in Fig. 2. First, to estimate Rs (section 3.1), we 

selected five different methods based on air temperature. These methods have 

coefficients that were calibrated and validated in order to obtain satisfactory 

performances. Prior to calibration, we performed a data preprocessing to capture all the 

temperature variability in the calibration and validation datasets. Then, we evaluated the 

ability of each method to simulate Rs in order to select the method with the best 

performance. Second, to estimate the VPD (section 3.2.), we selected four different 

methods also based on air temperature. Then, we evaluated the ability of each method 

to estimate VPD in order to select the method with the best performance. Finally, with 

the methods selected previously, we evaluated the impact of Rs and VPD estimation on 

PM-ETo calculation (section 3.3). The methodological details are explained in the 

following subsections. 
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Fig. 2. Flowchart of the PM-ETo calculation with estimation of Rs and VPD. 

 

 

3.1 Estimation of Solar Radiation 

 

3.1.1 Methods to estimate Rs 

 

George H. Hargreaves and Zohrab A. Samani (1982) – hereafter denoted as Rs-HS – 

recommended a method to estimate solar radiation using the difference between the 

maximum and minimum temperature. This is related to the degree of cloud cover in a 

given location: 

 

𝑅𝑠 =  𝐾𝑅𝑆√𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛𝑅𝑎   (1) 
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where 𝐾𝑅𝑆 is an adjustment coefficient. The authors recommended 𝐾𝑅𝑆 values from 0.16 

to 0.19, (0.16 for inland regions and 0.19 for coastal regions). 𝑅𝑎 is extraterrestrial 

radiation (MJ m-2 day-1) (Allen et al., 1998):  

 

𝑅𝑎 = 37.6𝑑𝑟 (𝑡. 𝑠𝑖𝑛𝜑. 𝑠𝑖𝑛𝛿 + 𝑐𝑜𝑠𝜑. 𝑐𝑜𝑠𝛿. 𝑠𝑖𝑛𝑡) (2) 

 

where 𝑑𝑟 is the reverse relative distance Earth-Sun (Eq. 3), 𝑡 is the radiation angle at 

sunset (Eq. 4), 𝛿 is the solar decline (rad) (Eq. 5) and 𝜑 is the latitude of the location. 𝐽 
is the Julian day of the year (from 1 to 365 and from 1 to 366 for leap years): 

 

𝑑𝑟 = 1 + 0.033 𝑐𝑜𝑠 (2𝜋/365)  𝐽    (3) 

 

𝑡 = 𝑎𝑟𝑐𝐶𝑜𝑠(−𝑡𝑎𝑛𝜑. 𝑡𝑎𝑛𝛿)    (4) 

 

𝛿 = 0.4093 𝑠𝑖𝑛 ((2𝜋/365) 𝐽 − 1.39)  (5) 

 

De Jong and Stewart (1993) – hereafter denoted as Rs-DS – suggested using the 

following equation incorporating precipitation and the range of daily temperature (∆𝑇): 

 

𝑅𝑠 =  𝑎 ∗ 𝑅𝑎 ∗ (∆𝑇)𝑏 ∗ (1 + 𝑐𝑝 + 𝑑𝑝2 ) (6) 

 

where 𝑎, 𝑏, 𝑐 and 𝑑 are adjustment coefficients, p is precipitation in mm, and ∆𝑇 can be 

calculated as: 

 

∆𝑇 =  (𝑇𝑚𝑎𝑥) − 
𝑇𝑚𝑖𝑛(𝑗)+ 𝑇𝑚𝑖𝑛(𝑗+1)

2
   (7) 

 

where 𝑇𝑚𝑎𝑥  in the daily maximum temperature (°C),  𝑇𝑚𝑖𝑛(𝑗) and 𝑇𝑚𝑖𝑛(𝑗 + 1) are the 

daily minimum temperature (°C) of the corresponding and the next day, respectively. 

 

Allen. R (1995) – hereafter denoted as Rs-AL – modified equation 1 by estimating 𝐾𝑅𝑆 as 

a function of the ratio of atmospheric pressure: 

 

𝑘𝑅𝑆 = 𝑘𝑅𝐴 (
𝑃

𝑃𝑜
)

0.5

       (8) 
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where 𝑘𝑅𝐴 is an adjustment coefficient having values in the 0.17-0.20 range, with values 

of 0.17 for inland regions and 0.20 for coastal regions; and 𝑃 is the mean atmospheric 

pressure of the site (kPa); 𝑃𝑜 is the mean atmospheric pressure at sea level (101.3 kPa): 

 

𝑃 = 𝑃0 (
293−0.0065𝑍

293
)

5.26

     (9) 

 

where 𝑍 is the elevation (m a.s.l.) of the site. 

