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Abstract: This review provides a comprehensive compilation, from a digital image processing point of
view of the most important techniques currently developed to characterize and quantify the vibration
behaviour of the vocal folds, along with a detailed description of the laryngeal image modalities
currently used in the clinic. The review presents an overview of the most significant glottal-gap
segmentation and facilitative playbacks techniques used in the literature for the mentioned purpose,
and shows the drawbacks and challenges that still remain unsolved to develop robust vocal folds
vibration function analysis tools based on digital image processing.

Keywords: vocal folds motion; glottal gap segmentation; facilitative playbacks; laryngeal dynamics;
vocal folds vibratory pattern

1. Introduction

Voice is the main support of communication in mankind, through which feelings, emotions and
culture are transmitted. Therefore, voice is crucial to the quality of anyone’s daily life, especially
of professional voice users. However, because of the voice misuse or overuse, changes in laryngeal
structures may lead to voice disorders. In a cure-and-care approach, clinical voice assessment is
required to diagnose the dysfunction and to plan appropriate treatment strategies [1]. According to
the American Speech-Language-Hearing Association [2], a recommended protocol for instrumental
assessment of voice has to include laryngeal endoscopic imaging, acoustics, and aerodynamic
assessments (Figure 1). However, only the laryngoscopy allows the etiology determination of an
organic or functional voice disorder. Hence, visual inspection of the vocal folds vibratory characteristics
is essential for diagnosis. Advanced assessment makes use of high-speed cameras. On such data,
image processing is the most promising approach to investigate vocal folds vibration and laryngeal
dynamics in speech and singing [3–5]. Among the image-processing tasks, the most recurrent tasks
are glottal segmentation and synthesizing laryngeal videos in a family of representations named
Facilitative Playbacks (FP). They are essential operations for accurate characterization of vocal folds
vibrations. This process leads to identify different phonation features, i.e., periodicity and amplitude
of vocal folds vibration, Mucosal Wave (MW), glottal closure, closed-state, symmetry of vibration,
presence of non-vibrating portions of vocal folds, etc. Clinicians and voice scientists use the obtained
information to support their clinical diagnostics about the presence or absence of a disease and also
to follow the dynamics of anatomical features of interest in a more intuitive way, revealing contents,
which are often hidden to human eyes [6–8].
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Figure 1. Sketch of different methods used for objective voice assessment. (Acoustics) Recording of the
audio signal with a sonogram of an ascending vocal glissando. (Aerodynamics) Voice assessment using
an air-rate meter, adapted from [9,10]. (Laryngeal Imaging) Recording of the vocal folds oscillations
via a rigid endoscope. (Electroglottography) Noninvasive measurement of vocal folds contact area by
electrodes applied on the surface of the neck during phonation.

Reviews on laryngeal imaging research and clinical implications already exist in the literature
of the past twenty years [4,8,11–20]. However, to our knowledge, there are no reviews devoted
to analyzing the different glottal-gap segmentation and FP techniques. This paper is intended
as a comprehensive state-of-the-art review on the particular issues of glottal-gap segmentation
approaches and FP restricted to two widely available types of image modalities: Laryngeal High-Speed
Videoendoscopy (HSV) and Laryngeal Videostroboscopy (VS) [21].

This paper is organized into six sections. Section 2 introduces the different image modalities
in laryngeal imaging. Section 3 addresses the glottal gap segmentation problem and presents the
literature devoted to synthesizing vocal folds dynamics (FP). Section 4 highlights the challenges in
glottal segmentation, and FP techniques. Section 5 introduces the several clinical and voice research
works that make use of glottal-gap segmentation and FP approaches. We conclude with a discussion,
pointing to future research directions and open problems related to glottal-gap segmentation and
FP representation.

2. Laryngeal Image Modalities

Current laryngeal image modalities include Laryngeal VS, Videokymography (VKG), High-Speed
Digital Kymograghy (DKG) and Laryngeal HSV. However, there are new modalities that emerge for
analyzing the vocal folds dynamics [22] and also devices for 3D visualization of the vibration of vocal
folds superior margins [23–26]. This paper is focused on two laryngeal image modalities: VS and HSV.
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2.1. Laryngeal Videostroboscopy

During phonation, the vocal folds vibrate at a rate faster than can be perceived by the human
eye. Therefore, the use of techniques to create an apparent slow-motion view of the periodic vibratory
cycles has been necessary. The process to record an VS involves the use of a video camera attached to a
rigid (transoral) or flexible (transnasal) endoscope where the illumination is provided by a strobe light
that flashes at a rate that is synchronized with the patient’s fundamental frequency during sustained
vowel production. Therefore, VS is an estimated version of the vibration of the vocal folds that is
acquired by sampling its motion.

Figure 2 illustrates the complete procedure to record a VS. (1) and (3) represent the endoscope
used to capture the vocal folds motion: rigid (90◦) and flexible, respectively; (2) represents the vocal
folds; (4) is the real vibratory pattern of the vocal folds; (5) is the stroboscopic light; and (6) is the
estimated slow motion version of the vocal folds vibration. Some of the advantages and limitations of
Laryngeal Videostroboscopy are mentioned [18] below:

Figure 2. Illustration of the stroboscopic sampling. Adapted from [27]. (1) and (3) are the rigid
and flexible endoscope, respectively; (2) are the vocal folds; (4) represents the real vibratory pattern;
(5) illustrates the strobe light; (6) is the estimated version of the vibratory pattern.

2.1.1. Advantages

• It can be used with Distal Chip Laryngoscopy (DCL) and Flexible Fiberoptic Laryngoscopy
(FOL) [28] during articulated speech and singing. DCL is identical to FOL regarding diagnostic
accuracy, but DCL is superior to FOL in image quality and interrater reliability. Despite flexible
endoscope optics have lower quality than a rigid endoscope, it is possible to obtain an image
quality comparable to the rigid laryngoscope using DCL [29,30].
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• It can be coupled with high-definition cameras, providing a higher spatial resolution of the vocal
fold structures involved in phonatory vibration (e.g., mucosa, superficial vasculature, etc.) [18].
The High-Definition Digital Stroboscopy System by KayPENTAX Model 9310HD, for example,
records interlaced video frames with a spatial resolution of 1920 × 1080 full-HD letting real-time
viewing of exam video in uncompressed HD. 4K video format with a spatial resolution of
3840 × 2160 pixels has been tested in VS. Despite the fact that its clinical implementation is
feasible, its usefulness must be proven [31].

2.1.2. Limitations

• It does not provide a real view of the vocal folds’ vibratory pattern, so it is restricted to stable
and periodic vocal folds vibrations. Therefore, VS is incapable of revealing vocal fold vibratory
patterns in patients with severe dysphonia [32]. In addition, VS limits scientific and diagnostic
knowledge of the vocal function during voice onset and voice offset.

• It is more sensitive to camera rotation, side movement of the laryngoscope and patient movements
which produce the vocal folds delocation [33,34].

2.2. Laryngeal High-Speed Videoendoscopy

HSV has revolutionized laryngeal imaging, increasing the understanding of glottal dynamics
during the phonation process [17]. HSV is the only technique able to acquire the true intra-cycle
vibratory behavior, allowing the study of cycle-to-cycle glottal variations. In HSV, images are sampled
constantly due to the use of a continuous light source. No information is lost between frames. Lastly,
image sequences can be slown down to frame rates that can be perceived by the human eye.

Nowadays, due to the fast-growth of high-speed technology, it is possible to find cameras that can
reach frame rates over 20,000 Frames per Second (fps), recording in color with high spatial resolution
and excellent image quality for long-duration recording times. With respect to the minimum frame
rate requirements of HSV for clinical voice assessment, frame rates of 8000 fps are recommended with
a minimum requirement of 4000 fps [35,36]. For HSV recordings at rates below 4000 fps for women
and 3200 fps for men, the videos have to be interpreted with caution.

Figure 3 illustrates the principle of sampling in HSV for two different frame rates. It can be
observed that every single cycle is sampled, in contrast to VS where the samples are taken from different
cycles (see Figure 2). Some of the advantages and limitations of HSV are detailed below [4,14,27]:

2.2.1. Advantages

• It captures the true intra-cycle vibratory behavior of the vocal folds, providing a more reliable
and accurate objective quantification of vocal-fold vibrations. Therefore, it is possible to study
aperiodic movements of vocal folds observed in some voice disorders [4,37].

• The combination of HSV with acoustics and other physiological signals may provide
complementary, high-precision measures that can improve the clinical practice [38,39].

• It is used to examine the basic physiology of different singing styles, such as extremely
high-pitched singing, throat singing, or different pop and rock styles [40], and to study the
oscillatory characteristics of the vocal folds across classical soprano and tenors singers [41,42].

• It is useful to get insights into tissue vibratory characteristics, influence of aerodynamical forces
and muscular tension, vocal length, phonatory breaks, laryngeal spams, vocal folds contact and
evaluation of normal laryngeal functioning in situation of rapid pitch change such as onset and
offset of voicing or glides [5,43].

