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A B S T R A C T

In seismically active regions, buildings are inevitably exposed to extreme ground motions. Traditionally, the
main structural system is designed iteratively to resist these loads, which provides safe systems, but is usually
suboptimal. Topology optimization provides an approach to obtain optimal material layout; however, most
approaches only accommodate deterministic loads. Moreover, typical structural design goals require mini-
mization of the maximum of some set of responses; such a goal is typically non-smooth, which impairs the use of
efficient gradient-based optimizers. This study models the stochastic ground excitation as a zero-mean filtered
white noise and combined with the model of the structure to form an augmented system. The structural response
stationary covariances are obtained by solving a corresponding Lyapunov equation. The optimization problem is
formulated to minimize the maximum structural response covariances, employing equivalent smooth formula-
tions. Dynamic condensation is also employed to increase the efficiency. Sensitivities are computed by solving an
adjoint Lyapunov equation, allowing for a gradient-based solver to be used. This study implements the following
building features: additional discrete floor masses, boundary elements, and floor diaphragms. The proposed
strategy is illustrated for seismically excited buildings with different properties. The results presented herein
demonstrate the efficacy of this approach for efficient topology optimization of buildings subjected to stochastic
ground motion.

1. Introduction

Effectively ensuring the seismic performance of structures is still
one of the important problems in civil engineering. Current design
procedures are based on an iterative process, which guarantees struc-
tural safety, but may not result in optimal structures [1]. Topology
optimization provides a general approach to obtain optimal material
layout in a prescribed structural domain according to some objective
function and subjected to given design constraints [2]. Extensive re-
search has been done in topology optimization to develop well-posed
formulations [3–5] and solve inherent numerical problems such as
mesh dependency, checkerboard patterning, islanding, local minima,
etc. [6,5,7]. Topology optimization also has been applied to various
dynamic problems in free vibration and forced vibration in general
domains [2]. However, most of the published research on structural
optimization only deals with deterministic loads. Such deterministic
approaches cannot directly accommodate the stochastic dynamic loads
which civil structures frequently experience (e. g., winds, earthquakes,
traffic, etc.; see [8]), and therefore, produce suboptimal designs.

Seismic ground motion is one of the most severe loadings that civil

structures experience. Although structures subjected to seismic excita-
tion are typically designed and expected to undergo inelastic behavior,
in most cases, the current design process assumes linear behavior of the
structure and employs approximate methods such as the response
spectrum method. For certain important structures, such as buildings
with special response characteristic or special systems, for example
buildings for hospitals or buildings with supplemental nonlinear de-
vices, nonlinear time history analyses are conducted to more accurately
verify the building behavior. In general, nonlinear analysis is not a
design tool, as initial properties are required as input; however, it is
used as a verification method. Thus, many researchers have considered
linear analysis in structural optimization of seismically excited struc-
tures. For example, researchers have employed Monte Carlo Simulation
to incorporate random excitation into the structural optimization pro-
blem. Balling et al. [9] conducted size optimization for buildings using
Monte Carlo Simulation; this approach can be time prohibitive due to
the large number of simulations required for convergence. Researchers
in earthquake engineering have considered topology optimization for
specific ground motion records [10], with each record being one rea-
lization of the underlying random process. Other approaches include
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time-domain solution of the reliability-based topology optimization of
building-like structures with probability constraints [11], frequency-
domain solutions based on the first few modes of the building-like
structures to obtain the covariance of the displacement [12,13], and
explicit time-domain solution to obtain the covariance [14]. Recently,
[15] proposed a formulation for topology optimization of general
structures subjected to stochastic dynamic loading, in which a large-
scale Lyapunov equation was solved to obtain the covariance of the
response. This method provides promising results in topology

optimization of stochastically excited structures. However, the seismic
design of buildings often requires the minimization of the maximum of
several structural responses (e.g., minimization of the maximum in-
terstory drift). Such design objectives result in min–max structural
optimization problems, which are inherently non-smooth, hindering the
use of gradient-based methods required for efficient topology optimi-
zation. To date, topology optimization approaches that can handle the
min–max problem for stochastically excited structures have not been
reported.

Nomenclature

Aa state space matrix of augmented system
ACP state space for high-pass filtering in CP model
Af state space matrix of excitation system
a tg( ) ground acceleration
AKT state space matrix for KT model
As state space matrix of structural system
Ba state space matrix of augmented system
BCP state space for high-pass filtering in CP model
Bf state space matrix of excitation system
BKT state space matrix for KT model
Bs state space matrix of structural system
C global damping matrix of the system
Ca state space matrix of augmented system
CCP state space for high-pass filtering in CP model
Cf state space matrix of excitation system
CKT state space matrix for KT model
Cs state space matrix of structural system
c0 coefficient in modified SIMP for mass density
Ds state space matrix of structural system
DCP state space for high-pass filtering in CP model
e Normalized error of response using Guyan transformation
E z( ) Young’s modulus using SIMP model
E0 Young’s modulus of solid material
(·) expected value operator
F symmetric positive semidefinite matrix used in objective

function
Fi symmetric positive semidefinite matrix used in objective Ji
G load effect matrix

×Ii i identity matrix of size ×i i
J objective function
Ji objective function i
Ji normalized objective function i
JKS KS objective function, approximates Jmax
JSOV objective function that sums the variance of different re-

sponses
Jmax objective function that takes the maximum variance

among different responses
J0 normalization constant in KS function
K global stiffness matrix of the system
l vector with entries equal to 1 for lateral DOF and 0

otherwise
M lumped mass at each floor and axis in example 1
M global mass matrix of the system
N number of DOF of the system
n1 number of DOF retained
N1 number of states of the excitation system
Nel number of elements in the optimization
Nf number of floors
p penalization factor of Young’s modulus using SIMP
q penalization factor of mass density using SIMP
R linear hat filter radius
S constraint matrix

S set of indices
S0 magnitude of the two-sided constant power spectral den-

sity
T transformation matrix for Guyan reduction
Ta Guyan transformation matrix for displacement and velo-

city
Tc transformation matrix for structural constraint
T2 block of transformation matrix T
t t, i time
u displacement vector, relative to the ground
ū displacement vector of master DOF

̃u displacement vector of retained DOF
uc displacement vector of constrained DOF
ur displacement vector of removed DOF
v internal variable for the KT model
Vmax volume upper limit
V z( ) volume for a density vector z
w t( ) white noise process, input to the excitation model
xa state vector of augmented system
xf state vector of excitation system
xs state vector of structural system
y output responses of interest
z vector of relative densities
zmin lower bound for density variables
zmax upper bound for density variables
zn relative density of element n
α1 mass matrix coefficient for Rayleigh damping
α2 stiffness matrix coefficient for Rayleigh damping
β additional variable in bound formulation
Γ covariance matrix of response using dynamic condensa-

tion in example 1
Γ0 covariance matrix of response of complete system
Γxa covariance matrix of stationary response
Γy covariance matrix of stationary structural output
∊ Ersatz parameter
Λi adjoint variable to compute sensitivity for objective Ji
ϕ (·,·) continuous differentiable positive scalar function, objec-

tive function
μ ratio of mass of retained DOF over mass of removed DOF
ν Poisson’s ratio
ωf cut-off frequency of the CP excitation model
ωg frequency of the excitation model
ρ KS parameter
ρ z( ) mass density using SIMP model
ρ0 mass density of solid material
ζf damping ratio for the cut-off frequency of the CP excita-