 

Vanderlinden et al. (2004) – hereafter denoted as Rs-VA – found a relationship between 

the adjustment coefficient, 𝑘𝑅𝑆, and the mean, minimum and maximum daily air 

temperatures: 

 

𝑘𝑅𝑆 = 𝑎 ∗ ( 𝑇𝑚𝑒𝑎𝑛/𝑇𝐷) + 𝑏   (10) 

 

where 𝑎 and 𝑏 are adjustment coefficients, 𝑇𝑚𝑒𝑎𝑛 = (𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛)/2 and 𝑇𝐷 = 𝑇𝑚𝑎𝑥 −

𝑇𝑚𝑖𝑛.  

Chen et al. (2004) – hereafter denoted as Rs-CH – found a logarithmic relationship 

between daily solar radiation, daily extra-terrestrial solar radiation, and the difference 

between the maximum and minimum daily air temperature: 

 

𝑅𝑠 =  𝑎 𝑙𝑛 (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) − 𝑏 ∗   𝑅𝑎    (11) 

 

where 𝑎 and 𝑏 are adjustment coefficients. 

 

3.1.2 Data Preprocessing  

 

To avoid a bias in the selection of the samples for calibration and validation, we 

performed a data preprocessing. A duration curve was made for Tmax - Tmin  (this variable 

serves as input for the aforementioned methods) for each weather station (Fig. 3). This 

analysis was made because, in preliminary calculations, random samples containing a 

disproportionately large percentage of high or low values caused a biased calibration of 

the methods (not shown). The curves showed inflection points around the 20th and the 

90th percentiles in the three stations (limits indicated by the solid vertical lines in Fig. 3), 

which were set as the limits for the different groups of data. Therefore, the data was split 
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into three sets: high values (≤20%), medium values (>20% and ≤90%) and low values 

(>90%) (Fig. 3). This data classification was subsequently used for assembling the 

groups for the calibration and validation processes (Section 3.1.3). 

 

Fig. 3. Duration curve of the difference between the maximum and minimum daily air 

temperature by weather station.  

 

3.1.3 Calibration and Validation of Rs estimation methods 

 

A model performs better when calibration is performed with a large dataset enough to 

contain a wide range of weather conditions (Motavita et al., 2019; Perrin et al., 2007; Xia 

et al., 2004). Motavita et al. (2019) also mentioned that in the calibration and validation 

datasets must contain a wide range of the variability. Bennett et al. (2013) suggested 

randomizing the division of data, so that the model performance is not biased by the 

allocation of data. Following these recommendations, we took the first 4 years of data 

for calibration and validation (2014-2017), and took 70% of the data for calibration, while 

30% was left for validation. The calibration and validation samples were taken randomly 

but considering that each subset must fit the distribution criteria described in section 

3.1.2: 20% of high values, 70% of medium values, and 10% of low values. 

In order to find a general method for the ecosystem, calibration was performed for the 

entire altitudinal gradient, by analyzing all data from the three weather stations combined 

as the methodology of De Jong and Stewart (1993) applied in their study. The Monte 

Carlo method was used to select the optimal coefficients after performing 5,000 

simulations. The ranges of the adjustable coefficients for each method were selected 
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according to previous studies (Table A2, Appendix A). For each method, we selected the 

coefficients with the highest Nash–Sutcliffe efficiency (CE). However, other performance 

indexes such as Root Mean Square Error (RMSE), Coefficient of Determination (R2), and 

Coefficient of Determination multiplied by the slope (bR2) were additionally calculated to 

provide more information about the quality of the simulation. Moreover, we validated 

each calibrated method with data independent of the calibration. After running the 

calibration and validation for the altitudinal gradient, we applied the calibrated methods 

with the data of each station.  

 

3.2 Methods to estimate VPD  

 

Vapor Pressure Deficit is estimated as the difference between the saturation vapor 

pressure, 𝑒𝑠, and the actual vapor pressure, 𝑒𝑎: 

 

𝑉𝑃𝐷 = 𝑒𝑠 − 𝑒𝑎     (12) 

 

where 𝑒𝑠 is calculated as: 

 

𝑒𝑠 =  
 𝑒° (𝑇𝑚𝑎𝑥)+𝑒° ( 𝑇𝑚𝑖𝑛)

2
     (13) 

 

and when relative humidity data is available, 𝑒𝑎 is calculated as: 

 

𝑒𝑎 =
𝑒° ( 𝑇𝑚𝑖𝑛)

𝑅𝐻𝑚𝑎𝑥
100

+𝑒° ( 𝑇𝑚𝑖𝑛) 
𝑅𝐻𝑚𝑖𝑛

100

2
   (14) 

 

where 𝑒° ( 𝑇)  is the saturation vapor pressure (kPa), and 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are the 

maximum and minimum daily temperature (°C) and 𝑅𝐻𝑚𝑎𝑥 and 𝑅𝐻𝑚𝑖𝑛 are the maximum 

and minimum daily relative humidity. 𝑒° ( 𝑇) for air temperature 𝑇 is: 
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𝑒°(𝑇) = 0.6108 𝑒𝑥𝑝 𝑒𝑥𝑝 ⌈
17.27∗𝑇

𝑇∗237.3
⌉   (15) 

 

In the absence of humidity data, we evaluated four different methods based on air 

temperature to estimate the daily VPD, using four years of data (2014-2017).  

