

Universidad de Cuenca

Facultad de Ingeniería

Maestría en Electricidad mención Redes Eléctricas Inteligentes

"Metodología para la solución del problema de flujos de carga en sistemas de distribución de energía eléctrica"

Trabajo de titulación previa a la obtención del título de: Magíster en Electricidad mención Redes Eléctricas Inteligentes.

- AUTOR: Ing. Andrés Mauricio Valladarez Briones. C.I. 0104121769 andres0904@hotmail.com
- DIRECTOR: Ing. Julio Cesar López Quizhpi PhD. C.I. 0104047024

Cuenca, Ecuador

26-octubre-2020

RESUMEN.

El análisis de flujos de carga es una herramienta indispensable en el estudio de los sistemas eléctricos de distribución. Cuenta con una gran cantidad de aplicaciones tanto en la planificación de la expansión del sistema como en la operación de una red eléctrica. Por esta razón cualquier mejora en la formulación matemática como en el desempeño computacional será de gran importancia para el análisis de los sistemas eléctricos. Las empresas eléctricas de distribución utilizan software comerciales que demandan un alto costo de adquisición que utilizan licencias corporativas, sin embargo, éstas se basan en resultados obtenidos de métodos iterativos los cuales no brindan soluciones exactas ya que se apoyan en cálculos de aproximaciones para la solución de un problema.

El presente trabajo plantea implementar un modelo matemático basado en un problema de optimización como una alternativa para la solución del problema de flujos de carga monofásico en sistemas de distribución de energía eléctrica. La metodología propuesta está fundamentada en un modelo matemático basado en un problema de optimización convexa de segundo orden, la cual garantiza soluciones óptimas globales. La metodología propuesta fue evaluada a través del sistema de distribución de prueba de 4 barras del IEEE, además de cinco alimentadores reales de la Empresa Eléctrica Regional Centro Sur: el 0101 con 189 nodos, el 0102 con 201 nodos, el 0103 con 101 nodos, el 0104 con 568 nodos y el 0421 con 341 nodos. Los resultados obtenidos muestran un mejor desempeño y calidad de las soluciones de la metodología propuesta frente a la herramienta comercial Cymdist. Además, se observa que mientras mayor sea el valor de tolerancia que se asigne en los métodos iterativos, menor será la calidad de la solución, inclusive, en algunos casos se observa una falta de convergencia en los resultados; esto no sucede con el modelo propuesto ya que al ser un modelo matemático basado en un problema de optimización, no necesita un valor de tolerancia, lo cual garantiza un resultado óptimo global.

Palabras claves: Optimización matemática. Cymdist. Pérdidas de potencia. Flujo de carga. Sistemas de distribución.

ABSTRACT.

Load flow analysis is an indispensable tool in the study of electrical distribution systems. It has a large number of applications both in planning the expansion of the system and in the operation of an electrical network. For this reason, any improvement in mathematical formulation and computational performance will be of great importance for the analysis of electrical systems.

Nowadays, electrical distribution companies use commercial software that demand a high acquisition cost that use corporate licenses and that, despite having a good graphical environment, these are based on results of iterative methods which do not provide quality solutions since they are based on approximation calculations for solving a problem.

This article proposes to implement a mathematical model based on an optimization problem as an alternative to solve the single-phase load flow problem in electrical energy distribution systems. The proposed methodology is based on a mathematical model based on a second-order convex optimization problem, which guarantees optimal global solutions. The proposed methodology was tested through the IEEE's 4-bar test distribution system, in addition to five real three-phase feeders from Electric Company Regional Centro Sur: 0101 with 189 nodes, 0102 with 201 nodes, 0103 with 101 nodes, 0104 with 568 nodes and 0421 with 341 nodes. To show the efficiency of the proposed methodology, the results were compared with the iterative methods offered by the commercial Cymdist tool. The results obtained show a better performance and quality of the solutions of the proposed methodology compared to the commercial Cymdist tool. In addition, it is noted that the higher the tolerance value assigned in the iterative methods, the lower the quality of the solution, even, in some cases, a lack of convergence in the results it is noted; this does not happen with the proposed model since being a mathematical model based on an optimization problem, it does not need a tolerance value, which guarantees an optimal global result.