tion model
ζg damping ratio of the excitation model

×0i j zero matrix of size ×i j
. time derivative
¨ time second derivative

~ matrix or vector of the reduced-order system
T transpose of matrix
· F Frobenius norm of a matrix
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This paper proposes an efficient topology optimization framework
for buildings subjected to stochastic ground motions. The stochastic
ground excitation is modeled as a zero-mean filtered white noise; an
augmented state space representation is formed by combining the
equation of motion for the structure with the excitation filter. Then, the
stationary covariances of the structural responses of interest are ob-
tained by solving a large-scale Lyapunov equation. The optimization
problem is formulated to minimize the maximum among the covar-
iances of the structural responses of interest. Subsequently, this
min–max problem is transformed to an equivalent smooth formulation.
Because the response of only a few locations is of interest in many
building applications (e.g., interstory drift), a Guyan reduction is ap-
plied to reduce the order of the system and increase computational
efficiency. A gradient-based method is then used to update the design
variables, while the sensitivities are computed using an efficient
method that requires the solution of an adjoint Lyapunov equation. This
paper is organized as follows: Section 2 describes the problem for-
mulation including the state space representation of the structure and
excitation, the response under stochastic excitation, building char-
acteristics, and topology optimization formulation; Section 3 provides
details for the solution of the optimization problem using an equivalent
formulation for the minimax problem and incorporating dynamic con-
densation to obtain stochastic response, sensitivity analysis of the
functions, and optimization details; to demonstrate the efficacy of the
proposed approach, Section 4 shows numerical examples of the opti-
mization of buildings subjected to stochastic ground motion with dif-
ferent properties; and Section 5 presents the conclusions of this work.

2. Problem formulation

This section presents the topology optimization problem for build-
ings subjected to stationary stochastic dynamic loading. The structural
model is described, the excitation is modeled as a filtered white noise,
and the covariance matrix of the stationary stochastic responses is ob-
tained. This background is summarized here briefly for the convenience
of the reader; further details are provided in Gomez and Spencer [15].
Finally, the topology optimization framework is presented based on this

formulation.

2.1. Building characteristics

Typical buildings differ from other types of structures due to some
unique features that will be described in this section. The topology
optimization framework proposed in this study is tailored to consider
these characteristics in order to provide more realistic examples. In
addition, some characteristics as explained in the next section allow
improvement in the efficiency of the method without losing accuracy.

Consider the typical building model shown in Fig. 1 subjected to
seismic ground motion. One of the most important characteristics is
that buildings are divided into Nf floors, not necessarily of the same
height, and only the response of the floors is of interest to the designer.
The focus of this study is to design the lateral resisting system (LRS),
which is modeled as a continuous design domain and discretized using
4-node quadrilateral (Q4) finite elements. In addition, each floor con-
tains structural elements such as slabs and floor framing that are not
part of the LRS and non-structural elements such as finishes, partition
walls, mechanical–electrical-plumbing (MEP) components, and per-
manent live loads. All these elements provide additional structural
masses to the system and are not included in typical examples of to-
pology optimization of buildings. Moreover, this additional mass is
typically higher than the mass of the lateral resisting system; values
larger than 10 are typical in buildings subjected to ground motions; for
example, a well-known benchmark problem consisting of a 9-story
building subjected to seismic excitation yield a value of 21 [16]. Even
larger values of the mass ratio of additional elements to the LRS ele-
ments are possible, e.g., more than 100, when a small part of the frames
belong to LRS and the rest of frames belong to the gravity resisting
system. In stochastic dynamics problems, these masses are extremely
important because they modify the structural dynamic properties,
which ultimately affects the stochastic building responses. The addi-
tional masses can be modeled as lumped masses in some floor nodes or
distributed among all nodes in the floor. Fig. 1 shows the additional
lumped masses as small filled red circles.

Another feature of buildings is that besides the LRS, the structure

Fig. 1. Schematic of building subjected to ground motions.
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has a gravitational resisting system, and some elements belong to both,
especially in the boundary between both systems. For example, there
exist boundary columns in the LRS, which support gravitational and
lateral loads. In examples of topology optimization of buildings avail-
able in the literature, elements that support vertical axial loads due to
overturning moments naturally appear along the boundary [17].
However, column-like elements might account for a large portion of the
domain and constrained volume, therefore limiting the bracing pat-
terns; furthermore, because of their dimensions, large vertical elements
along the boundary will also have rather large flexural stiffness, which
is not realistic of actual discrete structural elements in buildings. Con-
sequently, it is preferable to include boundary columns to obtain
cleaner bracing patterns in the LRS [17] as wells as bracing systems
dominated by axial behavior. The boundary elements can be modeled
as frame elements, which present translational and rotational degrees of
freedom, such that the end nodes of the frame elements match with the
nodes of the continuous elements in the optimization domain; also,
there is no need to enrich continuous elements with drilling degrees-of-
freedom (DOF) to match the rotational DOF of the frame elements [17].
Similarly, beams can be included by using frame elements with end
nodes coinciding with the nodes of the continuous elements in the
design domain. However, in this type of structures, beam elements
serve mainly as elements for gravity loads and provide some flexural
stiffness when a rigid diaphragm is included, and in the case of a
flexible diaphragm, they provide some axial and flexural stiffness.

Another important detail of buildings is that the floor system that
supports gravitational loads, also acts as a diaphragm to distribute
lateral loads. Two types of diaphragms are considered in this study:
rigid and flexible. A rigid diaphragm possesses infinite axial stiffness
and imposes the same lateral displacement in all floor nodes. A flexible
diaphragm uses the actual axial stiffness of the floor system. Rigid
diaphragms are implemented by applying constraints to the displace-
ments; further details on the implementation of the rigid diaphragm are
shown in 3.2. Rigid diaphragms are a good approximation for lateral
resisting frame systems with thick concrete slabs. In braced frame
systems, flexible diaphragms may be preferred for the analysis and
design. In these systems, the rigid diaphragm assumption may provide
an unrealistically high axial stiffness and eliminate the horizontal
component of the brace forces, that should be resisted by other mem-
bers of the system (e.g., horizontal struts and ties). Furthermore, in steel
bracing systems, it is difficult and typically undesired to transfer large
forces from the steel members to the concrete slab (so that the dia-
phragm can be engaged) and then back to the steel member.

2.2. Structural model

Using standard finite element methods, the domains are discretized
and 2D translational DOF are assigned to the Q4 elements, and 2D
translational and rotational DOF are assigned to the frame elements.
The mass and stiffness matrix and loading vector for each element is
computed, and the global mass and stiffness matrices and the loading
vector are assembled. The only type of damping included is intrinsic
building damping, and the damping matrix is computed from the global
mass and stiffness matrices using specific damping ratios.

The standard equation of motion of a dynamic linear building with
N DOF is satisfied and it is given by

+ + = a tMu Cu Ku G¨ ̇ ( )g (1)

where M C, , and K represent the mass, damping, and stiffness matrices,
respectively; G is the load effect matrix and for ground motions

= −G M l where l is a vector with entries equal to 1 for lateral DOF and
0 otherwise; a t( )g is the input excitation, i.e., scalar ground motion
acceleration; and u is the displacement vector.

Defining the vector xs as

=x u u[ ̇ ]s T T T (2)

the system can be represented in the state space form by

= +
= +

a t
a t

x A x B
y C x D

̇ ( )
( )

s s s s g

s s s g (3)

where the state matrices As and Bs are

= ⎡
⎣− −

⎤
⎦

= ⎡
⎣

⎤
⎦

× ×
− −

×
−A

0 I
M K M C

B
0

M G
,N N N N N

s 1 1 s
1

1 (4)

with 0 is a matrix of zeros, and I is the identity matrix, both with di-
mensions given by the subscripts; y is the vector of output responses of
interest corresponding to the matrices Cs and Ds.

2.3. Stochastic ground motion

Ground motions behave as non-stationary stochastic scalar pro-
cesses, which can be modeled as the product of a stationary process and
a slowly varying envelope function; moreover, a typical earthquake
record consists of three phases: an initial buildup phase, a stationary
strong-motion portion, and decaying tail [8]. For many earthquakes,
the strong-motion portion is long, such that the structure will achieve
peak structural response in this portion, therefore, modeling the ground
motion as a stationary process is a good approximation [8]. It is worth
noting that when the ground motion contains large impulsive compo-
nents, such as near-source earthquakes, a non-stationary stochastic
process model is more accurate; although, the stationary assumption
yields a conservative design.