In FAO56 Allen et al. (1998) – hereafter denoted as VPD-FAO – stated that 𝑒𝑎 may be 

obtained by assuming that the dewpoint temperature, 𝑇𝑑𝑒𝑤 , is close to the 𝑇𝑚𝑖𝑛, which is 

usually experienced at sunrise in reference weather stations. However, because of the 

high humidity in our study area causes the RH reaching 100% most of the nighttime 

hours, we used the minimum daily temperature between 05H00 and 08H00 for 𝑇𝑑𝑒𝑤 . 𝑒𝑎 

is calculated by: 

 

𝑒𝑎 = 𝑒°(𝑇𝑑𝑒𝑤) = 0.6108 𝑒𝑥𝑝 𝑒𝑥𝑝 ⌈
17.27∗𝑇𝑑𝑒𝑤

𝑇𝑑𝑒𝑤∗237.3
⌉   (16) 

 

Doorenbos and Pruitt (1977) – hereafter denoted as VPD-DP – proposed the following 

method to estimate VPD: 

 

𝑉𝑃𝐷 = 𝑒°(𝑇𝑎𝑣𝑔) − 𝑒°(𝑇𝑑𝑒𝑤)    (17) 

 

where 𝑒°(𝑇𝑎𝑣𝑔) is the saturation vapor pressure at the mean daily temperature. 

Castellví et al. (1997) – hereafter denoted as VPD-CA1 – proposed the following method 

to estimate VPD: 

 

𝑉𝑃𝐷 = 𝑒°(𝑇𝑎) −  𝑒°(𝑇𝑑𝑒𝑤)    (18) 

 

where  𝑇𝑎 defined as the temperature that leaves equal areas under the curve 𝑒°(𝑇) −

 𝑒°(𝑇𝑑𝑒𝑤) between 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 using the trapezoidal method, for more detail review 

the research of Castellví et al. (1997). 
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Castellví et al. (1997) – hereafter denoted as VPD-CA2 – proposed the following method 

to estimate the mean relative humidity: 

 

𝑅𝐻𝑎𝑣𝑔 = 100 ∗
𝑒°(𝑇𝑑𝑒𝑤)

1

2
[𝑒°(𝑇𝑎)+𝑒°(𝑇𝑎𝑣𝑔)

    (19) 

 

then, we calculated 𝑒𝑎 as proposed FAO56 (Allen et al., 1998):  

 

𝑒𝑎 =
𝑅𝐻𝑎𝑣𝑔

100
𝑒°(𝑇𝑎𝑣𝑔)      (20) 

 

3.3 Impact of Rs and VPD estimation on PM-ETo calculation 

 

We used two years of complete data (2018-2019) to calculate PM-ETo, then we 

generated missing data scenarios by removing Rs or/and VPD values, and evaluated the 

impact on PM-ETo calculation when these variables were estimated using the selected 

equations previously.  

The PM-ETo method defined by Allen et al. (1998) for calculating reference 

evapotranspiration of a hypothetical crop having a height of 0.12 m, a surface resistance 

of 70 s m−1 and an albedo of 0.23 is: 

 

𝑃𝑀 − 𝐸𝑇𝑂 =
0.408∆(𝑅𝑛−𝐺)+𝑦(900 /(𝑇𝑎𝑣𝑔 +273))𝑢2(𝑒𝑠−𝑒𝑎)

∆+𝑦(1+0.34𝑢2)
 (21) 

 

where 𝑅𝑛 is the net radiation at the crop surface (MJ m-2 day-1), 𝐺 is the soil heat flux 

density (MJ m-2 day-1), 𝑇𝑎𝑣𝑔  at 2 m (°C), 𝑢2 is the wind speed at 2 m (m s-1), 𝑒𝑠 is the 

saturation vapor pressure (kPa), 𝑒𝑎 is the real vapor pressure (kPa), 𝑒𝑠 − 𝑒𝑎 is the vapor 

pressure deficit (kPa), ∆ is the slope of the vapor pressure curve (kPa °C-1) and 𝑦 is the 

psychrometric constant (kPa °C-1). For daily computations, 𝐺 equals zero as the 

magnitude of daily soil heat flux beneath the grass reference surface is very small (Allen 

et al., 1998). 
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3.4 Evaluation criteria 