2.2.2. Limitations

• Due to the huge amount of data acquired, storing and visualization are great problems.
For instance, 10 s recording data at speed of 10,000 fps would require 2 h and 46 min to view the
whole recording at a speed of 10 fps [4,27].
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• It is not possible to provide real-time audiovisual feedback due to the high temporal resolution
of HSV. However, it is possible to align HSV with acoustics and EGG signals to provide more
precise measures that can improve clinical diagnosis.

Time	

Time	

Con)nuous	light	

Con)nuous	light	

Figure 3. Illustrations of the Laryngeal High-Speed Videoendoscopy (HSV) sampling effect for two
different frame rates. Adapted from [27].

Figure 4 illustrates the procedure used to study the vocal folds motion based on laryngeal
image processing techniques. Glottal gap segmentation and the FP (third and fourth row in Figure 4),
have been extensively used in HSV and VS to simplify the visualization of the vocal folds dynamics and
to provide objective parameters to accurately identify the presence of organic voice disorders [44,45],
classify functional voice disorders [46,47], vibratory patterns [48,49], discriminate early stage of
malignant and precancerous vocal folds lesions [50], among others [7,39]. Despite the progress
achieved to describe the vocal folds dynamics using laryngeal image-processing, the task is still
challenging and poses a difficult computer vision problem.
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Figure 4. Graphical illustration of the procedure followed to extract glottal features from vocal folds
motion during phonation. First row shows the coronal view of the vocal folds; second row represents
the top view of the vocal folds obtained from the Laryngeal Videostroboscopy (VS)or HSV recording;
third row depicts the glottal segmentation; and fourth row illustrates the glottal area waveform
(GAW) playback.

3. Glottal Gap Segmentation and Facilitative Playbacks

Laryngeal imaging techniques have been used to study the complex interaction of vocal folds
structures [51,52], tissue mechanics [6], muscle contraction [53], voice treatment effects in Parkinson’s
diseases [54] or to objectively characterize voice disorders [7,39]. Therefore, Section 3.1 introduces
the two most widespread image-processing methods used for glottal gap segmentation and FP
representation. Numerous works are described in Section 3.2, using a single or a combination of
image-processing methods for image enhancement, Region of Interest (ROI) detection, and glottal gap
delimitation, respectively. Lastly, Section 3.3 presents the literature related to the FP representations.

3.1. Image-Processing Methods

The image-processing methods refer to a set of operations on an image, in order to get an enhanced
image or to extract some useful information from it. It is a type of signal processing in which input is an
image and output may be image or characteristics/features associated with that image. Let us denote
a laryngeal image sequence as I(x, t), where x = (x, y) ∈ R2 represents the position of the pixels and
t represents the time instants of the sequence. Hence, a single frame at instant tk, k = {1, 2, . . . , N},
is denoted as I(x, tk). Therefore, the intensity of a given pixel xij = (xi, yj), i = {1, 2, . . . , n} and
j = {1, 2, . . . , m}, at time tk can be defined as I(xij, tk) ∈ R, which represents a pixel in gray-scale. For a
color image sequence, the components can be represented by superscripts. For instance, in the RGB
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space, the image sequence is denoted as IR,G,B(x, t), where R, G, and B are the three components of
the space. For single images that do not belong to an image sequence, the notation is simplified to
I(x) or I(x, y) for gray-scale images and IR,G,B(x) or IR,G,B(x, y) for images in the RGB space. Figure 5
summarizes graphically the notation for a gray-scale laryngeal image sequence.

k	

N	

I(x, t)

I(x, t1)

I(x, t2)

I(x, t3)

I(x, tk)

I(x, tN )

I(xij , t1)

n	

m	1	
I(x, y)

j	

i	

I(x, y) : R2 �! R

Figure 5. Laryngeal image sequence with its respective notation. (Left side) laryngeal image sequence
I(x, t); (right side) single image I(x, y).

Two of the most common tasks in image-processing are: image segmentation and motion
estimation. The first one subdivides an image into its constituent regions or objects and the level of
detail of each subdivision depends on the problem being solved [55]. The image segmentation
methods can be classified, roughly speaking, into the following categories: thresholding [56],
edge-based [57], region-based [58], classification-based [59], graph-based [60,61] and deformable
models [62]. Meanwhile, the motion estimation algorithms precisely and faithfully model the motion
in the scene which is typically represented using motion vectors, also known as vector displacements.
The motion estimation techniques can be grouped into pixel based methods (direct) and feature based
methods (indirect). The direct methods derive motion vectors for each pixel in the scene and can be
categorized in Phase Correlation [63,64], Block Matching [65,66], Pel-Recursive [67,68], and Optical
Flow (OF) [69]. On the other hand, the indirect methods use features matching between frames to
compute the motion vectors [70].

3.2. Glottal Gap Segmentation Techniques

The literature reports different techniques for the glottis segmentation task depending on the user
intervention. They can be grouped in semi-automatic and automatic approaches. The semi-automatic
techniques let the user interact as many times as needed in order to solve any inconvenience that might
appear during the segmentation process. On the contrary, the automatic techniques process all the data
without any previous setting or any user intervention. From a clinical point of view, both methods
present advantages and disadvantages but it is worth mentioning that semi-automatic methods are
more time consuming for the clinicians, although their accuracy is expected to be better.

In semi-automatic segmentation, the users select an arbitrary set of images within the video
sequence. These frames are representative cases of the glottal cycle, for instance, maximal glottal
opening [71] or minimal glottal opening [72]. Later, the user selects one or multiple seed-points
belonging to the glottal area [73,74]; the posterior and anterior commissures of vocal folds [71,75–77];
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or a region of interest (ROI) that includes the glottal gap area [11,78]. Lastly, thresholding, region
growing or active contours techniques are used to compute the glottis segmentation. A summary of
the main semi-automatic algorithms contributions is presented in Table 1.

Table 1. Summary of the main semi-automatic studies carried out to segment the glottal gap.
First column corresponds to the authors. Second, year of publication. Third, enhancement
technique. Fourth, Region of Interest (ROI) detection. Fifth, segmentation algorithm. Sixth, laryngeal
image modalities.

Author Year Enhancement ROI Glottal Gap
Delimitation Modalities

Booth and Childers [76] 1979 - -
Subtraction and

adaptive window HSV

Wittenberg et al. [79] 1995 - - Region Growing HSV

Larsson et al. [11] 2000
Contrast

enhancement
Motion Estimation
and manual ROI Edge-Based HSV

Palm et al. [80] 2001 - Manual ROI
Parametric and

Deformable Shape SV

Marendic et al. [78] 2001 - Manual ROI Parametric Models HSV

Yan et al. [81] 2006 - Manual ROI
Thresholding

Region Growing HSV

Lohscheller et al. [73] 2007 - Seed points Region Growing
SV

HSV

Skalski et al. [82] 2008
Nonlinear

transformation Subtraction Geometric Models HSV

Moukalled et al. [77] 2009
Histogram

Thresholding
Manual p(t), a(t)

commissure Parametric Models HSV

Zhang et al. [83] 2010
Lagrange

interpolation Manual ROI
Differentiation

Edge-Based HSV

Elidan and Elidan [84] 2012 - - Parametric Models SV

Yan et al. [85] 2012 - Manual ROI Parametric Models HSV

Mehta et al. [71] 2013 -
Manual p(t), a(t)

commissure Thresholding HSV

Blanco et al. [72] 2013 - Subtraction Thresholding HSV

Chen et al. [75] 2013
Reflection
removal

Manual p(t), a(t)
commissure

Simplified Dynamic
Programming HSV

Pinheiro et al. [74] 2014 - Seed points Region Growing HSV

Andrade-Miranda et al. [86] 2017
Specularity

removal
Total intensity

variation
Background

modeling HSV

With regard to the automatic segmentation, only a few of the existing approaches are designed to
be fully automatic [87–90]. However, in the last few years, the fully automatic glottal segmentation has
become an active research field with growing interest [91–96]. Up to now, there is no standardized
procedure to automatically segment the glottal gap from endoscopic high-speed sequences, in spite
of the extensive literature devoted to solve such a problem. Roughly speaking the authors divide
the problem into three main stages: image enhancement, identification of the ROI, and glottal gap
delimitation (see Figure 6). A summary of the main automatic algorithms contributions is presented
in Table 2.
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Table 2. Summary of the main automatic studies carried out to segment the glottal gap. First column
corresponds to the authors. Second, year of publication. Third, enhancement technique. Fourth, ROI
detection. Fifth, segmentation algorithm. Sixth, laryngeal image modalities.