A typical model for the strong-motion of ground acceleration a t( )g is
given by the Kanai-Tajimi (KT) model [18] whose differential equation
is

+ + =

= − −

v ζ ω v ω v w t

a t ζ ω v ω v

¨ 2 ̇ ( )

( ) 2 ̇
g g g

2

g g g g
2

(5)

where v is the internal variable for the KT model, ωg and ζg are the
frequency and damping ratio of the excitation and they are determined
by the characteristics of the local earth surface layer, and w t( ) is a
scalar white noise process that satisfies

 = = −w t w t w t πS δ t t( ( )) 0, ( ( ) ( )) 2 ( )1 2 0 1 2 (6)

where (·) is the expected value operator, S0 is the magnitude of the
two-sided constant power spectral density, and δ (·) is the Dirac delta
function. The parameters can be estimated from local ground motion
records using statistical estimators and the intensity S0 of the excitation
is given by the intensity of the ground motion.

From the differential equations, the state space representation can
be easily obtained. Therefore, in general the stochastic ground motion
is modeled as a filtered white-noise with the following space state space
representation

= +
=

w t
a t
x A x B

C x
̇ ( )

( )
f f f f

g f f (7)

where the matrices A B,f f , and Cf are based on the characteristics of the
excitation; xf is the state vector of the excitation model with N1 states;
and w t( ) is a scalar white noise process.

For example, for the KT model, the state vector is defined as

= v vx [ ]̇f
T (8)

then, the space state matrices are given by

= = ⎡
⎣⎢− −

⎤
⎦⎥

= = ⎡
⎣

⎤
⎦

= = − −

ω ω ζ

ω ζ

A A , B B

C C

0 1
2

0
1 ,

[ ω 2 ]

f KT
g
2

g g
f KT

f KT g
2

g g (9)

The previous model has a non-zero power spectral density (PSD) at zero
frequency, which is not realistic for acceleration records. The previous
model can be corrected by applying a high-pass filter, for example, the
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Clough-Penzien model [19] whose space state matrices are

= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣

⎤
⎦

=×

×
A

A 0
B C A

, B
B
0 C D C C, [ ]f

KT 2 2

CP KT CP
f

KT

2 1
f CP KT CP

(10)

where A B C, ,KT KT KTare the state matrices of the Kanai-Tajimi model
shown previously, and

= ⎡
⎣⎢− −

⎤
⎦⎥

= ⎡
⎣

⎤
⎦

= − − =

ω ω ζ

ω ω ζ

A , B

C , D

0 1
2

0
1 ,

[ 2 ] [1]

CP
f
2

f f
CP

CP f
2

f f CP (11)

where ωf and ζf are the frequency and damping ratio of a single DOF
system to filter low frequencies. Typically, ≪ω ωf g and ⩾ζ ζf g [19].

The difference between the two models of ground motion is evident
only in the lower frequencies. This fact is demonstrated by Fig. 2, which
shows the frequency response functions of both models using

= = =ω ζ ω20 rad/s, 0.30, 2 rad/sg g f , and =ζ 0.70g . Furthermore, the
stochastic response is related to the area under the curve of the PSD
curve, therefore, the difference between responses using both models is
only relevant when the first frequency of the structure is much smaller
than ωg.

2.4. Stochastic structural responses

Given the structural and excitation models, the augmented state
vector xa can be defined as

=x x x[ ]a s
T

f
T T

(12)

yielding an augmented system whose state space representation is given
by

= +
=

tx A x B w
y C x

̇ ( )
a a

a a a a

(13)

where the matrices A B,a a, and Ca are given by

= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣

⎤
⎦

=
×

×A
A B C

0 A B
0

B C C D C, , [ ]
N N

N
a

s s f

f
a

2 1

f
a s s f

1

(14)

The time history of the covariance matrix can be obtained solving a
differential equation. However, because the ground excitation is as-
sumed stationary, the stationary response achieves the maximum va-
lues of the response and it is the only value of interest. The covariance
matrix Γxa of the stationary response can be obtained by solving the
Lyapunov equation

+ + =πA Γ Γ A B S B 02x xa a
T

a 0 a
T

a a (15)

Finally, the covariance of the structural output y can be calculated via

 = = =Γ yy C x x C C Γ C( ) ( )y x
T

a a a
T

a
T

a a
T

a (16)

2.5. Topology optimization formulation

The design variables in continuous-domain topology optimization
are chosen as the relative density in each element [2]. Therefore for
element n, the relative density variable is denoted by zn, where

∈ …n N{1, 2, , }el , and Nel is the total number of elements. The optimi-
zation formulation is thus given by:

Find = …z z zz [ , , , ]N1 2 el such that:

=

= − ⩽
+ + =

∈ = …

J ϕ

g V V
π

z z z n N

z Γ z z

z z
A Γ Γ A B S B 0

min ( ) ( ( ), )

s. t. ( ) ( ) 0
2

[ , ]for 1, 2, ,n

z
x

x x

max

a a
T

a 0 a
T

min max el

a

a a

(17)

where ϕis a continuous differentiable positive scalar function, Γxa is the
stationary covariance of the response, V is the volume of the structural
system, Vmax is the volume constraint, and zmin and zmax are the lower
and upper bounds on the density variables.

The proposed performance function allows consideration of many
different problems. For example, the following case represents the sum
of variance (SOV) of the response of one or many DOFs

=J z F z Γ z( ) ( ): ( )xsov a (18)

where J z( )sum is the SOV objective function, : represents the sum of the
diagonal entries of the product of matrices, and F is a symmetric po-
sitive semidefinite matrix. The objective function in Eq. (18) can re-
present the sum of variances of different types of response [15].

Typically, only the response at the floors is relevant in building
design and the response of other points inside the design domain is
rarely considered. For example, common response quantities in
building design are roof displacement, interstory drifts, (i.e., relative
lateral displacement between consecutive floors), and floor accelera-
tions. In this study, the goal is to minimize the interstory drifts because
they are related with non-structural and structural damage in the cor-
responding story, and therefore, it represents a safety limit state, which
usually governs the structural design. In addition, because the input is a
zero-mean stationary Gaussian stochastic process, interstory drifts are
zero-mean stationary Gaussian stochastic processes. Furthermore, the
marginal probability distribution of the interstory drift is fully char-
acterized by the interstory drift variance, and therefore, minimizing the
variance effectively minimizes the values of the corresponding sto-
chastic process.

Although the sum of variances of floor responses is an interesting
quantity, the actual goal in practice is to minimize the maximum re-
sponse among all floors; minimizing the sum of variances is an indirect
approach to minimize the maximum variance but they are not
equivalent in all cases. Therefore, the following objective represent the
maximum response among all floors

= ⎧
⎨⎩

⎫
⎬⎭

= ⎧
⎨⎩

⎫
⎬⎭∈ ∈

J Jz z F z Γ z( ) max ( ) max ( ): ( )
i S

i
i S

i xmax a
(19)

where J z( )max is the maximum (MAX) response objective function, S is
set of indices, J z( )i is a response of interest, and Fi is a symmetric po-
sitive semidefinite matrix for ∈i S. For example, for the maximum
interstory drift of a building with Nf stories, = …S N{1, 2, , }f and J z( )i is
the variance of the interstory drift of the ith story. The function Jmax is
not a particular case of the function ϕ only because the former is not
differentiable. Moreover, Jmax is not differentiable close to the design
point, which presents challenges in the numerical implementation.