Keywords: Mathematical optimization. Cymdist. Power losses. Load flow. Distribution systems.

ÍNDICE

2.2.1.	Definición del problema	34
2.2.2.	Construcción de un modelo	34
2.2.3.	Solución del modelo	34
2.2.4.	Validación	35
2.2.5.	Implementación y control de la solución	35
2.3. OPT	IMIZACIÓN [11]	35
2.3.1.	Función objetivo	36
2.3.2.	Variables de decisión	36
2.3.3.	Restricciones	36
2.4. LEN	GUAJES DE MODELADO [12]	38
2.4.1.	Lenguajes algebraicos de modelado [11]	39
2.5. DES	CRIPCIÓN DEL SOFTWARE AMPL [13]	40
CAPÍTULO 3		42
3. FORMUL	ACIÓN DE MODELO MATEMÁTICO BASADO EN UN PROBLEMA DE	
	ON PARA RESOLUCION DE FLUJOS DE CARGA EN SISTEMAS DE ÓN DE ENERGÍA ELÉCTRICA	42
		42
4. IMPLEM	ENTACIÓN DEL MODELO MATEMÁTICO EN REDES DEL SISTEMA DE	
DITRIBUCIÓ	N DE LA EMPRESA ELÉCTRICA REGIONAL CENTRO SUR	49
4.1. IMP	LEMENTACIÓN DE FLUJO DE CARGA EN REDES DE DISTRIBUCÍON	
UTILIZANE	00 EL SOFTWARE CYMDIST.	49
4.1.1.	Alimentador 0101.	50
4.1.1.1	. Método de Caídas de Tensión	50
4.1.1.2	2. Método de Newton Raphson	51
4.1.1.3	 Método de Gauss - Seidel 	51
4.1.1.4	 Método de Desacoplado Rápido 	52
4.1.2.	Alimentador 0102.	53
4.1.2.1	. Método de Caídas de Tensión	53
4.1.2.2	2. Método de Newton Raphson	54
4.1.2.3	 Método de Gauss - Seidel 	54
4.1.2.4	Método de Desacoplado Rápido	55
4.1.3.	Alimentador 0103.	56
4.1.3.1	. Método de Caídas de Tensión.	56
4.1.3.2	2. Método de Newton Raphson	57

Universidad de Cuenca

4	.1.3.3.	Método de Gauss - Seidel	57
4	.1.3.4.	Método de Desacoplado Rápido	58
4.1.	4. Alim	nentador 0104	59
4	.1.4.1.	Método de Caídas de Tensión	59
4	.1.4.2.	Método de Newton Raphson.	60
4	.1.4.3.	Método de Gauss - Seidel	60
4	.1.4.4.	Método de Desacoplado Rápido	61
4.1.	5. Alim	nentador 0421	62
4	.1.5.1.	Método de Caídas de Tensión	63
4	.1.5.2.	Método de Newton Raphson.	63
4	.1.5.3.	Método de Gauss - Seidel	63
4	.1.5.4.	Método de Desacoplado Rápido	64
4.2. BASA	IMPLEM DO EN C	IENTACIÓN DEL MODELO DE FLUJO DE CARGA MONOFÁSICO PTIMIZACIÓN MATEMÁTICA	65
4.2.	1. Alim	nentador 0101	65
4.2.	2. Alim	nentador 0102	66
4.2.	3. Alim	nentador 0103	66
4.2.	4. Alim	nentador 0104	67
4.2.	5. Alim	nentador 0421	68
CAPÍTU	LO 5		70
5. COI	MPARAC	IÓN DE RESULTADOS DEL MODELO PROPUESTO	70
5.1.	Alimenta	ador 0101	70
5.2.	Alimenta	ador 0102	73
5.3.	Alimenta	ador 0103	76
5.4.	Alimenta	ador 0104	79
5.5.	Alimenta	ador 0421	82
5.6.	Alimenta	ador 0101 mal condicionado	85
CAPÍTU	LO 6		88
6. COI	NCLUSIC	ONES Y FUTUROS TRABAJOS	88
6.1.	CONCL	USIONES	88
6.2.	FUTUR	DS TRABAJOS	94
BIBLIOG	GRAFÍA		95
ANEXO	S		98