Author Year Enhancement ROI Glottal Gap
Delimitation Modalities

Osma-Ruiz et al. [88] 2008 - - Watershed SV

Mendez et al. [97] 2009
Anisotropic

FFT-filter Motion Estimation Motion Estimation SV

Alaoui et al. [98] 2009 - Motion Estimation Motion Estimation SV

Cerrolaza et al. [89] 2011 - -
Deformable

Shape Models SV

Aghlmandi and Faez [99] 2012
Nonlinear

transformation -
Morphological

Operators HSV

Karakozoglou et al. [90] 2012 CLAHE
Morphological

ROI Geometric Models HSV

Andrade-Miranda et al. [100] 2013
Anisotropic

Thresholding - Parametric Models SV

Ko and Ciloglu [91] 2014
Reflectance
modeling

Intensity
variation

Gaussin
Mixture Models HSV

Andrade-Miranda et al. [94] 2015
Nonlinear

transformation
Total intensity

variation
Watershed and

Geometric Models HSV

Gloger et al. [95] 2015 - -
Training

clasification
SV

HSV

Schenk et al. [93] 2015
Color contrast

stretching Salient region Geometric Models HSV

Chen et al. [101] Chen2017 - -
Saliency
network HSV

Türkmen et al. [102] 2017
Contrast

enhancement -
Superpixel-Based

algorithm HSV

Naghibolhosseini et al. [103] 2018 - -
Gradient-based

algorithm HSV

Rao MV et al. [96] 2018 - -
Deep Neural

Network SV

Kopczynski et al. [104] 2018 - -
Adaptive thresholding

GVG Spectrum HSV

Hamad et al. [105] 2019 - -
Deep Neural

Network SV

3.2.1. Image Enhancement

Image enhancement refers to the manipulation or transformation of an image IR,G,B(x, t), with the
aim of increasing its usefulness or visual appearance. There are not general criteria behind the
enhancement, and often the techniques used depend on the application [55]. In laryngeal images,
the glottis has darker intensity levels than its surrounding tissues. However, they often have low
contrast and heterogeneous profiles due to the illumination conditions. Modelling the histogram of
HSV with a statistic distribution, such as Rayleigh as in [81], or finding the darkest region, produces
errors due to the non-uniform contrast of the image, lighting conditions and artifacts due to the
recording equipment. For this reason, it is required to simultaneously reduce the effect of the low
contrast and to highlight the object of interest (i.e., the glottis). Thus, the use of image enhancing
techniques is expected to improve the characteristics of the image for a further processing. The literature
reports the use of different enhancing techniques as a prior step to glottis segmentation.
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Figure 6. Graphic Representation of the three common steps followed to segment the glottal gap.

In [97], the authors combine an anisotropic diffusion with an FFT-based band pass filter in order to
obtain a smoother image without losing edge information (second row of Figure 7). In [83] a Lagrange
interpolation is combined with a Gaussian filter in order to smooth the images, reduce noise and
eliminate unwanted details. In [85], the authors use a global thresholding to obtain a binary image to
eliminate the worthless information. However, this strategy can not be generalized for noisy and poor
quality HSV recordings.

Another alternative is to manipulate the histogram of the image. The most common histogram
based processing techniques are the Histogram Equalization (HE), Adaptive Histogram Equalization
(AHE), Contrast Limited Histogram Equalization (CLHE) and the Contrast Limited Adaptive
Histogram Equalization (CLAHE). CLAHE is used in [90] providing more details in the glottal area
while avoiding significant noise introduction (third row of Figure 7). CLAHE highlights the details
over a small neighborhood preventing the over amplification of noise that can arise from adaptive
histogram equalization AHE.

In [91] the intensity of HSV is model as the product of an illumination function by a reflectance
function. The illumination is estimated by temporally averaging the intensity for each pixel location in
the glottis and the reflectance is obtained by dividing the image intensity into the illumination function.
The reflectance distribution has a bimodal structure which is used by the authors to threshold HSV.

One of the most widespread methods is based on point-wise intensity transformations.
The point-wise transformation operates directly over the intensity values of an image, processing each
pixel separately and independently. This transformation can be linear, piecewise linear, or nonlinear.
Reference [99] establishes a methodology for pre-processing VS as a preliminary step for edge detection.
The authors mention the drawbacks that exist in the acquisition due to the flashing effect at the
recording instants, reducing the accuracy of the segmentation algorithm. The same procedure is used
in [82] to highlight glottal area and to reduce influence of flashes in HSV.

Considering the increasing use of deep learning techniques in medical image processing,
an implementation of a Convolutional Neuronal Network (CNN) to enhance the low-light HSV
is proposed in [106]. The training data include dark frames created by adding Perlin noise to the HSV
and data augmentation to increase the number of videos to train.

The quality of the laryngeal videos has a critical impact on an accurate diagnosis, examination,
and identification of lesions or tissue changes [4]. Sequences with low quality are inadequate for
quantitative analysis, reducing the amount of data available for research. Furthermore, current HSV
technology requires special hardware and is particularly susceptible to image degrading factors.
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Figure 7 depicts some examples of the enhancement methods used in the state of art for the glottal
gap segmentation.

(a) Original

(b) Anisotropic and FFT-filter

(c) CLAHE

(d) Nonlinear Transformation

Figure 7. Visual comparison between three different enhancement methods. (a) original images
extracted from three different videos; (b) enhancement method based on anisotropic with FFT-filter [97];
(c) enhancement method based on Contrast Limited Adaptive Histogram Equalization (CLAHE) [90];
(d) enhancement method based on nonlinear transformation [82].

3.2.2. Region of Interest

A ROI is a part of the image that encapsulates important features that can be used for further
analysis. ROI detection has been studied for many years. Most algorithms use either feature-based or
object-based approaches. Feature-based methods find pixels that share similar features to form the ROI.
Meanwhile, object-based methods detect the ROI at a higher level than the pixel-by-pixel approach
of feature-based systems using information such as target shape or structure. Figure 8 depicts some
examples of ROI detection in six different HSV sequences using the algorithm presented originally
in [107] and extended in [94].
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(a) (b) (c)

(d) (e) (f)

Figure 8. Automatic ROI detection of six different HSV computed based on [94,107]. The image in (f)
illustrates a minor problem in the detection of the ROI in the posterior commissure.

The literature devoted to solving the glottal gap segmentation reports attempts to detect a ROI.
However, most of the studies require user intervention [75,77,78,80,81,83,85] and, even more important,
few works take into account the temporal information of the sequence. Some approaches assume that
a previous frame segmentation is available. Then, the pixels values are set to 1 when the difference
between the current frame and the previous one is larger than a fixed threshold [82]. A similar strategy
has been implemented in [72], which apply an algorithm based on differences between consecutive
frames. Other works [11,97,98] use motion estimation techniques to compute the ROI based on the fact
that the region with the most salient motion features corresponds to the vocal folds.

In [90], an edge-based morphological approach is used to process some frames extracted from
HSV, called keyframes. They search the object with the larger and nearly vertically oriented area by
applying a Sobel filter. Lastly, a morphological closing operation is carried out over the gradient map
to connect small related regions and the object with the largest area and vertical orientation is chosen.
In [91,94] a criterion based on the time change of the spatial intensity profile is used to detect the ROI
for a fixed set of frames. The squared area to be tracked is selected adaptively based on the variations of
the image intensity and the inter-frame disparity for an appropriate set of frames. By taking advantage
of the continuous light source used in HSV, the area with the largest variability in time is identified as
the glottis region. However, this approach presents drawbacks in cases as phonation onset, offset and
total or partial paralysis of the vocal folds.

In laryngeal images, the vocal folds, and so detected ROI, usually covers less than 25% of the
entire image size. Therefore, the ROI detection permits to eliminate the non-relevant information
and reduces the number of false detections, so it is an important step to be considered prior to the
segmentation process.

3.2.3. Glottal Gap Delimitation

The image segmentation methods can be classified, roughly speaking, into the following
categories: thresholding, edge-based, region-based, classification-based, graph-based and deformable
models. With respect to the glottal gap delimitation, the most common approaches are based on
thresholding, region growing and deformable models (parametric and geometric).

The studies based on thresholding assume that the glottis has darker intensity levels than the
vocal fold tissues [71,81]. However, the laryngeal images often have low contrast and heterogeneous
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profiles. Hence, selecting a global threshold results in an erroneous delimitation of the glottal gap, since
the intensity distribution is not bimodal. The studies based on region growing require a solid criterion
for the seed selection and relatively well-delimited edges in order to converge towards the glottal gap.
Furthermore, the algorithms segment objects with inhomogeneous regions into multiple sub-regions,
resulting in over-segmentation [73,74]. With respect to the deformable models, they have the advantage
to couple appropriately to non-rigid and amorphous contours by an iterative minimization of an energy
function. However, the initialization process is not a trivial task. Therefore, many authors use manual
procedures to initialize the active contours [77,78,80].