As illustrated here, the performance function is completely defined

Fig. 2. PSD curves of Kanai-Tajimi and Clough-Penzien models.
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by the covariance of the response Γxa, which is obtained through solu-
tion of the Lyapunov equation. Consequently, the stochastic optimiza-
tion problem has been transformed into a deterministic counterpart.

A gradient-based procedure is preferred for general optimization
problems, such as the method of moving asymptotes [20], for which the
gradient of the performance function and constraints are also required.
While previous formulations were very general, efficient methods have
not been developed that can handle minimax problems of topology
optimization of buildings with stochastic ground excitation. The next
section proposes means to overcome these problems.

3. Solution method

This section describes the proposed solution of the topology opti-
mization framework using dynamic condensation to improve numerical
efficiency of the solution. First, the solution to the minimax formulation
is presented. Then, the dynamic condensation is described. Later, the
evaluation of the sensitivities using dynamic condensation is presented.

3.1. Minimax equivalent formulation

The objective function J z( )max is the maximum response objective
function, over different functions J z( )i with ∈i S. For example, it could
represent the maximum interstory drift or the maximum floor accel-
eration of a building with Nf stories. The function J z( )max is an envelope
of all functions considered, and it is clearly continuous because all the
functions Ji are continuous; however, the MAX function is not differ-
entiable at all points. Fig. 3 shows an example of the variance of in-
terstory drifts of two floors versus a parameter, which defines the
stiffness of the first floor, of a two-story building, and it also shows the
maximum function, which has a singularity when the envelope switches
from one objective to the other. Moreover, the singularity is the point of
interest because it minimizes the maximum function. This figure ex-
emplifies a typical case in optimization of envelope functions, in which
the critical points do not have derivative; therefore, the problem cannot
be solved by simply choosing a small enough domain where the func-
tion is differentiable.

To overcome the non-smoothness of the MAX objective function, an
alternative bound formulation is introduced. This bound formulation
has been used in structural optimization with many loads and one ob-
jective for each load [21]. This alternative formulation introduces a
new design variable β, which is also the new objective function and
constraints all the functions Ji to be smaller than β. It can be shown that
both problems have the same minimum if a unique global minimum
exists, but the second formulation have the advantage that the objective
function and the constraint functions are all smooth.

The alternative formulation for the MAX function is given by:
Find = …z z zz [ , , , ]N1 2 el such that:

− ⩽ ∈
= − ⩽

+ + =
∈ = …

β

J β i S
g V V

π
z z z n N

z
z z

A Γ Γ A B S B 0

min

s. t. ( ) 0 for
( ) ( ) 0

2
[ , ]for 1, 2, ,

β

i

n

z

x x

,

max

a a
T

a 0 a
T

min max el

a a

(20)

Note that the number of variables is increased by one, which is negli-
gible compared to the number of variables in topology optimization.
The new objective function is linear, so computing the function and its
sensitivities is straightforward. On the other hand, the number of
nonlinear constraints is increased by the number of elements in S, and
evaluation of the constraints is done directly once the covariance matrix
is obtained. However, the computations of the gradients of the new
constraints is not straightforward, and Section 3.3 presents the details
to obtain these gradients efficiently. Note that the proposed approach to
handle minimax problems requires more solutions of the Lyapunov

equation. To make this approach better suited, a more computationally
efficient approach is required, as will be described in later sections.

Another approach to solve the min–max problem is to substitute the
original envelope or maximum function by the Kreisselmeier-
Steinhauser (KS) function, which has been used for problems with
multiple load cases [22]. First, each objective function is normalized as
follows

= −J J
J

1i
i

0 (21)

where J0 is a constant chosen such that the normalized values are close
to zero. Then, the KS function is defined as

∑⎛

⎝
⎜

⎞

⎠
⎟ = ⎡

⎣
⎢ + ⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥

=

J ρ J
ρ

ez, 1 1 ln
i

N
ρJ

KS 0
1

i
f

(22)

where ρ is a constant. Clearly, the new function JKS is smooth because it
is the composition of smooth functions. Moreover, the function JKS is
larger than the maximum value Jmax, and the function JKS converges to
Jmax as ρ goes to infinity. The normalization allows to control numerical
overflow and defines the constant ρ as dimensionless.

A continuation approach is chosen for both constants, i.e. their
values are changed incrementally. The constant J0 is chosen close to the
maximum and it is updated every certain number of iterations. The
constant ρ is increased every certain number of iterations from 1 to a
large value. However, choosing very large values for ρ can cause un-
stable convergence due to numerical error. Another approach is to solve
sequential problems with increasing values of ρ. Note that the number
of variables or constraints is not increased as in the previous approach.
In this study, both methods will be used and compared, to get a solution
of the minimax problem.

3.2. Stochastic response using dynamic condensation

This section presents a dynamic condensation approach to improve
the computational efficiency of the proposed methodology. In many
problems of interest in structural engineering, there are elements that
are not part of the optimization domain, for example: floor systems in
the optimization of the lateral resisting system of a building, bridge
deck in the optimization of bridge structures, engine in the optimization
of the framing of a vehicle, etc. Moreover, these elements provide ad-
ditional mass to the system that is typically larger than the structural
system mass, and the amount of these additional elements is small
compared to the number of DOF of the system. In the topology opti-
mization scheme, the additional masses could be added using passive

Fig. 3. Envelope function is not smooth at minimum.
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elements (i.e., elements not part of the optimization domain) or lumped
masses. Consequently, the structural system would be composed of a
reduced number of elements with large masses, and from this as-
sumption, model reduction can be applied to the system.

Constraints are typically applied to impose known or expected
structural behavior and to reduce the number of DOF. In this study,
rigid diaphragm and symmetry constraints are applied. These dis-
placement constraints can be enforced efficiently using a transforma-
tion matrix Tc as follows

=u T u¯ c (23)

where u is the vector of total DOF and ū is the vector of master DOF.
The transformation matrix and vector of total DOF can be divided in
blocks, possibly permuted due to DOF numbering, as follows

= ⎡
⎣

⎤
⎦

= ⎡
⎣

⎤
⎦

T I
S u u

u, ¯
c c (24)

where I is the identity matrix, S is the constraint matrix, and uc is the
vector of constrained DOF. The constraint matrix S is a sparse matrix
with exactly one non-zero entry per row and whose non-zero entries are
equal to 1. Further details on the use of transformation matrix in this
type of problems can be found in Gomez and Spencer [15]. Before
applying the model reduction, the constraints are applied using the
corresponding transformation matrix and the next discussion uses the
vector of master DOF.

For model reduction, the displacement vector of the system can be
divided in blocks, possibly permuted due to DOF numbering, as follows

̃=u u u[ ]T
r
T T

(25)

where ̃u represents the ×n 11 displacement vector of the few DOF that
are going to be retained, where ≪n N1 , and ur represents the dis-
placement vector of the removed DOF. Then, the structural matrices
can be consistently divided in blocks as follows

= ⎡
⎣

⎤
⎦

= ⎡
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⎤
⎦⎥
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C C
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K
K K
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G
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11 12

21 22

11 12

21 22

11 12

21 22

1

2 (26)

where M C,11 11, and K11 are ×n n1 1 matrices, and G1 is a ×n 11 matrix.
For a undamped system in which also M22 and G2 are zero matrices,

static condensation can be applied. However, the previous case is very
restrictive. Instead the model reduction is performed using the Guyan
transformation [23]

=

= ⎡
⎣⎢

⎤
⎦⎥

×
−

u Tu~

T
I

−K K
n n

22 21
1

1 1

(27)

and similar relations are used for velocities and accelerations with the
same transformation matrix.