 

The statistical indices used to evaluate the methods performance were: i) the Nash–

Sutcliffe efficiency (𝐶𝐸), which has been widely used to evaluate the performance of 

empirical models and it is sensitive to differences in the observed and simulated means 

and variances; ii) the coefficient of determination ( 𝑅2), which describes how much of the 

observed dispersion is explained by the prediction; iii) the coefficient of determination 

multiplied by the slope (𝑏𝑟2), and, iv) the root mean square error (𝑅𝑀𝑆𝐸), which is a 

weighted measure of the error in which the largest deviations between the observed and 

modeled values contribute the most (Table A3, Appendix A). To evaluate the quality of 

the PM-ETo calculations when one or two variables were missing, we used the same 

statistical indices. 

 

4 Results and discussion 

 

4.1 Estimation of Solar Radiation (period 2014-2017) 

 

As previously stated, in the absence of Rs observations, this variable was estimated 

using methods based on air temperature with locally calibrated adjustment coefficients 

(Eq. 1-11). Table 2 shows the coefficients and statistical indicators of the calibration of 

the methods to estimate Rs. 

When we combined the data from the three stations to calibrate the methods and to 

select the best method for the gradient, it was found that the adjustment coefficients of 

each method varied from their original values. In a global context, the difference of the 

coefficients is related to the different climatic regions where the methods have been 

developed and tested. These methods have been mostly applied in arid and semi-arid 

regions, and to a lesser degree in humid regions. In the available literature it was found 

that to estimate Rs, the authors commonly use the recommendations of Allen. R (1995) 

and George H. Hargreaves and Zohrab A. Samani (1982) with a local calibration of the 

kRS coefficient (Jabloun and Sahli, 2008; Paredes et al., 2020, 2017; Paredes and 

Pereira, 2019). In such studies, the kRS coefficient ranged from 0.14 to 0.22 for the Rs-

HS method and for the Rs-AL method the literature showed values from 0.15 to 0.18. 

While in our study area, kRS had lower values in both cases. The variability of the 

coefficients is influenced by the change in the range of the maximum and minimum 

temperature difference (DTR), where the KRS values become lower when the DTR range 
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decreases.  The Rs-CH method showed values in the range of 0.16 to 0.42 (coefficient 

a) and -0.45 to 0.12 (coefficient b) in the North China Plain (Chen et al., 2004). In our 

case, the calibration had lower values. However, the behavior was similar to that found 

by Li et al. (2014) and Liu et al. (2009), who reported that at higher altitudes, the 

coefficient a increases and the coefficient b decreases. The Rs-VA method showed 

average values of 0.0030 and 0.0022 for the coefficients a and b, respectively, in 

Southern Spain (Vanderlinden et al., 2004), while we found higher values in our study. 

On the other hand, for the Rs-DS method, the values of the coefficients a (0.127), b 

(0.599), c (-0.028) and d (0.0003) reported in western Canada (De Jong and Stewart, 

1993) were similar to our values, except by the coefficient a that was greater. For a 

detailed comparison of coefficients, see Table 2. 

The methods that use DTR as input (Rs-HS, Rs-AL, Rs-VA, and Rs-CH) had similar 

performance, showing a RMSE in the range from 3.58 to 3.73 MJ m-2 day-1, a CE from 

0.42 to 0.47, and R2 and bR2 values from 0.47 to 51 and from 0.43 to 0.47, respectively. 

Whereas the Rs-DS method that used ∆T and the effect of precipitation (Eq. 6-7), yielded 

better estimations than the other methods with higher values of CE, R2, and bR2, and a 

lower value of RMSE (Table 2). 

Table 3 presents the results of the validation for the methods in the altitudinal gradient. 

It was observed that the performance of the Rs-HS, Rs-AL, Rs-VA and Rs-CH methods 

was similar to the calibration performance, and it was confirmed that Rs-DS method is 

the highest performing one. 

Once the methods were calibrated for the gradient, we evaluated them using the data 

from each station individually. The scatter plot for Chirimachay (Fig. 4a,d,g,j,m) showed 

high dispersion and slight overestimation for Rs below 15 MJ m−2 day−1. This was 

reflected in a slight increase in RMSE and a lower CE compared to the results obtained 

for the entire gradient. Moreover, the Rs-DS and Rs-AL methods showed the best results, 

a lower RMSE and a higher CE, R2 and bR2. However, these results did not differ greatly 

from the performance of the rest of the methods at the site (Table 4).  