There are other approaches that combine different image-processing techniques [75,86,89,91,94,97],
use feature extraction and training [95], or make use of more recent paradigms such as Deep Neural
Networks [96]. For instance, [89] present an automatic glottis segmentation approach using deformable
shape models and region growing. The approach starts with an initial coarse segmentation by means
of the Region Growing technique. The seed points are determined based on a simple linear relationship
between the average gray level of the image and the optimal seed points obtained from the training
examples. Lastly, the non-glottal regions are eliminated using the reliability score factor from the
trained shape models.

In [86] the textures of the background (laryngeal structures) and foreground (glottal gap) are
smoothing. Then, the glottis is detected based on the temporal intensity variation of laryngeal videos
and segmented using a background subtraction method. In [95], a fully automatic method is used
to segment the glottis using local color and shape information. The approach is divided into three
modules: training, recognition and segmentation. In the training, 60 different glottis shapes are
manually segmented, and a set of descriptors are computed. The recognition module is designed to
recognize, delineate and determine the optimal starting glottis regions. The last module segments the
glottis based on properties of the previous frame. Hence, the glottis is continuously tracked within
vibration cycles of the video by a frame-by-frame-wise segmentation technique.

In [96] a Deep Neural Network is implemented to segment the glottal gap in VS. The glottis
color structure and its neighboring color pattern are employed to create the features vectors. Then,
these vectors are used to train the network and classify whether each pixel belongs to the glottal region
or not.

One of the most extended methods to perform glottal gap segmentation is presented in [73].
The advantage of the method lies in its semi-automatic characteristic since the wrong detection of the
glottal gap can be fixed during the segmentation process. An open-source version of this algorithm
called “GlottalImageExplorer” is available in [108]. With a friendly interface, the tool lets the user enter
three threshold points, which define the threshold progression for the seeded region growing, and the
threshold progression is defined by the linear interpolation between the threshold points.

3.2.4. Assessment of Vocal Folds Segmentation

Assessing the glottal segmentation is not trivial due to the huge amount of frames to evaluate and
the need to take into account the spatial-temporal information of the video sequences. The evaluation
is even more complicated having in mind that there are neither standard metrics to evaluate the distinct
algorithms nor public databases that could be used for benchmark and comparison purposes [109].

A simple way to evaluate the glottal segmentation is by visual inspection. However, it requires a
frame by frame intensive evaluation over a large set of images, including the contribution of several
experts to minimize the inter evaluation bias. The literature proposes subjective ways to evaluate the
segmentation by grading the quality of the glottal gap delineation from 0 to 5 points [73,90,99]. A more
complete evaluation combines segmentation quality, readability of the playbacks (GVG, PVG, GAW)
and shape similarity between VFT and VKG [86].

The literature also refers to different objective evaluations to compare the segmented image
against a Ground-Truth (GT). The degree of similarity between the human and machine-generated
images determines the quality of the segmentation. Among the most extended metrics used to
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evaluate the glottal gap segmentation are: Dice Coefficient (DICE), Mean Square Error (MSE),
Accuracy (ACC), Mean Area Error (MAE), object-level consistency error (OCE), Pratt, F-measure(F-M),
True negative rate (TNR), Pixel Error Rate (PER), Overlapping ratio (OR), Rand Index (RI), Mutual
Information (MI), Cohen Kappa coefficient (KAP), Intersection Over Union (IOU), Hausdorff distance
(HAD) and Adjusted Rand Index (ARI) [74,86,88,90,93–96,100]. The main drawback of objective
evaluation is to manually generating a ground-truth since it is a subjective and time-consuming
task. Table 3 summarize the main studies carried out to objectively and subjectively assess the vocal
fold segmentation.

Table 3. Summary of the main methods to objectively and subjectively assess the vocal fold
segmentation. First column corresponds to the authors. Second, metrics and baseline methods used for
the comparison. Third, subjective assessment methods.

Author
Objective Assessment Subjective Assessment

Metrics Baseline

Lohscheller et al. [73] Tracking
points GT 5 point-scale

Osma-Ruiz et al. [88] Pratt GT -

Cerrolaza et al. [89] PER GT -

Karakozoglou et al. [90] PER GT 5 point-scale

Andrade-Miranda et al. [100] Pratt GT -

Ko and Ciloglu [91] MSE GT, [81] -

Pinheiro et al. [74] GAW difference GT -

Andrade-Miranda et al. [94] Pratt
OCE GT 5 point-scale

Glover et al. [95] DICE
MAE GT -

Schenk et al. [92] DICE [73] -

Turkmen et al. [102] F-M, TNR, DICE
MI, RI, OR

Active contours
Region Growing -

Andrade-Miranda et al. [86] ARI, DICE,
KAP, Pratt

GT, [73]
[94]

5 point-scale
playback-based

Rao MV et al. [96] DICE GT -

Hamad et al. [105] IOU, RI, ACC
DICE, HAD GT -

3.3. Facilitative Playbacks Representation

FP improve the quantification accuracy, facilitate the visual perception, and increase the
reliability of visual rating while preserving the most relevant characteristics of glottal vibratory
patterns [4]. Depending on the way they assess the glottal dynamics they can be grouped in local- or
global-dynamics FP. Figure 9 illustrates eight FP from the same high-speed sequence.
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Figure 9. Eight Facilitative Playbacks (FP) proposed in the literature. Vocal Folds Trajectories
(VFT), High-Speed Digital Kymograghy (DKG), Glottal Area Waveform (GAW), Glottal Optical Flow
Waveform (GOFW), High-Speed Digital Kymograghy (DKG), Glottovibrogram (GVG), Mucosal Wave
Kymography (MKG), Optical Flow Kymogram (OFKG), Phonovibrogram (PVG), Glottaltopogram
(GTG), illustrated on the same highspeed sequence.

3.3.1. Local-Dynamics Facilitative Playbacks

Local-dynamics FP analyzes the vocal folds behavior along one single line that is computed on a
line perpendicular to the main glottal axis. In this category, the most used by clinicians and researchers
are DKG, VKG and Vocal Folds Trajectories (VFT). They have been successfully applied to demonstrate
the change of glottal dynamics in case of damaged tissues, such as lesions, scars, discoloration of the
vocal folds and voice disorders [4,7,47,110–113].

VKG and DKG provide a clear visualization of the glottal cycle opening and closing phases, of the
MW traveling across the vocal folds upper surface, and of the displacement of the upper and lower
margins of the vocal folds [110,114,115]. Given a video sequence I(x, t), let us denote a horizontal line
at time tk and position yj as KG(tk), where KG(tk) is the row vector [I(xnj, tk) I(xn−1j, tk) I(xn−2j, tk)

· · · I(x1j, tk)]. Then, the kymographic matrix IDKG(x, y) (or IR,G,B
DKG (x, y) for color) is constructed with a

set of N vectors {KG(tk) ∈ Rn, k = 1, · · · , N}, where each KG(tk) is a column vector of IDKG(x, y)
(see Equation (1)).

IDKG(x, y) =

KG(t1) KG(t2) KG(tN)


︷ ︸︸ ︷
I(xnj, t1)

︷ ︸︸ ︷
I(xnj, t2) · · ·

︷ ︸︸ ︷
I(xnj, tN)

I(xn−1j, t1) I(xn−1j, t2) · · · I(xn−1j, tN)
...

...
. . .

...
I(x1j, t1) I(x1j, t2) · · · I(x1j, tN)

(1)

In order to interpret the kymographic vibratory pattern, Figure 10 depicts the schematic view of
DKG compared with the traditional displays of the vocal folds oscillations. The first row shows eight
phases of a glottal cycle in the frontal section, starting with vocal folds opening and ending with a
complete vocal folds closure. The second row presents the same eight phases as viewed from above
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of the vocal folds using HSV. The third shows the DKG playback at a position yj. The kymographic
image depicts two cycles of the vocal folds oscillation. The important features observed from the eight
phases are: (1) lower margin of the vocal folds begins opening; (2) upper margin of the vocal folds
starts to open; (3) lower and upper margins of the vocal folds are open; (4) lower margin of vocal folds
is maximally open, upper margin of the vocal folds is still opens; (5) lower margin of the vocal folds
closes and is visible; upper margin of glottis is maximally open; (6) lower and upper margins of the
vocal folds close, MW propagates on the surface; (7) lower margin of the vocal folds is closed; and (8)
upper margin of the vocal folds is closed. Besides the vocal folds, it is possible to observe the motion
or none of the ventricular folds [116].

Figure 10. Schematical drawing of the successive phases of a glottal cycle in three views. First row:
frontal section of the vocal folds. Second row: laryngoscopy (top view of the vocal folds). Third row:
DKG at the line yj. Adapted from [116].