Universidad de Cuenca

ANEXO 1. Pérdidas de potencia activa por las líneas – Alimentador 0101	98
ANEXO 3. Potencia de paso activa y reactiva – Alimentador 0101	
ANEXO 4. Corriente por las líneas – Alimentador 0101.	104
ANEXO 5. Pérdidas de potencia activa por las líneas – Alimentador 0102	
ANEXO 6. Tensión en nodos – Alimentador 0102	108
ANEXO 7. Potencia de paso activa y reactiva – Alimentador 0102	110
ANEXO 8. Corriente por las líneas – Alimentador 0102.	112
ANEXO 9. Pérdidas de potencia activa por las líneas – Alimentador 0103	114
ANEXO 10. Tensión en nodos – Alimentador 0103	115
ANEXO 11. Potencia de paso activa y reactiva – Alimentador 0103	116
ANEXO 12. Corriente por las líneas – Alimentador 0103.	117
ANEXO 13. Pérdidas de potencia activa por las líneas – Alimentador 0104	118
ANEXO 14. Tensión en nodos – Alimentador 0104.	124
ANEXO 15. Potencia de paso activa y reactiva – Alimentador 0104	130
ANEXO 16. Corriente por las líneas – Alimentador 0104.	136
ANEXO 17. Pérdidas de potencia activa por las líneas – Alimentador 0421	142
ANEXO 18. Tensión en nodos – Alimentador 0421	146
ANEXO 19. Potencia de paso activa y reactiva – Alimentador 0421	150
ANEXO 20. Corriente por las líneas – Alimentador 0421	154

ÍNDICE DE TABLAS.

Tabla 2.1 Tipos de problemas de optimización dentro del método clásico.	37
Tabla 3.1 Resultados del sistema equilibrado	47
Tabla 3.2 Diferencia de resultados con respecto al modelo propuesto.	47
Tabla 4.1 Reporte sumario método Caídas de Tensión en alimentador 0101	51
Tabla 4.2 Reporte sumario método Newton Raphson en alimentador 0101	51
Tabla 4.3 Reporte sumario método Gauss Seidel en alimentador 0101	52
Tabla 4.4 Reporte sumario método Desacoplado Rápido en alimentador 0101	52
Tabla 4.5 Resumen de resultados en alimentador 0101	52
Tabla 4.6 Reporte sumario método Caídas de Tensión en alimentador 0102	54
Tabla 4.7 Reporte sumario método Newton Raphson en alimentador 0102	54

Tabla 4.8 Reporte sumario método Gauss Seidel en alimentador 0102. 55
Tabla 4.9 Reporte sumario método Desacoplado Rápido en alimentador 010255
Tabla 4.10 Resumen de resultados en alimentador 0102. 55
Tabla 4.11 Reporte sumario método Caídas de Tensión en alimentador 010357
Tabla 4.12 Reporte sumario método Newton Raphson en alimentador 010357
Tabla 4.13 Reporte sumario método Gauss Seidel en alimentador 010358
Tabla 4.14 Reporte sumario método Desacoplado Rápido en alimentador 010358
Tabla 4.15 Resumen de resultados en alimentador 0103. 58
Tabla 4.16 Reporte sumario método Caídas de Tensión en alimentador 010460
Tabla 4.17 Reporte sumario método Newton Raphson en alimentador 010460
Tabla 4.18 Reporte sumario método Gauss Seidel en alimentador 010461
Tabla 4.19 Reporte sumario método Desacoplado Rápido en alimentador 010461
Tabla 4.20 Resumen de resultados en alimentador 0104. 61
Tabla 4.21 Reporte sumario método Caídas de Tensión en alimentador 042163
Tabla 4.22 Reporte sumario método Gauss Seidel en alimentador 0421. 63
Tabla 4.23 Resumen de resultados en alimentador 0421 64
Tabla 5.1 Comparación de resultados obtenidos en el alimentador 010170
Tabla 5.2 Comparación de resultados obtenidos en el alimentador 010273
Tabla 5.3 Comparación de resultados obtenidos en el alimentador 0103
Tabla 5.4 Comparación de resultados obtenidos en el alimentador 0104
Tabla 5.5 Comparación de resultados obtenidos en el alimentador 0421. 82