The reduced system matrices can be obtained through the following
well-known relations

= =
= =

∼
∼∼

∼M T MT, C T CT,
K T KT, G T G

T T

T T (28)

and these matrices can be written explicitly as follows by defining
= − −T K K2 22 21

1

= + + +

=
=
=

∼

∼
∼

∼M M M T T M T M T

C C + C T + T C + T C T

K K + K T
G G + T G

11 12 2 2 12 2 22 2

11 12 2 2
T

12
T

2
T

22 2

11 12 2

1 2
T

2

T T T

(29)

The state space representation of this reduced system and the aug-
mented form can be obtained using the reduced system matrices, and
the following small-scale Lyapunov equation can be solved to obtain the

covariance of the response ̃Γxa

̃ ̃+ + =∼ ∼∼ ∼ πA Γ Γ A B S B 02x xa a
T

a 0 a
T

a a (30)

From the numerical point of view, the matrices can be obtained effi-
ciently by using the previous equations. Moreover, this transformation
reduces the size of the problem considerably, which results in a cor-
responding reduction in computation time for a given mesh size be-
cause only a small-scale Lyapunov equation is solved.

Although the covariance matrix Γxa of the initial augmented system
is rarely relevant, it can be recovered from the covariance matrix ̃Γxa of
the reduced system as follows

  ̃ ̃ ̃= = =Γ x x T x x T T Γ T( ) ( )x xa a
T

a a a
T

a
T

a a
T

a a (31)

where Ta is the transformation matrix for displacement and velocity.
Therefore, using the specific form of the transformation matrix yields

̃ ̃
̃ ̃= ⎡

⎣
⎢

⎤

⎦
⎥Γ

Γ Γ T

T Γ T Γ T
x

x x

x x

a,2
T

a,2 a,2 a,2
Ta

a a

a a (32)

where Ta,2 is the transformation matrix for displacement and velocity of
the removed DOF.

3.3. Sensitivity analysis

A gradient-based optimization approach is preferred for solution of
large-scale topology optimization problems for computational effi-
ciency purposes. Critical to this approach is being able to efficiently
obtain the gradients of the objective function. Previously, Gomez and
Spencer [15] proposed an adjoint method to obtain the gradient of the
objective function; however, this procedure cannot be applied directly
for the minmax alternative formulations and they do not take ad-
vantage of the reduced-order model. Therefore, to solve these issues,
the methodology is modified as shown below.

The individual objective functions Ji depend on the covariance
matrix, which is implicitly defined by Eq. (30), a direct differentiation
approach would be expensive due to the large number of variables.
Therefore, an adjoint method is proposed, for which the following La-
grangian functions are defined with symmetric positive semidefinite
Lagrange multiplier matrices ̃Λi for each objective

� ̃ ̃ ̃= + + + ∼ ∼∼ ∼Jz Λ z Λ A Γ Γ A B B( , ) ( ) : ( )i i i x xa a
T

o o
T

a a (33)

where =∼ ∼πSB B2o 0 a. Note that the reduced-model state matrices are
used in the previous definition, which leverages the use of dynamic
condensation to improve efficiency.

The corresponding adjoint equations can be solved to obtain ̃Λi,
thus eliminating the implicitly defined gradients of ̃Γxa,

̃ ̃+ + =∼∼ ∼A Λ Λ A F 0i i ia
T

a (34)

Eq. (34) are Lyapunov equations, which have a unique solution because
∼Aa

T
is Hurwitz, i.e., it has eigenvalues with negative real part. Finally,

the sensitivity of the functions, which are equal to the sensitivity of the
Lagrangian function, are given approximately by the following equa-
tions

∂
∂

= ⎛

⎝
⎜

∂
∂

+
∂
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+
∂

∂
⎞
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⎟ + ∂
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z z z z z

A Γ Γ
A B B

Λ F Γ~ ~ ( )
: : ~i

n n n n
i

i

n
x x x

a a
T

o o
T

a a a
(35)

Eq. (35) requires the gradients of the matrices ∼∼A B,a a, and
∼Fi that were

defined in previous sections. The detailed derivations of the results
presented in this section are provided in A.

Because ∼Fi is symmetric positive semidefinite, the solution of the
Lyapunov equation is symmetric positive semidefinite ̃Λ, as assumed
previously. Note that to compute the sensitivity of each of the functions
Ji, the solution of an adjoint Lyapunov equation is required. B provides
details on how solve these equations efficiently.
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The examples show that the dynamic condensation provides accu-
rate estimations of the sensitivity for the range of mass ratios of interest,
and static condensation does not provide good estimations. In addition,
as the mass ratio increases, the proposed method achieves better ac-
curacy.

For the alternative formulation of the minmax problem, the sensi-
tivity of the additional gradients is obtained directly from the gradients
of the component functions, and the new objective function is linear,
and its gradients are trivial. On the other hand, once the gradients of
the component functions are obtained, the sensitivity of the KS function
is obtained as follows

∑ ∑∂
∂

= ⎛
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∂
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=

J
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e e J
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ρJ i

e

KS

1

1

1

i i
f f

(36)

3.4. Optimization details

The well-known continuous approach, based on intermediate ele-
ment densities, is adopted to obtain the optimal topology [2]. For each
element n, a relative density variable zn is chosen, where

∈ …n N{1, 2, , }el . Then, the Young’s modulus and density for each ele-
ment are obtained by some interpolation rule.

In this study, the modified Solid Isotropic Material with Penalization
method (SIMP) [24,25] given by the following relationships

= ∊ + − ∊

= ⎧
⎨⎩

⩾
<+

E z z E

ρ z
z ρ if z

c z ρ if z

( ) [ (1 ) ]

( )
, 0. 1

, 0. 1

p

q

p

0

0

0
3 0

(37)

where E and ρ are the Young’s modulus and density for the element
with variable z E, 0 and ρ0 are the Young’s modulus and density for the
solid material, >p 1 and ⩾q 1 are the penalization factors, ∊ is the
Ersatz parameter [26], and = + −c 10p q

0
3 is a coefficient to ensure con-

tinuity in density interpolation rule.
The solution of the proposed optimization problem is summarized in

Fig. 4. In the initialization step, the domain is meshed, the element
matrices using solid material are computed, the matrices for the ex-
citation model are constructed, and the initial values for the design
variables are chosen. Additionally, to avoid mesh-dependency and nu-
merical instabilities such as checkerboard patterns and islanding, a
filter is applied to the sensitivities [5]. A linear hat filter with radius R,
which decreases linearly with radial distance r and is zero for >r R, is
implemented through a filter matrix that is computed in the in-
itialization step using centroidal distance between elements [26].

The remainder of the steps follow an iterative procedure. In the
analysis step, the system matrices are obtained using the current values
for the design variables, the dynamic condensation is applied to obtain
a reduced system, and then, the covariance of the response is computed
by solving the reduced Lyapunov equation. In the sensitivity step, the
adjoint Lyapunov equations are solved to obtain the Lagrange multi-
plier and the performance function and constraints sensitivities; the
filter is applied to the sensitivities. In the update step, the new values
for the design variables are obtained by using the method of moving
asymptotes [20,27]. The iterative scheme is applied until the maximum
change in the design variables with respect to the previous iteration is
below a specified threshold.

4. Numerical examples

First a numerical validation of the methods proposed in the previous
section is performed. Then, the proposed framework is illustrated
through three examples: minimization of plane buildings with 9 stories
and both, single and multiple bays, and 20 stories subjected to sto-
chastic ground motions. Geometric and dynamic properties are taken
from well-known benchmark problems in structural control of buildings

with seismic excitation [16].

4.1. Numerical validation

An example is performed to validate the accuracy and efficiency of
the dynamic condensation to compute the stochastic response of
buildings. The response is compared with the actual response obtained
by solving the Lyapunov equation for the full system; and additionally,
the stochastic response is also computed using static condensation to
show the shortcomings this technique.