VFT (δl,r
seg(pc, t)) synthesizes the HSV in a single image that describes the deflections of the vocal

folds edges perpendicular to the glottal main axis [73]. Hence, the vocal folds edges (Cl,r(t)) have to be
computed in advance. Later on, a trajectory line, L(tk)), at time tk that intersects perpendicularly with
the glottal main axis (G(tk)) in a predefined point gpc(tk) is defined. The current position of gpc(tk) is
updated at every frame to compensate for the relative movement of the endoscope, of the larynx, or of
the vocal folds length changes via Equation (2).

gpc(tk) = p(tk) + (p(tk)− a(tk))

(
pc(%)

100%

)
∈ G(tk) (2)

Later, the intersection between the vocal folds edges Cl,r(tk) and the trajectory line L(tk) is
computed by Equation (3):

cl,r
pc(tk) : cl,r

pc(tk) ∈ L(tk) ∧ cl,r
pc(tk) ∈ Cl,r(tk) (3)
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The vocal folds trajectory is obtained by Equation (4) as:

δl,r
seg(pc, tk) = ‖gpc(tk)− cl,r

pc(tk)‖2 ; k = {1, 2, . . . , N} (4)

where δl,r
seg(pc, tk) are the deflections of the vocal folds edges at the point cl,r

pc(tk), and pc indicates the
position of gpc(tk) in the glottal main axis. The VFT is illustrated in Figure 11 and expressed in vector
notation at Equation (5).

δl,r
seg(pc, t) = [δl,r

seg(pc, t1) δl,r
seg(pc, t2) · · · δl,r

seg(pc, tk) · · · δl,r
seg(pc, tN)] (5)

.	.		
	

.	.		
	

.	.		
	

.	.		
	

.	.		
	

.	.		
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Figure 11. Illustration of the VFT playback. First row: the image sequence of one glottal cycle. Second
row: vocal folds trajectories, DKG and DKG+VFT playbacks of five glottal cycles.

There are other local FP that have been less explored in literature such as Mucosal Wave
Kymography (MKG), Optical Flow Based Waveform (OFW) and Optical Flow Kymogram (OFKG).
These FP compute motion vectors to assess the fine detail of MW including the propagation of the
mucosal edges during the opening and closing glottal phases. They are computed based on motion
estimation techniques where the motion field W(x, tk) at time tk is obtained using the intensity
variation of consecutive frames (tk and tk + 1). The matrix representation of a total motion field at time
tk is depicted in Equation (6).

W(x, tk) =


~w(x11, tk) ~w(x12, tk) · · · ~w(x1n, tk)

~w(x21, tk) ~w(x22, tk) · · · ~w(x2n, tk)
...

...
. . .

...
~w(xm1, tk) ~w(xm2, tk) · · · ~w(xmn, tk)

 (6)

where ~w(xij, tk) = (u(xij, tk), v(xij, tk)) is the vector displacement of xij at time tk. The vector
displacement ~w(xij, tk) has two components: one in the x-axis direction (u(xij, tk)) and another in the
y-axis direction (v(xij, tk)).

For instance, in OFKG, a row vector OFKG(tk) = [u(xnj, tk) u(xn−1j, tk) u(xn−2j, tk) · · · u(x1j, tk)]

is selected from a horizontal line at time tk and position yj. Then, the OFKG matrix IR,G,B
OFKG(x, y) is
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constructed with a set of N vectors {OFKG(tk) ∈ Rn, k = 1, · · · , N}, where each OFKG(tk) is a
column vector of IR,G,B

OFKG(x, y):

IR,G,B
OFKG(x, y) =

OFKG(t1) OFKG(t2) OFKG(tN)


︷ ︸︸ ︷
u(xnj, t1)

︷ ︸︸ ︷
u(xnj, t2) · · ·

︷ ︸︸ ︷
u(xnj, tN)

u(xn−1j, t1) u(xn−1j, t2) · · · u(xn−1j, tN)
...

...
. . .

...
u(x1j, t1) u(x1j, t2) · · · u(x1j, tN)

(7)

The u(xij, tk) vector is encoded using red and blue tonalities. For rightwise movements,
the direction angle of displacement ranges from [−π/2, π/2] and is coded with red intensities. On the
other hand, the direction angle for leftwise displacements ranges from [π/2, 3π/2] and is coded with
blue tonalities.

3.3.2. Global-Dynamics Facilitative Playbacks

The global-dynamics FP analyse the vocal folds behaviour along the whole glottal length. Most of
them are focused on vocal folds edge motion by means of glottal segmentation algorithms. The most
widespread are: Glottal Area Waveform (GAW), Phonovibrogram (PVG) and Glottovibrogram (GVG).

GAW uses the glottal segmentation to compute a glottal gap area function along time from which
several parameters can be estimated [8,39]. Let us consider Iseg(x, t) as a segmented HSV, having
the same size of the original video I(x, t). The segmented HSV is a set of binary images, where 1 is
assigned to pixels belonging to the glottal gap area (foreground) and 0 is assigned to pixels belonging
to the other laryngeal structures (background). Equation (8) computes I(x, tk) in time tk:

Iseg(x, tk) =

{
1 pixels ∈ glottal gap

0 background
(8)

Therefore, the glottal gap area at tk is computed via Equation (9) as follows:

Ao(tk) =
n

∑
i=1

m

∑
j=1

Iseg(xij, tk) ; k = {1, 2, · · · , N} (9)

then GAW can be expressed in vector notation by Equation (10), where each of its elements represents
the area of the glottal gap at a particular instant of time.

GAW(t) = [Ao(t1) Ao(t2) · · · Ao(tk) · · · Ao(tN)] (10)

The GAW playback measures the glottal area function throughout the glottal cycle, being possible
to compute some features as: opening and close phase of the vocal folds oscillations, maximum and
minimum glottal areas, Open Quotient (OQ), closed quotient and speed quotient, among others.
Figure 12 illustrates a GAW normalized within the interval [0,1]. The peaks represent the open-states
of the vibratory cycles, meanwhile the valleys represent the closed-states of the vibratory cycles.
The maximum and minimum amplitudes of the whole vibratory cycles can be computed by finding
the maximum and minimum glottal area respectively. The period of the GAW playback is equivalent
to the duration of the glottal cycles, and also to the sum of the opening and closing phase duration.
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Figure 12. Illustration of the GAW playback. First row: six images of a particular glottal cycle length.
Second row: GAW playback normalized within the interval [0,1] where 0 represents the minimum area
and 1 the maximum area.

On the other hand, PVG and GVG FP are 2-D representations of the vocal folds vibratory pattern
as a function of time, for which the movements of the vocal folds edges along the anterior-posterior
axis are summarized into a time-varying line of the image. PVG, Ipvg(x, y), is a further development of
spatiotemporal plots of vocal folds vibrations presented in [117] and of the glottal shape representation
proposed by [118]. PVG is a 2-D diagram introduced in [119] where a set of segmented contours of the
moving vocal folds are unambiguously transformed into a set of geometric objects that represents the
entire HSV sequence. Let us consider that the video sequence Iseg(x, t) was computed in advance by
any segmentation algorithm. Then, the set of frames with the maximal glottal gap area are identified
and named as keyframes Ikey(x, t) (Equation (11)).

Ikey(x, t) = arg max
k=1...N

I(x, tk) (11)

For each keyframe, Ikey(x, t), a linear regression line is computed to identify the main orientation of
the glottal gap area. The regression line intersects with Cl,r(tk) at the points p(tk) and a(tk). Such points
are used to split the vocal folds edges into the left Cl(tk) and right folds Cr(tk).

Since the vocal folds contours were computed independently, it is necessary to derive a continuous
representation of the vocal folds vibrations that links the posterior and anterior point of all images
within the HSV sequence. For doing this, it is assumed that the positions of the posterior and
anterior glottal points do not change dramatically for all the intermediate images between the
occurrences of two consecutive keyframes within a single oscillatory cycle. Therefore, such points are
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computed approximately by linear interpolation via Equation (12) where tO and tO+1 indicate two
consecutive open-states.

p(tk) = p(tO) +
p(tO+1)−p(tO)

tO+1−tO
· (tk − tO) ; tO < tk < tO+1

a(tk) = a(tO) +
a(tO+1)−a(tO)

tO+1−tO
· (tk − tO) ; tO < tk < tO+1

(12)

By connecting the vocal folds edges Cl,r(tk) to the approximated position of p(tk) and a(tk),
a continuous representation of the vocal folds edges is obtained also in the parts that are undetected
from the segmentation methods. Later, the glottal main axis G(tk) and the vocal folds edges Cl,r(tk)

are equidistantly sampled with pc ∈ [0, M], where M corresponds to total percentage length of
G(tk) (100%). Then for each image the deflections of the vocal folds edges δl,r

seg(pc, tk) are obtained
∀pc ∈ [0, M] and ∀t ∈ [1, N]. δl,r

seg(pc, tk) is positive, if the left/right fold contour is correctly located on
the ipsilateral side of the glottal main axis. Contrariwise, if the vocal fold edges cross laterally, the glottal
main axis, δl,r

seg(pc, tk) becomes negative. Furthermore, the vocal folds are splitted longitudinally and
the left vocal fold is turned 180◦ around the posterior commissure p(tk). Lastly, all the computed
δl,r

seg(pc, tk) are stored in a matrix IPVG(x, y) ∈ R(2M+1)×N (Equation (13)).