We found that Virgen had the best adjustment to the observed values in all the methods 

in comparison to the other sites, and the method with the best performance was Rs-DS 

(Table 4; Fig. 4b,e,h,k,n). In Toreadora, the CE presented the lowest values compared 

to the other sites for all the methods except for Rs-DS. This method showed the best 

performance to estimate Rs at the site (Table 4).  
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In addition, we found that the ability of the methods to estimate Rs is affected by 

elevation, because there is a major incidence of solar radiation in high areas; 

nonetheless, such effect on the temperature is low. This is due to the fact that only a 

small fraction of Rs is absorbed by the thinner atmosphere of these high elevation sites 

(Llambí et al., 2012). This means that the incoming Rs does not heat up, and this is 

reflected in the underestimation of high values of Rs. Therefore, at the highest site, 

Toreadora, the highest values of Rs resulted in the lowest accuracy (bR2 < 0.51) in all 

methods compared to the other sites. At this location, the methods that used DTR (Rs-

HS, Rs-AL, Rs-VA and Rs-CH) estimated Rs values up to 15 MJ m-2 day-1 (80 % of data) 

and the Rs-DS method (which uses ∆T and the effect of precipitation) estimated Rs values 

up to 19 MJ m-2 day-1 (90 % of data). While for the Chirimachay and Virgen sites, the Rs-

HS, Rs-AL, Rs-VA and Rs-CH methods presented difficulty in estimating Rs > 17 MJ m-2 

day-1 (12.86 % of data), and the Rs-DS method estimated Rs values up to 21 MJ m-2 day-

1 (93.24 % of data) (Fig. 4).  

According to Samani (2000), the performance of the methods based on temperature 

increases as DTR increases. Therefore, this performance decreases with the altitude, 

because DTR is reduced. Evidently, our results agree with this elevation effect that 

causes DTR to decrease in the highest site. This finding is also consistent with the results 

presented by Paredes et al. (2017). They showed an underestimation of the high values 

of Rs in the sites with higher elevation and thus lower DTR. As well as Li et al. (2014) in 

China and Bandyopadhyay et al. (2008) in India, who reported the failure of these 

methods for high elevation stations.  

 

4.2 Estimation of Vapor Pressure Deficit (period 2014-2017) 

 

Table 5 summarizes the statistical indicators of the methods applied to estimate daily 

VPD. It was found that in the gradient the RMSE was in the range from 0.08 to 0.30 kPa, 

the CE with values between 0.24 to 0.63, the R2 with values between 0.55 a 0.81, and 

bR2 from 0.35 to 0.71. The VPD-FAO method had the highest performance in most of 

the statistical indicators, but also showed a slight overestimation for low and medium 

values. In addition, an underestimation of low values was found using the VPD-DP, VPD-

CA1 and VPD-CA2 methods in Chirimachay and an overestimation of medium values by 

the VPD-CA1 and VPD-CA2 methods in Virgen and Toreadora (Fig. 5).  

To find the best method for the gradient, we analyzed the statistics site by site. In 

Chirimachay, the VPD-FAO method had the best performance with the highest R2 and 
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bR2 and a low RMSE (0.12 kPa). In Virgen and Toreadora the VPD-FAO method had the 

lowest RMSE with values of 0.08 and 0.09 kPa, respectively. The other statistical results 

confirmed that the VPD-FAO method had the highest performance (Table 5).  

Therefore, we conclude that the VPD-FAO method is the most suitable method to 

estimate VPD in the altitudinal gradient. However, the overestimation presented by this 

approach has also been found in other studies performed in humid climates (Landeras 

et al., 2008; Paredes et al., 2017; Todorovic et al., 2013; Tomas-Burguera et al., 2017). 

This could be due to the fact that Tdew  >  Tmin in sub-humid and humid climates (Paredes 

et al., 2017; Todorovic et al., 2013). Hence, by assuming Tdew = Tmin, ea is being 

underestimated and therefore VPD is overestimated. In fact, a previous analysis showed 

that when we took the daily minimum temperature the overestimation was 0.04 kPa per 

day greater than the current one. To decrease this overestimation, we took the minimum 

temperature at sunrise (05H00 – 08H00) to get closer to the actual value of Tdew.  

 

4.3 Estimation of daily ETo when Rs and/or VPD are missing (period 2018-2019) 

 

Table 6 shows the statistical performance of the PM-ETo calculation when Rs and/or VPD 

were missing and were estimated with the best methods selected for the altitudinal 

gradient. It was found that the PM-ETo calculation results were worse when the missing 

variable was Rs, while when VPD data were missing, the PM-ETo estimates were closer 

to the PM-ETo values calculated with the complete data set. This is evident in all 

statistical indicators with the lowest RMSE and the highest CE, R2 and bR2. As expected, 

the largest error occurred when data for two variables were missing and their values 

were estimated (Table 6). 

The site by site analysis showed that the high ETo values were underestimated in 

Chirimachay, Virgen, and Toreadora, and only in Chirimachay a slight overestimation of 

the lower values existed on PM-ETo calculation with estimated RS. This behavior is well 

explained by the relationships between Rs-DS and observed Rs as previously analyzed 

(Fig. 4a-o). The estimated values of PM-ETo Rs-DS were better than Rs-DS estimates. 