A 9-story single-bay building subjected to stochastic excitation is
considered. The domain is given by the ×9m 36m rectangle, which is
composed of a solid linear elastic material having the following prop-
erties, which are representative of structural steel: Young’s modulus

=E 200 GPa0 , Poisson’s ratio =ν 0.3, density =ρ 75000 kg
m3 , and Ersatz

parameter ∊ = −10 4, which is used for the compliant material that fill
the void elements. The domain has a uniform thickness of 0.25 m; and
due to its thickness, the continuum domain is assumed to be in plane
stress condition. The continuum domain is discretized using ×36 144
Q4 elements. The building has 9 floors with the same height equal to
4 m. Both lateral boundaries have columns with sections that vary
linearly from W14x500 to W14x257, and are discretized using 288
frame elements with axial and bending stiffness; the material properties
are the same as the design domain. Additionally, there exist 18 lumped
masses of magnitude M each, located on both sides of each floor. Fig. 5
shows the layout of the structure considered. Different values of M are
considered independently such that ∈M/8000
{1, 2, 5, 10, 20, 50, 100, 200}; one building is defined for each value of

Fig. 4. Topology optimization flowchart for buildings with stochastic ground
motions using dynamic condensation.
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M. Different cases yield mass ratios μ of the retained DOF and removed
DOF in the set {1, 2, 5, 10, 20, 50, 100, 200}. Pinned supports are applied
to the columns and plane elements at the base. A rigid diaphragm
constraint is enforced in all floors such that the joints in each floor have
equal lateral displacements, i.e., representing the effect of the floor
slabs. The damping matrix is obtained using Rayleigh damping with 2%
damping ratio for the first two modes.

Two independent types of stochastic excitation are considered:
ground motion, and equal dynamic forces on all lumped masses. In all
loading cases, the excitation is modeled as a band-limited white noise
(BLWN), by passing a scalar white noise (WN) with power spectral

density equal to S0 through an 8-pole, low-pass elliptic filter. The filter
has a cutoff frequency 10 Hz, a peak-to-peak ripple of 0.1 dB, and stop-
band attenuation of 100 dB.

The stochastic response of each structure subjected to each excita-
tion is obtained by solving the Lyapunov equation of the complete
system. In each case, the response of interest is the lateral interstory
drift with covariance matrix Γ0. The proposed method using dynamic
condensation retaining only the DOF with the response of interest is
applied to compute the stochastic response with covariance matrix Γ.
To assess the accuracy of the results the following error index is defined

Fig. 5. 9-story single-bay building characteristics.

Fig. 6. Normalized error in stochastic response versus mass ratio μ for structure subjected to (a) ground motion and (b) forces in all floors.
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= −e Γ Γ
Γ

0 F

0 F (38)

where . F represents the Frobenious norm of a matrix,i.e., the square
root of the sum of the absolute squares of the matrix entries.

Fig. 6a-b show the amplitude of the error in the stochastic response
versus mass ratio μ for the 2 types of excitation. The error in the sto-
chastic response of the retained DOF using the proposed method is
small for all types of excitation considered, and consequently, dynamic
condensation achieves good accuracy for optimization purposes for
mass ratios larger than 5.

The original problem was solved using CF-ADI algorithm with ap-
propriate number of iterations and parameters for these type of pro-
blems [15]; a direct implementation of this solver requires a compu-
tational time of 4.9 s in a computer with processor Intel Xeon E3-1285
v6 @4.10 GHz and 32 Gb of RAM. For comparison using the same
computer and the same structure, the solution using dynamic

condensation requires only 0.12 s. These timing results show that the
stochastic solution can be obtained for about 1/40 of the same cost of
the original problem solution, which demonstrates the efficiency of the
proposed approach.

This example demonstrates that dynamic condensation provides
accurate and efficient estimations of the stochastic response for the
range of mass ratios of interest. As the mass ratio increases, the pro-
posed method achieves better accuracy.

To assess the accuracy of the sensitivities using dynamic con-
densation, the same building is considered. The value of M is set to 80
000 kg so that μ is approximately 10. Fig. 7a and Fig. 7b show the
sensitivities of the variance of the interstory drift of 3 stories using the
complete solution and the proposed adjoint method with dynamic
condensation, respectively. Comparing both approaches, the maximum
difference is less than 0.1%; and the error is expected to be lower for
larger mass ratios. As these figures show, the proposed method

Fig. 7. Sensitivities of variance of interstory drift of 3 stories using (a) complete system[15] and (b) proposed approach using dynamic condensation.
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accurately computes the sensitivities.
The sensitivities of the complete system were determined using CF-

ADI algorithm and the adjoint method [15]; a direct implementation of
this solver requires a computational time of 11 s in a computer with
processor Intel Xeon E3-1285 v6 @4.10 GHz and 32 Gb of RAM. For
comparison using the same computer and the same structure, the sen-
sitivities using dynamic condensation require 0.45 s. These timing re-
sults show that the stochastic solution can be obtained for about 1/25 of
the same cost of the original problem solution, which demonstrates the
efficiency of the proposed approach.

4.2. Minimization of interstory drift for a 9-story single-bay building
subjected to stochastic ground motion

In this first example, a simplified representation of the 9-story
building is considered to assess the accuracy of the proposed algo-
rithms. The general properties are taken from a single-bay in one of the
North–South direction frames, from a benchmark in structural control
[16]. The design domain and material properties are the same as in the
example in the previous section. The domain has a uniform thickness of
0.25 m; and due to its thickness, the continuum domain is assumed to
be in plane stress condition. The continuum domain is discretized using

×54 216 Q4 elements. Both lateral boundaries have columns with sec-
tions W14x500 at the bottom and W14x257 at the top, and the area
varies linearly for intermediate floors, the columns are discretized using
432 frame elements with axial and bending stiffness; the material
properties are the same as the design domain. In addition, lumped
masses of ×255 103 kg are located in each floor and in each axis; these
masses represent the structural and non-structural elements not in-
cluded in the model. Pinned supports are applied to the column bases. A
rigid diaphragm constraint is enforced in all floors such that the joints
in each floor have equal lateral displacements. The radius of the filter is
equal to 0.30 m. The volume of the optimization variables is con-
strained to be less or equal than 0.20 of the solid domain. The damping
matrix is obtained using Rayleigh damping with 2% damping ratio for
the first two modes. The optimization is performed using different ob-
jectives to compare the results and their performance.

To provide a reference of comparison, the optimal topology for
minimum static compliance is obtained considering static deterministic

loading forces applied to each floor level (at the lumped mass loca-
tions); the load distribution increases linearly along the height, re-
sembling a typical first mode approximation. This optimization strategy
typically resembles what in many cases is done in design offices as a
simple way to determine optimal topologies for buildings subjected to
seismic loads. The resulting topology is shown in Fig. 8a. The first two
natural frequencies of the static design with the mass distribution de-
scribed previously are equal to 1.08 Hz and 2.35 Hz. The resulting to-
pology is 4 sets of independent X-type braces. Additional material is
needed next to the columns of the first 3 floors.

Next, the ground motion a t( )g is modeled as an stochastic process
using the Clough-Penzien model with =ω 15 rad/sg (2.39 Hz),

= =ζ ω0.60, 1.5 rad/sg f (0.239 Hz), =ζ 0.60g , and =S 0.026 m /s0
2 3;

these parameters has been proposed for firm soil conditions [19,28]
with an approximate peak ground acceleration of 0.5 times gravity.
Optimization is conducted to minimize the sum of the variance of the
interstory drifts (SUM objective). Fig. 8b shows the optimal design
using the SUM objective; the first natural frequencies are equal to 1.05
and 2.62 Hz. Similarly to before, the resulting topology is 4 sets of
independent braces with additional material needed next to the col-
umns of the first 3 floors. Topology optimization is then performed to
minimize the maximum interstory drift variance among all stories
(MAX); this case is solved using bound formulation and KS function,
and the results for both solutions are the same, consequently, only the
result for alternative bound formulation is shown. Fig. 8c shows the
optimal design for the MAX objective; the first natural frequencies are
equal to 0.971 and 2.485 Hz. The resulting topology is two sets of in-
dependent braces in the first 4 floors, and some intersecting braces in
the upper floors; additionally, in the first 3 floors additional material is
needed next to the columns, which is equivalent to assigning bigger
column sections in these floors. These figures show that the optimal
topology to minimize the maximum interstory drifts differs con-
siderably from the static design and the SUM design, although the first
frequencies of these designs are relatively close to each other. More-
over, the maximum interstory drift variance in the static design, the
SUM objective, and the reference design are × −15.001 10 4 m2,

× −5.245 10 4 m2, and × −3.323 10 4 m2, respectively; which shows the
superior performance of the design considering the stochastic dynamic
ground motion.