IPVG(x, y) =



δl
seg(M, t1) δl

seg(M, t2) · · · δl
seg(M, tN)

δl
seg(M− 1, t1) δl

seg(M− 1, t2) · · · δl
seg(M− 1, tN)

...
...

. . .
...

δl
seg(1, t1) δl

seg(1, t2) · · · δl
seg(1, tN)

δl,r
seg(0, t1) δl,r

seg(0, t2) · · · δl,r
seg(0, tN)

δr
seg(1, t1) δr

seg(1, t2) · · · δr
seg(1, tN)

...
...

. . .
...

δr
seg(M, t1) δr

seg(M, t2) · · · δr
seg(M, tN)


(13)

In order to visualize IPVG(x, y), each element is represented by color tonalities: red represents
positive deflections and blue represents negative deflections. PVG allows to distinguish left- and
right-fold movements, and is thus more sensitive to the accuracy of glottal main-axis [90]. The complete
procedure to compute PVG is illustrated in Figure 13 where five glottal cycles are depicted.

The GVG playback was proposed in order to solve the difficulties to interpret the PVG and
its strong dependence on the detection of the glottal main axis [90,120]. The GVG synthesize the
HSV in one single image and its computation uses a similar approach than the PVG formulation.
However, unlike it, GVG computes the distance between the vocal folds edges themselves. Firstly,
the vocal folds edges Cl,r(t) are equidistantly sampled with pc ∈ [0, M]. Then, the deflections among
the vocal folds edges are computed by Equation (14), where δGVG(pc, tk) represents the distance
between the left cl

pc(tk) and right cr
pc(tk) fold at position pc and time tk:

δGVG(pc, tk) = ‖cl
pc(tk)− cr

pc(tk)‖2 ; ∀k and ∀pc (14)

Lastly, all the distances are stored in a matrix IGVG (Equation (15)) and normalized within
the interval [0, 1], with 0 corresponding to zero distance and 1 corresponding to maximal distance.
For visualization purposes the matrix is coded with a grayscale map.

IGVG(x, y) =


δGVG(0, t1) δGVG(0, t2) · · · δGVG(0, tN)

δGVG(1, t1) δGVG(1, t2) · · · δGVG(1, tN)
...

...
. . .

...
δGVG(M, t1) δGVG(M, t2) · · · δGVG(M, tN)

 (15)
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Figure 13. Schematic representation of the PVG playback. (1) Segmentation; (2) Resampling of the
extracted vocal folds edges; (3) Computation of vocal folds deflections δl,r

seg(pc, tk); (4) Splitting of
the glottal axis; (5) Virtual turning of the left fold; (6) Color coding of the vocal fold deflections;
(7) IPVG(x, y) representing a HSV with five glottal cycles. Adapted from [48].

The GVG depicts a well-shaped form of the vocal folds vibration even when detection errors
occur during the segmentation or glottal main axis detection, providing a more intuitive representation
of vocal folds dynamics (see Figure 14). However, GVG is not suitable to analyze symmetry between
the vocal folds.

There exist other global-dynamics FP that depend on vocal folds contour segmentation.
The authors in [118] concatenate the vocal folds deflections δl,r

seg(pc, tk) in order to obtain a 3D
representation of the entire vocal folds dynamics. The representation is simple to implement but
difficult to interpret. In [80] a playback named Vibration Profiles (VP) is introduced, where not only
the edges but also the whole vocal folds were segmented. They computed the deflections between the
medial axis in each vocal fold and the edges of each fold. The representation obtained keep relation
with PVG playback, but attempts to preserve information of MW propagation. Empirical Orthogonal
Eigenfunctions Analysis (EOF) is another playback that is based on the glottal edges computation.
The authors extract independent spatio-temporal structures from the vocal-fold displacements
analysis using empirical orthogonal functions. The technique appears to be an appropriate tool
to extract principal glottal vibration modes from high-speed recordings. In [121], a Singular Value
Descomposition (SVD) analysis of vocal folds edges was implemented to capture the spatial and
temporal behavior of the vibrations over time and space respectively. The first spatial eigenfold
captures the average shape of the vocal folds, the second spatial eigenfold captures the closing pattern
of the folds, and the third spatial eigenfold captures the motion in the longitudinal direction of the
folds. On the other hand, the first temporal eigenfold captures the amplitude differences between the
left and the right folds, and the second temporal eigenfold captures the sample difference in phase
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between the left and right folds. The separation of spatial and temporal eigenfolds offers a compact
visualization but does not allow localization of vibratory features in space and time.

Figure 14. Schematic representation of the GVG playback. (1) Segmentation; (2) Resampling of the
extracted vocal folds edges; (3) Computation of vocal fold deflections δGVG(pc, tk); (4) IGVG(x, y)
representing an HSV with five glottal cycles.

There are also representations that use information from other FP to compute new ones.
For instance, the authors in [122] computed the Hilbert transformation of GAW to create an analytic
phase plot that depicts the effects of jitter and shimmer as well as harmonic distortion in terms of
perturbation and periodicity. Nevertheless, analyzing GAW signals does not differentiate between
left and right vocal fold vibration and consequently, asymmetries remain unconsidered. Alternatively,
reference [123] use phase space reconstruction and correlation dimension over the glottal area time
series (GAW) to investigate the dynamic characteristics of the vocal folds. In [124], PVG and GAW were
combined to construct a 3D representation named Phonovibrographic Wavegram (PVG-wavegram).
This playback let visualize the intra- and inter-cycle characteristics of vocal fold vibrations within
a single three-dimensional scalar volume field for long phonation sequences. One of the latest FP
proposed in the literature is Glottocorrelogram (GCG). This representation allows to visualize the
correlation coefficients obtained from the glottovibrogram presenting phase and frequency variations
among the vocal folds edges.

Only a few FP do not depend on a segmentation approach. Reference [125] proposed a method
for extracting spatial features based on pixel-wise Fourier analysis of a time-varying brightness
curve for each pixel across images. They named this FP Laryngotopography (LGT). LGT let to
display spatial information related to natural frequencies of a portion of a larynx, amplitude of
vibration, and propagation speed of MW. In [126] Principal Component Analysis (PCA) was applied
to the pixel intensity of the high-speed sequence, and the first two PCA coefficients were visualized.
The Glottaltopogram (GTG) method reveals the overall spatial synchronization pattern of the vocal
folds vibrations for the entire laryngeal area, rather than focusing on a specific location or frequency.
Despite full spatial resolution is maintained, the time information is not preserved.

Since the purpose of HSV analysis is to characterize the motion of the vocal folds by identifying
their movements from one frame to the followings, the authors in [127] used Optical Flow (OF)
computation to track the vocal folds solely based on its motion, with no need of additional segmentation
techniques. OF aims at understanding and interpreting the dynamical behavior of moving objects
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a low-level by the estimation of a displacement vector for each pixel in the image, creating a dense
motion field W(x, tk) (Equation (6)) [69]. The direction of the motion field is expected to be inwards
in the closing phase and outwards during the glottal opening. The authors implemented two global
FP from W(x, tk) named as Optical Flow Glottovibrogram (OFGVG) and Optical Flow Kymogram
(OFKG). OFGVG is derived from GVG and represents the velocity of glottal movement per cycle. It is
obtained by averaging each row of the u(x) component of the flow, and represents it as a column vector.
The OFGVG complements the spatio-temporal information provided by the common techniques (GVG,
PVG) by adding velocity information for each displacement of the vocal folds. On the other hand,
GOFW is a 1D representation that is based on GAW, but here the total magnitude of the velocity is
computed over a ROI for each instant of time. GOFW represents the change of velocity along time at
the same instant in which it is quantified the total velocity variation. Both FP have the same limitation
existing in GVG and GAW, since they are not suitable to analyze symmetry between the vocal folds.

A summary of the main studies carried out to synthesize the vocal folds vibratory patterns is
presented in Table 4.

Table 4. Summary of the main studies that synthesise the vocal folds dynamics in FP.