The good relationship between PM-ETo and PM-ETo Rs-DS is highlighted in Fig. 6a-c 

and Table 6, with R2 > 0.82 and bR2 > 78 in the three sites. Moreover, the RMSE values 

were below 0.34 mm day-1, and the highest performance was found in Toreadora (Table 

6; Fig. 6c). 
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The novelty of our results lies in the fact that limited information is available on this topic 

for humid conditions, and there is only one previous study which preliminary explored 

the topic in the high Tropical Andes (Córdova et al., 2015). Such investigation concluded 

that for the PM-ETo calculation, the observations of Rs are extremely important in this 

area, because when this variable was missing, and it was estimated without local 

calibration, the ETo yielded the maximum error (RMSE of 0.53 mm day -1). In contrast, 

our results showed a decrease in the RMSE to 0.27 mm day -1, after selecting the best 

method to estimate Rs in this zone. The research of A. P. de Souza et al. (2016) had 

similar findings in humid conditions in the Mato Grosso State: among the methods used 

to estimate Rs, the method proposed by De Jong and Stewart (1993) resulted in the 

lowest RMSE on PM-ETo calculations.  

Previous studies, developed under humid conditions, have reported an underestimation 

of high values and a slight overestimation of low values on ETo calculation, when Rs was 

estimated. In this case, using the method of George H. Hargreaves and Zohrab A. 

Samani (1982) with the locally calibrated KRS coefficient (Paredes et al., 2017; Paredes 

and Pereira, 2019). 

On the other hand, the analysis of the results between PM-ETo and PM-ETo VPD-FAO 

indicated that when ea data were estimated (assuming Tdew = Tmin to determine VPD), 

the calculations had a very high performance in the altitudinal gradient. The R2 values 

exceeded 0.96 and the bR2 values exceeded 0.92. The lowest values of RMSE (< 0.19 

mm day-1) were supported by the high CE from 0.94 to 0.97 (Table 6). These outcomes 

corroborate the findings of the previous work of Córdova et al. (2015), who found that 

the ETo calculation using VPD-FAO method had a RMSE of 0.17 mm day-1 in Toreadora. 

Despite the good performance, the PM-ETo VPD-FAO calculation showed a slight 

tendency to overestimate low and medium values. This finding broadly supports the work 

of other studies in humid conditions. For example, the work of Sentelhas et al. (2010) in 

Canada and Landeras et al. (2008) in Northern Spain found the ETo was overestimated 

when the VPD-FAO method was applied. 

As expected, the largest error occurred when both Rs-DS and VPD-FAO were used to 

estimate PM-ETo instead of observations. Overall, in the altitudinal gradient, an increase 

in RMSE (> 0.32 mm day-1) was observed, and the over and under estimation of both 

variables was reflected in a CE between 0.66 and 0.79. The good correlation between 

observed and estimated values was reflected by R2 > 0.77 and bR2 > 0.74 (Table 6, Fig. 

6g,h,i). These findings are consistent with those of Landeras et al. (2008) in Northern 
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Spain, and Sentelhas et al. (2010) in Canada, with an error increment on ETo calculation 

when Rs and RH data were missing. 

In our study area, the estimates of Rs were less precise than VPD, and these 

observations were also reflected on PM-ETo calculation. The underestimation of high 

ETo values that was found when estimating Rs, was also evident in the calculation of PM-

ETo Rs-DS and VPD-FAO. Moreover, the tendency to overestimate low and medium 

values shown on PM-ETo VPD-FAO calculation was also observed in the calculation of 

PM-ETo Rs-DS and VPD-FAO. Despite this over-or under-estimation, the RMSE was low: 

0.42, 0.32 and 0.34 mm day-1 for Chirimachay, Virgen, and Toreadora, respectively 

compared to the results reported by Córdova et al. (2015). They found a RMSE 0.71 mm 

day-1 in the Toreadora site when Rs and HR data were missing, using the 

recommendations of George H. Hargreaves and Zohrab A. Samani (1982) and Allen. R, 

1995). Hence, the calculation of ETo with the PM method when Rs and/or VPD were 

missing and were estimated with the Rs-DS and VPD-FAO methods was reliable in our 

study area.  

 

Table 2 

Adjustment coefficients and statistics used to evaluate the performance of the methods 

to estimate daily Rs in the altitudinal gradient. 