Fig. 8. Optimized topologies of 9-story single-bay building for (a) static compliance minimization, (b) minimizing the sum of interstory drift stochastic variances,
and (c) minimizing maximum interstory drift stochastic variance.
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In this example, the computational time required for each iteration
using the MAX objective with the equivalent formulation is increased in
7.5% compared to the computational time using the SUM objective. This
increment in computational cost is small for practical applications. The
time increment occurs due to additional secondary tasks of the analysis
step and sensitivity step because the Lyapunov solver already gives all
the information to evaluate the objectives functions and their sensi-
tivities. The increment of computational time for the MAX objective
with the KS approximation is of the same order due to the same reasons.

Finally, the standard deviation of the interstory drift per story of the
static, SUM, and MAX designs are obtained and shown in Fig. 9. The
MAX objective yields a uniform distribution of interstory drifts, with
the maximum value being 25% smaller than in the maximum value in
the SUM objective, although in latter case, the sum of the variance of
the interstory drifts is smaller. Also, the static design presents a non-
uniform distribution and with values larger than the SUM and MAX
designs. As expected, the MAX objective yields a design with a better
performance than the other cases. The uniform distribution of inters-
tory drift occurs for all the cases considered in this study when using the
MAX objective, and this feature can be interpreted as a design with
uniform damage among all floors.

4.3. Minimization of 20-story tower subjected to stochastic ground motion

The second example consists of a 20-story building subjected to
ground motions. The building is also selected from the benchmarks for
control problems [16]. Similarly to the previous example, only one
frame in the North–South direction is considered here for the optimi-
zation. The general properties are slightly modified from the original
problem and they are described next.

The design domain is given by the ×30 m 80 m rectangle, which is
composed of a solid linear elastic material having the properties of
structural steel. The domain has a uniform thickness of 0.10 m; and due
to its thickness, the continuum domain is assumed to be in plane stress
condition. The continuum domain is discretized using ×90 240 Q4
elements. The building has 20 floors with the same height equal to 4 m
and 5 bays with a span of 6 m. Both lateral boundaries have columns
with sections W24x335 at the bottom and W24x84 at the top, and the
area varies linearly for intermediate floors, the columns are discretized
using 1440 frame elements with axial and bending stiffness; the ma-
terial properties are the same as the design domain. In addition, lumped
masses of ×46 103 kg are located in each floor and in each axis; these
masses represent the structural and non-structural elements not in-
cluded in the model. Pinned supports are applied to the column bases.
Two types of axial stiffness are considered in all floors: rigid diaphragm
constraints such that the nodes in each floor have equal lateral dis-
placements, and a flexible diaphragm with axial stiffness provided by
floor beams W30x108. The radius of the filter is equal to 0.50 m. The
volume of the optimization variables is constrained to be less or equal
than 0.30 of the solid domain. The damping matrix is obtained using
Rayleigh damping with 2% damping ratio for the first two modes. The
objective is to minimize the maximum interstory drift among all stories.
For the case with flexible diaphragms, the interstory drift is computed
as the average of the relative displacement with respect to the previous
floor at each column axis.

Two independent ground motions a t( )g are considered using
Clough-Penzien model for different soil conditions, whose parameters
are shown in Table 1; these parameters have been proposed for medium
and firm soil conditions, respectively [19,28]. For both excitations

=S 0.026 m /s0
2 3. Topology optimization is performed to minimize the

maximum interstory drift variance among all stories for each ground
motion.

Fig. 10a-b show the optimal design for both excitations with rigid
diaphragms; the first natural frequencies of the first design are equal to
1.20 Hz and 2.96 Hz, and the first natural frequencies of the second
design are equal to 1.18 Hz and 3.16 Hz. The maximum interstory drift

variance in both designs are × −0.645 10 4 m2 and × −0.434 10 4 m2, re-
spectively; which shows that the first excitation is more severe because
the peak frequency of the excitation is closer to the first frequency of
the structure. These figures show that the optimal topology differs lo-
cally for the different excitations. In both designs, a mega bracing
pattern resembling a beam emerges with some local and global bracing
to restraint the floor masses. In both cases, the interstory drift dis-
tribution is uniform for all 20 floors.

Fig. 11a-b show the optimal design for both excitations with flexible
diaphragms; the first natural frequencies of the first design are equal to
1.16 Hz and 2.85 Hz, and the first natural frequencies of the second
design are equal to 1.14 Hz and 2.96 Hz. The maximum interstory drift
variance in both designs are × −0.679 10 4 m2 and × −0.455 10 4 m2, re-
spectively; which again shows that the first excitation is more severe
because the peak frequency of the excitation is closer to the first fre-
quency of the structure. Likewise, these figures show that the optimal
topology differ locally for the different excitations. These results in-
dicate that the topology is highly dependent in the type of diaphragm; a
rigid diaphragm results in a simpler layout, and a flexible diaphragm
results in a structure with more local braces that also provides local
axial stiffness in each floor.

To assess the robustness to parameter changes in ground motions,
the distribution of the standard deviation of the interstory drifts of two
designs are computed for each ground motion; Fig. 12a-b display these
results for the designs with flexible diaphragms. The distribution of
interstory drifts in both designs is uniform for the excitation it was
designed for, and this result provides a good indicator that the design is
near or at the optimum. Additionally, the optimal result for medium soil
performs well for the ground motion of firm soil and vice versa, which
indicates the robustness of the designs to variations in the ground
motion parameters. Similar conclusions were obtained for the rigid
diaphragm designs.

5. Conclusions

This paper proposed an efficient topology optimization framework
for building subjected to stochastic ground motions. The solution of
large-scale Lyapunov equations is time consuming, and typically, in

Fig. 9. Comparison of the distribution of interstory drift standard deviation for
static compliance, SUM, and MAX designs.
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buildings only the response of a few points, i.e. floor nodes, is of in-
terest. Consequently, the system matrices were reduced using a Guyan
reduction transformation, from which a small-scale Lyapunov equation
was solved to obtain the stationary response covariances of the floors.
This approach to obtain the stochastic response of retained degrees-of-
freedom was verified for multiple examples with different additional-
mass-to-structural-mass ratio, which demonstrated that the accuracy is
excellent for ratios larger than 5 and that computational time efficiency
is considerably improved.

In addition, this study considered more realistic details in the to-
pology optimization of stochastically excited buildings such as addi-
tional floor masses, gravity boundary elements, diaphragm constraints,
and ground motion stochastic models. Also, the performance function
was given by the maximum covariance among the floor responses,
which yields a non-differentiable problem near to the maximum re-
sponse point in the design domain. Therefore, two alternative smooth
formulations were proposed to fix this issue: bound formulation and
using the KS function approximation of the envelope. The first approach

introduces an additional variable, additional smooth constraints, and a
new smooth objective function. Details on how to evaluate the new
constraints were also discussed.