Author Year Playback Dynamics

Timcke et al. 1958 Glottal Area Waveform (GAW) Global

Westphal and Childers 1983 Glottal shape Data Representation (GSD) Global

Švec and Schutte 1996 Videokymography (VKG) Local

Palm et al. 2001 Vibration Profiles (VP) Global

Neubauer et al. 2001 Empirical Orthogonal Eigenfunctions Analysis (EOF) Global

Li et al. 2002 Eigenfolds Analysis (EFA) Global

Yan et al. 2005 Hilbert Transform Analysis (HTA) Global

Zhang et al. 2007 Two-Dimension Spatiotemporal Series Analysis (2D-STSA) Global

Lohscheller et al. 2007 Vocal Folds Trajectories (VFT) Local

Deliyski et al. 2008 Mucosal Wave Kymography (MKG) Local

Lohscheller and Eysholdt 2008 Phonovibrogram (PVG) Global

Sakakibara et al. 2010 Laryngotopography (LGT) Global

Karakozoglou et al. 2012 Glottovibrogram (GVG) Global

Unger et al. 2013 Phonovibrographic Wavegram (PVG-wavegram) Global

Ikuma et al. 2013 Waveform Decomposition Analysis (WDA) Global

Chen et al. 2014 Glottaltopogram (GTG) Global

Herbst et al. 2016 Phasegram Analysis (PGAW) Global

Andrade-Miranda et al. 2017 Glottal Optical Flow Waveform (GOFW) Global

Andrade-Miranda et al. 2017 Optical Flow Kymogram (OFKG) Local

Andrade-Miranda et al. 2017 Optical Flow Glottovibrogram (OFGVG) Global

Kopczynski et al. 2018 Glottocorrelogram (GCG) Global

Ammar 2018 Optical Flow Based Waveform (OFW) Local

4. Challenges in Glottal Gap Segmentation and Facilitative Playbacks

Automatic methods for glottal gap segmentation and for the representation of FP are still being
investigated. From a pure image processing perspective, the task of tracking vocal folds edges during
an entire video sequence appears to be a standard tracking task. Thus, naively, it may seem that once
the glottal area in a frame is delineated, it can easily be identified in successive frames, or that the glottal
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gap can be obtained intuitively by subtracting successive frames. However, glottal-gap segmentation
is not easy due to many different factors: limited spatial resolution, contrast inadequacies during
acquisition (see Figure 15a), camera rotation (see Figure 15b), side movement of the laryngoscope,
movements of the patient, brightness changes (see Figure 15c), depth differences between videos
and demanding cases as hourglass closure, irregular closure, vocal hemorrhage (see Figure 15d),
nodules (see Figure 15e), polyps, cysts, scars, mucus, specular reflection, and vocal folds occlusion (see
Figure 15f) among others. In addition, there are no official guidelines for laryngeal imaging footage
analysis; the literature is limited by the relatively low or nonexistent correlations among measures of
irregularity in vocal folds vibration and acoustic parameters; and the lack of normative values of the
parameters and intervals, which are needed to determine the severity of pathological voice production.

(a) (b) (c)

(d) (e) (f)

Figure 15. Illustration of potential difficulties while processing laryngeal images during phonation.
(a) Contrast. (b) Orientation. (c) Overexposure. (d) Hemorrhage. (e) Nodule. (f) Oclussion.

Since the pattern of vocal folds vibration is difficult to evaluate by simply observing the successive
video frames, the researchers have introduced the concept of FP to easily and better visualize the
features of vocal folds dynamics. The purpose of FP is to synthesize the time-varying data in a few
static images, or in an unidimensional temporal which permits to visualize hidden features.

Despite the great advances that have been reached condensing the data coming from laryngeal
imaging, many of the FP in the literature present some drawbacks that restrict their applicability.
For instance, the motion analysis is focused only on those points belonging to the glottal contours.
Additionally, some FP rely on the computation of the glottal main axis, which strongly depends
on the geometry of the detected glottal gap and can be difficult to identify accurately in the
presence of a posterior glottal chink [73,80,90,119,124]. Other FP do not preserve spatial information
about vocal folds vibration, limiting their applicability for interpreting vibratory features such
as asymmetry [3,123,128,129]. Furthermore, there are FP that restrict the information about the
dynamics of the vocal folds along one single line [4,114,127,130]. Lastly, there are FP less intuitive to
interpret [125,126], reason that probably explains why they have not been widely used.

The current challenge is to provide new methods for data visualization to overcome the drawbacks
of existing ones, providing simultaneously features that would integrate time dynamics, such as:
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velocity, acceleration, instants of maximum and minimum velocity, vocal folds displacements during
phonation and motion analysis of MW propagation. These methods should include not only those
points belonging to the glottal edges but also those regions that originated such movements. All these
issues make the glottal segmentation and FP challenging tasks. A successful image processing approach
will have to overcome these issues in a robust way in order to maintain a high level in the quality and
accuracy in clinical diagnosis.

5. Voice Research and Clinical Applications

In voice research, several works make use of glottal segmentation and FP to investigate the
correlation between vocal folds vibratory patterns, speaker voice quality, voice onset and offset.
For instance, the authors in [3,131,132] make use of glottal segmentation to obtain the afforementioned
GAW, which identifies new quantitative measures to evaluate the regularity of vocal folds vibration
during phonation. In [133], GAW has been used to compute the Voice Onset Time (VOT) which is a
clinical indicator for correct laryngeal functionality. The authors in [134] computed 20 parameters from
the acoustic signal and GAW. The aim was to identify mathematical dependencies between parameters
and suggest which parameters may best describe the properties of the GAW and corresponding
acoustical signal. Subsequent works [7,39,48,71,135,136] pointed out the advantages of studying the
vocal folds vibration function to detect asymmetries, transients, breaks, opening phase events, closing
phase events and irregularities.

The literature also reports a combined use of laryngeal image processing of the vocal folds motion
with biomechanical models (so-called Lumped Mass Models (LMMs)) to investigate the parameter
effects such as applied subglottal air pressure, vibrating masses, tissue stiffness and elongation
characteristics with respect to the dynamic vocal folds behavior. In [6,137,138], the Two Spring-Coupled
Masses Models (2MMs) proposed in [139] was combined with glottal segmentation to describe the
vocal folds oscillations as a function of time. The authors found physiological parameters such as vocal
folds tensions and vocal folds masses. In [140], an automatic optimization procedure was developed
to fit a multi-mass model [141] to the observed vocal folds oscillations obtained via segmentation,
with the aim of inferring an approximation of the stiffness and mass distribution along the entire vocal
folds. In [142], a numerical 2MMs was adapted to the VFT playback by varying model masses, stiffness
and subglottal pressure. The obtained model was used to quantify gender and age-related differences.
Most recent work makes use of a recurrent neural network to train a 2MMs using VFT to estimate
laryngeal pressure [143]. The authors claim that the methodology proposed is transferable to estimate
other laryngeal parameters that will aid in diagnosis and treatment selection in voice disorders.

The image-processing of vocal folds motion has been used to highlight the importance of
visualizing MW propagation for an accurate diagnosis and optimal treatment of voice disorders.
In [144,145] the MW was detected and quantified by combining glottal segmentation with physiological
knowledge of mucosal lateral movements. An important conclusion was the finding that 2000 fps is
insufficient to assess features of MW when the frequency of vocal fold vibration is high. The authors
in [146] discussed the benefits, the disadvantages, and the clinical applicability of different MW
measurement techniques. They found the necessity of additional research to broaden the use of
laryngeal image-processing to accurately and objectively diagnose voice disorders. The authors in [147]
analyzed the OQ from glottal-gap segmentation and Electroglottography (EGG). They observe that
the measure of the OQ from three parts of the glottis helps to diagnose and localize glottal vocal-fold
lesions. They also found that OQ varies depending on the type of organic dysphonia. In [148,149]
MW analysis is used for the diagnosis of different vocal fold lesions and for evaluating the success
of treatment procedures, hydration effects,or mucosal healing after phonosurgery. Besides human
vocal folds, mucosal waves were documented on the vocal folds of many mammals and also in
birds [150–153]. They observed that the fundamental frequencies of many mammals are similar to
those seen in humans, and consists of flow-induced self-sustaining oscillations of laryngeal tissues.
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Further, the appearance of MW was shown to be a crucial component of the myoelastic-aerodynamic
theory of phonation, explaining the mechanisms of the self-sustained vocal fold oscillations.

Different singing styles have been analyzed using laryngeal image processing. For instance:
the mechanism of the bass type of Mongolian throat singing (called Kargyraa) was studied using
FP [154]. They found that both true vocal folds and false vocal folds vibrate during singing; they
also observed that the vibration of the false folds adds subharmonics to the acoustic content. In [155]
the characteristics of rock singing, also known as distorted singing, were investigated. The authors
found some modulations of the vocal folds vibrations by means of periodic or aperiodic motion in the
supraglottic mucosa which presumably adds special expressivity to loud and high tones in rock singing.
The authors in [156] proposed FP to visualize glottal dynamics during singing sequences consisting
in vowels sung at different pitches, different loudness, and exploring the four laryngeal mechanisms.
They found additional information on the temporal dynamics of glottal vibratory movements during
glottal closing and opening phases. The Laodan and Qingyi role in Peking Opera was studied in [157].
They used image-processing to evaluate glottal changes, relative length of the glottis fissure and
relative maximum mucosal amplitude. To understand the vibration of the vocal folds of human voice
production at very the high soprano range, several acoustic and glottal parameters are extracted from
laryngeal videos [158,159]. The studies reveal three regions of pitch jumps or instabilities in the high
soprano range, above the M1–M2 transition or primo passaggio. They also found that the whole length
of the membranous part of the vocal folds took part in the oscillatory process and even at these highest
pitches a total closure of the vocal folds was observed.