ÍNDICE DE FIGURAS.

Figura 2.1 Sistema de prueba de 3 barras	27
Figura 2.2 Algoritmo de solución mediante el método de Newton-Raphson.	29
Figura 2.3 Algoritmo de solución mediante el método de Gauss-Seidel	30
Figura 2.4 Esquema de construcción de modelo de optimización.	34
Figura 3.1 Esquema radial de una línea de distribución.	42
Figura 4.1 Diagrama del alimentador 0101	50
Figura 4.2 Diagrama del alimentador 0102	.53
Figura 4.3 Diagrama del alimentador 0103	56

Figura 4.4 Diagrama del alimentador 010459
Figura 4.5 Diagrama del alimentador 042162
Figura 4.6 Comparación de resultados de tensión en nodos del alimentador 010171
Figura 4.7 Comparación de resultados de potencia activa en nodos del alimentador 010172
Figura 4.8 Comparación de resultados de corriente en nodos del alimentador 010172
Figura 4.9 Comparación de resultados de pérdidas de potencia en nodos del alimentador 010173
Figura 4.10 Comparación de resultados de tensión en nodos del alimentador 010274
Figura 4.11 Comparación de resultados de potencia activa en nodos del alimentador 010274
Figura 4.12 Comparación de resultados de corriente en nodos del alimentador 010275
Figura 4.13 Comparación de resultados de pérdidas de potencia en nodos del alimentador 010275
Figura 4.14 Comparación de resultados de tensión en nodos del alimentador 010377
Figura 4.15 Comparación de resultados de potencia activa en nodos del alimentador 010377
Figura 4.16 Comparación de resultados de corriente en nodos del alimentador 010378
Figura 4.17 Comparación de resultados de pérdidas de potencia en nodos del alimentador 010378
Figura 4.18 Comparación de resultados de tensión en nodos del alimentador 010480
Figura 4.19 Comparación de resultados de potencia activa en nodos del alimentador 010480
Figura 4.20 Comparación de resultados de corriente en nodos del alimentador 010481
Figura 4.21 Comparación de resultados de pérdidas de potencia en nodos del alimentador 010481
Figura 4.22 Comparación de resultados de tensión en nodos del alimentador 042183
Figura 4.23 Comparación de resultados de potencia activa en nodos del alimentador 042183
Figura 4.24 Comparación de resultados de corriente en nodos del alimentador 042184
Figura 4.25 Comparación de resultados de pérdidas de potencia en nodos del alimentador 042184
Figura 4.26 Resultados de tensión en nodos del alimentador 0101 mal condicionado85
Figura 4.27 Resultados de potencia activa en nodos del alimentador 0101 mal condicionado86
Figura 4.28 Resultados de corriente en nodos del alimentador 0101 mal condicionado
Figura 4.29 Resultados de pérdidas de potencia en nodos del alimentador 0101 mal condicionado.

Yo, Andrés Mauricio Valladarez Briones, en calidad de autor y titular de los derechos morales y patrimoniales del trabajo de titulación "Metodología para la solución del problema de flujos de carga en sistemas de distribución de energía eléctrica", de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Así mismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el repositorio Institucional, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Cuenca, 26 de octubre de 2020

pra/funners

Andrés Mauricio Valladarez Briones

C.I.: 0104121769

Yo, Andrés Mauricio Valladarez Briones, autor del trabajo de titulación "Metodología para la solución del problema de flujos de carga en sistemas de distribución de energía eléctrica", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor.