Method Krs Kra a b c d RMSE CE R2 bR2 

       
(MJ m-2 

day-1) 
   

Rs-HS 0.1094 - - - - - 3.58 0.47 0.51 0.47 

Rs-DS - - 0.5025 0.6879 -0.0350 0.0014 3.28 0.55 0.57 0.53 

Rs-AL - 0.1376 - - - - 3.58 0.47 0.51 0.47 

Rs-VA - - 0.0045 0.1020 - - 3.73 0.42 0.50 0.47 

Rs-CH - - 0.1536 -0.4475 - - 3.63 0.45 0.47 0.43 
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Table 3 
Statistics of the validation of the methods to estimate daily Rs in the altitudinal gradient. 

Method RMSE (MJ m-2 day-1) CE R2 bR2 

Rs-HS 3.61 0.48 0.53 0.48 

Rs-DS 3.42 0.53 0.54 0.50 

Rs-AL 3.62 0.47 0.53 0.47 

Rs-VA 3.76 0.43 0.52 0.47 

Rs-CH 3.65 0.46 0.49 0.44 

 

Table 4 

Statistics used to evaluate the performance of the calibrated methods for daily Rs 

estimation of each site. 

Station Methods RMSE (MJ m-2 day-1) CE R2 bR2 

Chirimachay 

Rs-HS 3.84 0.43 0.57 0.56 

Rs-DS 3.81 0.44 0.53 0.52 

Rs-AL 3.79 0.44 0.57 0.56 

Rs-VA 4.11 0.34 0.56 0.55 

Rs-CH 3.82 0.43 0.52 0.50 

Virgen 

Rs-HS 3.05 0.55 0.61 0.56 

Rs-DS 2.89 0.60 0.61 0.57 

Rs-AL 3.07 0.55 0.61 0.55 

Rs-VA 3.19 0.51 0.60 0.55 

Rs-CH 3.11 0.54 0.57 0.52 

Toreadora 

Rs-HS 3.91 0.41 0.51 0.42 

Rs-DS 3.52 0.52 0.59 0.50 

Rs-AL 3.96 0.39 0.51 0.42 

Rs-VA 4.03 0.37 0.49 0.41 

Rs-CH 3.99 0.38 0.46 0.38 
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Fig. 4. Comparison of daily Rs observed and estimated (with five methods) in all stations 

(Chirimachay, Virgen and Toreadora). The solid line represents the fitted regression line. 

The dashed line indicates 1:1. 

 

 
 

Table 5 

Statistics used to evaluate the performance of the methods for daily VPD estimation of 

each site. 

Station Methods RMSE (kPa) CE R2 bR2 

Chirimachay 

VPD-FAO 0.12 0.40 0.81 0.64 

VPD-DP 0.11 0.47 0.55 0.43 

VPD-CA1 0.30 0.32 0.58 0.43 

VPD-CA2 0.12 0.39 0.76 0.70 

Virgen 

VPD-FAO 0.08 0.63 0.80 0.70 

VPD-DP 0.10 0.39 0.61 0.45 

VPD-CA1 0.08 0.62 0.74 0.68 

VPD-CA2 0.1 0.30 0.79 0.62 

Toreadora 

VPD-FAO 0.09 0.62 0.77 0.71 

VPD-DP 0.13 0.21 0.63 0.35 

VPD-CA1 0.10 0.63 0.73 0.69 

VPD-CA2 0.13 0.24 0.75 0.59 
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Fig. 5. Comparison of daily observed and estimated VPD (with four methods) in all 

stations (Chirimachay, Virgen and Toreadora). The solid line represents the fitted 

regression line. The dashed line indicates 1:1. 
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Table 6 

Comparison between daily PM-ETo (calculated with full data) and daily PM-ETo 

(calculated when Rs and/or VPD were missing and were estimated with the best 

methods) (Rs-DS and VPD-FAO). 

Station ETo RMSE (mm day-1) CE R2 bR2 

Chirimachay 

Rs-DS 0.33 0.79 0.85 0.82 

VPD-FAO 0.16 0.95 0.99 0.93 

Rs-DS and VPD-FAO 0.42 0.66 0.83 0.75 

Virgen 

Rs-DS 0.29 0.81 0.83 0.79 

VPO-FAO 0.12 0.97 0.98 0.95 

Rs-DS and VPD-FAO 0.32 0.77 0.78 0.77 

Toreadora 

Rs-DS 0.27 0.86 0.89 0.83 

VPD-FAO 0.18 0.94 0.97 0.94 

Rs-DS and VPD-FAO 0.34 0.79 0.82 0.80 
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Fig. 6. Comparison of daily PM-ETo and PM-ETo Rs-DS and/or VPD-FAO in all stations: 

Chirimachay, Virgen and Toreadora. The solid line represents the fitted regression line. 

The dashed line indicates 1:1. 
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5 Conclusions  

 

The objective of this investigation was to assess the impact on PM-ETo calculation when 

solar radiation (Rs) and/or vapor pressure deficit (VPD) were missing in the high Tropical 

Andes (humid páramo, 3298 – 3955 m a.s.l.). Here, continuous high quality 

meteorological data are not available, or time series are incomplete. Córdova et al. 