There are also studies devoted to describe properties of laryngeal oscillation patterns with regard
to vocal registers and their transitions [41,42,160,161]. In [160] the vocal fold oscillatory patterns during
transitions from modal to falsetto register and from modal register to stage voice above the passaggio
in professional tenor opera soloists were analyzed using PVG and DKG. They found that the transitions
are associated with large modifications of the supraglottic cavities and with retraction of the epiglottis.
Therefore, they suggest the use of flexible transnasal high-speed laryngoscopy in order to improve the
visibility of vocal folds. In [42] variations of vocal fold vibration patterns were found in the first and
the second passaggio. They observed four distinct patterns emerged: smooth transitions with either
increasing or decreasing durations of glottal closure, abrupt register transitions, and intermediate loss
of vocal fold contact. In addition, laryngeal configuration and vocal fold behavior during different
voice quality have been explored in different studies [162,163]. The results suggests that the voice
qualities were produced by independently manipulating the adduction of the arytenoid cartilages and
the thickening of the vocal folds.

The glottal segmentation and FP have been used to diagnose functional voice
disorders [44,47,164–166]. For instance, the authors in [46] presented a computer-aided method for
automatically and objectively classifying individuals with normal and abnormal vocal folds vibration
patterns. First, a set of image processing techniques were employed to visualize vocal folds dynamics.
Later, numerical features were derived, capturing the dynamic behavior and the symmetry of the
vocal folds oscillation. Lastly, a support vector machine was applied to classify between normal
and pathological vibrations. The results indicate that an objective analysis of abnormal vocal folds
vibration can be achieved with considerably high accuracy. The laryngeal imaging techniques
have been used to detect early-stage vocal folds cancer. The authors in [50] report a procedure to
discriminate between malignant and precancerous lesions by measuring the characteristics of vocal
folds dynamics by means of a computerized analysis of laryngeal videos. They found that vocal folds
dynamics are significantly affected by the presence of precancerous lesions.

Recently, laryngeal image processing of vocal folds motion have been used to visualize the 3D
superior vocal fold vibrations from laryngeal recordings [23,24,167–169]. The authors proved that
healthy phonation does not depend on symmetric oscillation patterns since great asymmetric vertical
dynamics were observed. They concluded that a good evaluation of vocal folds vibrations has to
include a 3D visualization of the vibratory function.
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6. Discussions and Future Directions

The study of vocal folds vibratory behavior reveals pathophysiological evidence and explains
voice dysfunction. Since the last decade, a great number of papers have been published in the
field of laryngeal imaging, focusing on glottal gap segmentation and FP representation in different
image modalities.

There are some open challenges which should be covered in future research, such as, the lack
of unified benchmarks and guidelines to evaluate glottal segmentation and FP. The studies in the
literature have been performed using their own private datasets. It is not straightforward to evaluate
and numerically compare different studies without shared public databases used for benchmark and
comparison purposes. The studies to date are solely based on their reported results since they use
different datasets, various evaluation methods, and multiple performance metrics. For numerical
comparison of the studies, it is necessary to build benchmark datasets and to establish a set of
guidelines. Additionally, the datasets should be clinically validated. They should comprise samples
coming from a large number of patients, and annotated by different specialists to remove subjective
variations in the annotations. Such an effort would make possible the numerical comparison of the
results obtained by different studies and the identification of distinguishing features. In view of these
limitations, and in other to partially circumvent these problems, [86] proposes a set of guidelines to
measure the accuracy and efficiency of the segmentation algorithms. The guidelines are divided in
three groups according to their nature: analytical, subjective, and objective.

Another problem is related to the accurate and precise detection of the glottal gap along the video
sequence. Most of the methods in the literature only take local intensity information without any
prior knowledge about the object to be segmented and the temporal information of the laryngeal
sequence. Furthermore, the task of identifying the glottal gap is carried out by semi-automatic methods.
In this context, and with the exponential growth of computer power and the constant improvement
of image processing algorithms, automatic segmentation has achieved a great progress. However,
many of the techniques found in the literature still have weaknesses that make them impractical in
a clinical environment, in which automatization and reliability are fundamental. Up to now, there
is no standardized procedure to automatically segment glottal gap from HSV and VS, in spite of the
extensive literature devoted to solving such as problem. The common approach to solve the glottal
segmentation, roughly speaking, divides the problem into three main stages: image enhancement,
identification of ROI, and glottal gap delimitation.

The laryngeal imaging techniques in combination with image processing are the most promising
approach to investigate vocal folds vibration and laryngeal dynamics. Therefore, researchers have
introduced objective parameters that can be used by clinicians to accurately identify the presence
of organic voice disorders [44], classify functional voice disorders [46], vibratory patterns [48],
discriminate early stage of malignant and precancerous vocal folds lesions [50], among others [7,39].
However, despite the progress achieved to describe the vocal folds dynamics, its use in the clinical
routine is limited due to several restrictive factors: there are no official guidelines for footage analysis;
the literature is limited by the relatively low or nonexistent correlations among measures of irregularity
in vocal folds vibration and acoustic parameters; and there is a lack of normative values of parameters
and intervals, which are needed to determine the severity of pathological voice production.

In order to improve the laryngeal diagnosis, the concept of FP has been introduced by voice
researchers. These representations synthesize the time-varying data to visualize hidden features
that are not easily observed from the laryngeal sequences. However, many of the FP presented in
the literature have some drawbacks that restrict their applicability since they rely on glottal-area
segmentation (GAW, GVG, PVG, PVG-wavegram, VFT, VP, EFA and HTA). Additionally, most of
the FP consider only those points belonging to the glottal contours and neglect the MW contribution.
Others, such as GVG, PVG, PVG-wavegram, VFT and VP rely on the computation of glottal main axis,
which strongly depends on the geometry of the detected glottal area. FP such as GAW, HTA, NDA and
PGAW are based on glottal area waveform computation, so they do not preserve spatial information
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about vocal folds vibration. On the other hand, FP such as OFW, OFKG, DKG and MKG restrict
the information along one single line. The challenge is to provide representations to overcome the
drawbacks of existing ones, providing simultaneously features that would integrate the time dynamics,
such as velocity, acceleration, instants of maximum and minimum velocity, vocal folds displacements
during phonation and motion analysis of the MW.

To the best of our knowledge, only few works study the MW propagation [46,144,146,170].
Future studies have to analyze in more detail the objective detection and quantification of MW
propagation since its existence and magnitude provides valuable information about the coupling
between the mucosa and the subjacent vocal folds muscle. Additionally, it is widely demonstrated
that MW activity is a useful indicator of the quality of voice production and the presence of voice
disorders. One possible solution to address these shortcomings, it could be created kinematics models
that simulate the MW based on physical models and FP, similar that the one presented in [170]. In this
way, it will be possible to explore the variations of the MW under different constraints. Besides, it can
be exploited the potential of 3D visualization of vocal folds to understand the propagation of mucosal
wave using motion estimation techniques as 3D feature tracking or dense 3D motion field [171,172].

Further development should explore other techniques such as registration [64],
Haar wavelets [173], Haar-like features [174], local binary patterns (LBP) [175], Histogram of
Oriented Gradient (HOG) [176] or supervised machine-learning to characterize the kinematics of the
vocal folds. The image registration is one of the fundamental tasks within image processing, which let
to find an optimal geometric transformation between two corresponding images. Therefore, it will
be possible to model the deformation of the vocal folds for each particular laryngeal mechanism
using geometric transformations. The HOG well captures local shape characteristics of the targeted
object based on directions and magnitudes of image derivatives. Then it could be used to model the
wavelike motion of the vocal folds during different vocal tasks. Besides, HOG could be combined with
Haar wavelets, Haar-like features and local binary patterns (LBP) to create a new feature descriptor to
classify different vocal folds vibratory patterns [177]. On the other hand, supervised machine-learning
techniques, especially deep learning [178], is part of state-of-the-art systems in various disciplines,
particularly in computer vision and image processing. In addition, it has been used to make critical
decisions in medical diagnosis. It would be possible to train a neural network to extract 3D structure
of vocal folds; to segment the glottal gap; to compensate camera rotations and translations; to enhance
the quality of laryngeal imaging; to synthesize video information; to classify different vibratory
patterns; to generate synthetic datasets; to track different glottal structures (e.g., arytenoids, epiglottis);
image data augmentation to increase video frame rate; among others.

Lastly, it might be helpful to show how the FP and the objective parameters provide
complementary information, as well as combining them to put additional information to the context.
In addition, a systematic comparison with other glottal-activity signals such as Electroglottography
(EGG) would be very interesting to provide a more complete assessment of vocal folds vibration.
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