A volume constraint was imposed to limit the design space, and the
design variables were chosen as the relative densities in each element,
which were bounded to achieve physically meaningful solutions. The
material properties for intermediate densities were obtained using the
SIMP interpolation rule; a linear hat filter was used to avoid numerical
instabilities. In addition, an efficient adjoint method was developed to
obtain the sensitivities of the performance function and additional
functions, which required the solution of an additional small-scale
Lyapunov equation. The proposed approach to obtain the sensitivities
was compared with other methods, which demonstrated good agree-
ment in the results. Iterations were carried out using a gradient-based
approach commonly employed in the topology optimization field.

The proposed topology optimization scheme is illustrated for two
planar frames of buildings with 9 stories single-bay, and 20 stories 5
bays. The building characteristics were taken from well-known bench-
mark problems in structural control of building subjected to ground
motions. The lateral resisting system in each example was designed to
minimize the maximum interstory drift among all stories. The first
example optimized the lateral resisting system of a 9-story and single-
bay building. The system was optimized for the static compliance case,
the sum of variance of interstory drifts, and the maximum variance of
interstory drifts. The static deterministic loads were applied on the
lumped masses with a linear variation over height approximating the

Table 1
Parameters of the ground excitation model for different soil conditions [19,28].

Soil type ωg ζg ωf ζf

Medium soil 10 rad/s (1.59 Hz) 0.4 1.0 rad/s (0.159 Hz) 0.6
Firm soil 15 rad/s (2.39 Hz) 0.6 1.5 rad/s (0.239 Hz) 0.6

Fig. 10. Optimized topologies for minimizing maximum interstory drift stochastic variance with a rigid diaphragm at each floor subjected to ground motion with (a)
medium soil ( =ω 10g rad/s) and (b) firm soil ( =ω 15g rad/s).
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first mode and the proposed method achieved superior performance.
The different objectives yielded different results, and the response to
the stochastic ground motion of each design was obtained. It was de-
monstrated that the MAX objective achieved a different topology with a
reduced maximum response, the static case yielded the worse response.
Moreover, using the MAX objective, a uniform distribution of interstory
drift variance was obtained, and a non-uniform distribution for the
other objectives.

The second example optimized the lateral resisting system of a 20-
story and 5-bay building. The design was performed for a set of para-
meters given by the benchmark problem with 2 different excitations
and 2 different diaphragm types. The design consisted of a mega bra-
cing spanning multiple floors with internal and external bracing pat-
terns restraining the lumped masses. The topology is highly dependent
in the type of diaphragm, and changing the excitation parameters
modified local details of the topology because of the change in the
excitation peak frequency, but the optimal design seems to be robust to
changes in the excitation parameters. In all cases, a uniform distribution
of interstory drift variance was obtained.

The results presented herein demonstrate the efficiency of the pro-
posed approach for topology optimization of buildings excited by
ground motions, which presents a useful tool for designers to explore
new types of structural patterns in earthquake-prone areas. This

framework can be extended to accommodate multi-objective problems
as well as multiple input-multiple output systems.
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Appendix A. Sensitivity analysis

The details on how to obtain the sensitivity of the performance functions described in Section 3.3 are described in this section. Inditial notation is
used and the subscript of the covariance of the response of the augmented system is dropped for simplicity; and the indices take values from

… ′N1, 2, , unless noted otherwise. Direct differentiation method requires the solution of one Lyapunov equation for each element, which makes the
overall process a quartic order process. An adjoint method is applied to make the process more efficient, in terms of the Lagrangian functions
expressed in Eq. (33), which is rewritten and reordered next in inditial notation

� = + + + = + + +∼ ∼∼ ∼J A A Q JΛ ( Γ~ Γ~ ) (A Λ~ Λ~ A )Γ~ Λ~ Qp p p ij ik kj ik jk ij p ki kj ik kj ij ij ij, a, a, a, p, p, a, p, (39)

where = ∼ ∼Q B Bo o
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. Differentiating the previous equation yields the following
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Plugging the derivative of the function Ji in the previous equation and reordering yields
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To remove the dependence on the implicit derivative of the covariance matrix, the first factor in the third term in the RHS of the previous equation is
defined as 0, that is

̃ ̃+ + =∼∼ ∼A A FΛ Λ 0ki p kj p ik kj p ija, , , a, , (42)

which written in abstract form yields Eq. (20). Therefore, the gradient of the performance function is given by
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and the previous equation written in abstract form gives Eq. (35).
Then, the sensitivity of the performance function requires the derivatives of the matrices∼Aa and

∼Ba, these are obtained similarly to the derivatives
of the state matrices of the total system [15] but using the reduced-order matrices derivatives, which are shown next for the ease of the reader
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The derivative of state matrices are given by
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Fig. 12. Comparison of the distribution of interstory drift stochastic standard deviation for designs with flexible diaphragm due to ground motion for (a)medium soil
and (b) firm soil.
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and the following derivatives that appear in the state matrices are given by
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If Rayleigh damping is used, the damping matrix is equal to

= +∼ ∼∼α αC M K1 2 (48)

and consequently, the derivative of this matrix is computed from this relationship. If there is an additional source of damping, similar relations as the
previous ones can be obtained for the derivative of the damping matrix; however, in many cases the damping matrix due to supplemental damping is
not dependent on the densities, and therefore, its derivative is zero. From the previous expression, the following derivative is given by
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The matrices M and K are obtained using an assembly process described by
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where Mn
0 and Kn

0 are the mass and stiffness matrices of element n with solid material in global DOF. The derivatives of them are given by
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Then the derivatives of the matrices can be split in blocks as follows
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Then, the following derivative is obtained

∂
∂

= ∂
∂

− ∂
∂

− − −

z z z
T K K K K K K

n n n

2
22

22
22 21 22

211 1 1

(53)

and the derivatives of the reduced-order matrices are as follows
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Appendix B. Multiple Lyapunov equation solution

Because of the proposed method to solve the minimax problem and the adjoint method to obtain sensitivities, multiple adjoint Lyapunov
equations of the following form need to be solved

̃ ̃+ + =∼∼ ∼A Λ Λ A F 0i i ia
T

a (55)

Because of the dynamic condensation approach, the number of DOFs is reduced, but application of previous algorithms to obtain the solution may
still require excessive time if many constraints are introduced. Fortunately, existing algorithms can be modified to solve this problem efficiently; in
this section modifications to Bartel-Stewards and CF-ADI algorithms, for small and large-scale equations, respectively, are described.

The solution of the Lyapunov equation using the Bartels-Steward algorithm requires the Schur factorization of the matrix ∼Aa, which needs to be
done only once because it is the same state matrix for all equations. Then, each equation is converted to a Lyapunov equation with quasi-triangular
matrices and they can be solved as usual. Doing the factorization only once yields time savings because it is the most expensive step in the solution of
the Lyapunov equation.

The solution using CF-ADI algorithm first requires the computation of the optimal shift parameters, which depend only in ∼Aa; therefore, these
parameters need to be obtained only once ∼Aa. Because each of the matrices =∼F C Ci i i

T , then the following matrix is defined

= … ′C C C C[ ]nt 1
T

2
T T T

(56)
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and

=F C Ct t
T

t (57)

It is easily shown that

= + + …+∼ ∼ ∼
′F F F Fnt 1 2 (58)

Applying the CF-ADI algorithm to solve the following low-rank sparse Lyapunov equation

̃ ̃+ + =∼ ∼A Λ Λ A F 0i ia
T

a t (59)

yields the complex matrix Z

= …Z V V V[ ]n1 2 (60)

where the matrices Vi are obtained using an iterative procedure. Finally, the Lagrange multipliers can be obtained as follows

̃ =Λ Z Zi i i
H (61)

where H denotes the Hermitian transpose operation and Zi is the matrix composed of columns of the matrices Vi, using as many columns and in the
same order as the rows of Ci in Ct. By solving the multiple Lyapunov equations as proposed, the total time for the solution is the same as in the SOV
case, which is considerably more efficient than solving large-scale Lyapunov equations many times.
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