(2015) proved that in the absence of observed data of Rs and relative humidity (RH), ETo 

estimates are significantly affected. This study is the first in the region to evaluate nine 

methods to estimate Rs and VPD – based on daily maximum and minimum temperature 

– and to evaluate their impact on PM-ETo calculation. 

The first finding has shown that the calibration and validation of methods to calculate Rs 

was essential to obtain more accurate Rs estimations for this ecosystem. The De Jong 

and Stewart (1993) (Rs-DS) method had the highest performance in our study area, an 

RMSE between 2.89 and 3.81 MJ m-2 day-1 and R2 > 0.52. Despite an underestimation 

of values above 19 MJ m-2 day-1, the Rs-DS method seems to be a feasible approach to 

estimate the missing variable. 

The second finding has shown that the Allen et al. (1998) (VPD-FAO) method had the 

highest performance out of the 4 methods evaluated to estimate VPD in all statistical 

indicators used: RMSE between 0.08 and 0.12 kPa and R2 > 0.76. Therefore, in the 

absence of RH observations, the use of Tdew = Tmin could be an excellent alternative to 

estimate ea in the páramo ecosystem with a slight overestimation for low and medium 

values.  

Finally, the results of this investigation showed that because of the fact that we properly 

estimated Rs and VPD, the calculation of PM-ETo presented good statistical indicators. 

When only Rs is missing, PM-ETo had an RMSE between 0.29 and 0.34 mm day-1 and 

R2 > 0.82; when only VPD is missing, PM-ETo had an RMSE between 0.12 and 0.18 mm 

day-1 and R2 > 0.96. As expected, when both variables were missing, the ETo calculation 

increased its error, an RMSE between 0.32 and 0.42 mm day-1 and R2 > 0.77. However, 

this error was much lower when compared to the results found by Córdova et al. (2015). 

Hence, we conclude that the calculation of ETo with the PM method when Rs and/or VPD 

were missing and were estimated with the Rs-DS and VPD-FAO methods was reliable in 

our area.  

Results obtained in the current study have shown that the calibration of equations to 

estimate missing variables (Rs and/or RH) provides a solution to calculate reliable PM-

ETo in the páramo ecosystem when aiming at improved water productivity for domestic 
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and industrial uses, irrigated agriculture, and hydropower. Moreover, the procedures 

herein assessed can be used for other humid locations, considering that the adjustment 

coefficients should be locally calibrated.  
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Appendix A 

Table A1  
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Details of the sensors. 
Variable Sensor Type Unit Accuracy Time Resolution 

Air temperature / 

Relative Humidity 

Campbell CS-215 + 

Radiation Shield 
°C/%RH ±0.3°C/±2% RH 5 min 

Solar Radiation 
Campbell CS300 

Pyranometer 
W m-2 ± 5% daily total 5 min 

Wind Speed and 

Direction 

Met-One 034B Wind 

Set 
m s-1 ± 0.11 m s-1 5 min 

 

Table A2 

Range of the adjustable coefficients of each method. 
Methods Krs Kra a b c d 

Rs-HS 0.096-0.12 - - - - - 

Rs-DS - - 0.48-0.52 0.65-0.80 -0.03-0.017 0.0009-0.004 

Rs-AL - 0.10-0.15 - - - - 

Rs-VA - - 0.045-0.1 0.01-0.03 - - 

Rs-CH - - 0.149-0.159 -0.47-0.3 - - 

 

Table A3 

Performance evaluation criteria. 

Criteria Equation Optimal value 

Nash–Sutcliffe efficiency 𝐶𝐸 = 1 −
𝛴𝑖=1

𝑛 (𝑥𝑖 − 𝑥𝑜)

𝛴𝑖=1
𝑛 (𝑥𝑜 − 𝑥𝑜)

 1 

Coefficient of determination  𝑅2 =  
𝛴𝑖=1

𝑛 (𝑥𝑖 − 𝑥𝑜)
2

𝛴𝑖=1
𝑛 (𝑥𝑜 − 𝑥𝑜)

2 1 

Coefficient of determination 

multiplied by the slope 
𝑏𝑟2 = |𝑏|𝑅2 , 𝑏 ≤ 1; 𝑏𝑟2 =

𝑅2

|𝑏|
, 𝑏 > 1 1 

Root mean square error 𝑅𝑀𝑆𝐸 = √
1

𝑛
𝛴𝑖=1

𝑛 (𝑥𝑖 − 𝑥𝑜)2 0 

Where 𝑥𝑖 is the estimated value;  𝑥𝑜 is the observed value; 𝑛 is the number of observations and 𝑥𝑜  is the 

mean of the observed values. 
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