Cuenca, 26 de octubre de 2020

for furmers /

Andrés Mauricio Valladarez Briones

C.I.: 0104121769

AGRADECIMIENTOS:

Quiero expresar mis más sinceros agradecimientos: a la Universidad de Cuenca, por permitirme cumplir con mis objetivos académicos, por su valioso aporte y enseñanzas impartidas, y a la Empresa Eléctrica Regional Centro Sur por brindarme todo el apoyo y la información requerida para el desarrollo del presente trabajo.

Al Ing. Julio López PhD, quien con su dirección, conocimiento enseñanza y colaboración permitió el desarrollo del presente trabajo.

A mí querida esposa, Kathy, por todo el apoyo incondicional y paciencia durante todo el tiempo que duró la maestría.

A mi papá, Mauricio, quien ha sido mi ángel de la guarda y quien guía mi camino desde el cielo.

A mi mamá, Martha, quien ha sido fuente de perseverancia y constancia en este camino.

A mis abuelitos por todo su apoyo ya que ellos son parte fundamental en mi vida.

Finalmente, agradezco a todas las personas que durante este tiempo me han apoyado y han estado tanto en los buenos momentos como en los más difíciles guiándome para ser una mejor persona, fortaleciendo mi constancia y dedicación a través de mi formación en la presente maestría.

Ing. Andrés Mauricio Valladarez Briones.

DEDICATORIA:

Quiero dedicar el presente trabajo principalmente a Dios por darme la vida, salud y sabiduría a lo largo de mi formación profesional.

A mi papá, Mauricio, le dedico este trabajo de manera especial, quien a pesar de estar en el cielo, me ha transmitido sus deseos y anhelos de superación tanto en el ámbito profesional como personal, por todo el tiempo que estuviste conmigo y por tu amor incondicional.

A mi mamá, Martha, quien me ha ensañado que el cielo es el límite y que todo lo que te propongas se puede alcanzar.

A mis abuelitos, que con su cariño y calidez han estado presentes en cada paso de mi vida.

A mis hermanos, para que sigamos el ejemplo de nuestros padres y nos mantengamos en formación constante con el fin de alcanzar nuestras metas profesionales.

A mi querida esposa, Kathy, por ser mi pilar e inspiración pues este logro no lo hubiera alcanzado sin su valioso apoyo.

Ing. Andrés Mauricio Valladarez Briones.

CAPÍTULO 1

1. INTRODUCCIÓN.

1.1. Antecedentes.

Con la perspectiva del concepto emergente de red inteligente, las redes de distribución requerirán una solución de flujo de carga rápida y repetida que debe resolverse de la manera más eficiente posible en algunas aplicaciones, particularmente en la planificación de los sistemas de distribución de energía eléctrica, la automatización, la optimización del sistema de energía, entre otras. Esto requiere la búsqueda continua de algoritmos de flujo de carga precisos y rápidos para la red de distribución. El método de barrido hacia adelante y hacia atrás (Forward and Backward) [1], el método de Gauss [2], los métodos de Newton [3] o Newton modificados [2] o cualquier otro método de flujo de carga misceláneo son los diferentes algoritmos utilizados en cada marco de referencia.

Los primeros métodos de flujos de carga fueron desarrollados durante los años cincuenta, métodos ahora conocidos como Gauss - Seidel y Ward - Hale [2]. A pesar de que son muy simples y confiables, ambos métodos presentan problemas en los tiempos de computación cuando son aplicados a sistemas muy grandes. El método de Newton Raphson fue un hito que, básicamente, consiste en encontrar las soluciones de un gran número de ecuaciones lineales de un proceso iterativo [3]. Si éstas son resueltas, teniendo en cuenta la dispersión de la matriz Jacobiana, los tiempos de cómputo aumentan sólo linealmente con el tamaño del sistema. Es así como la fuerte convergencia cuadrática y el estallido de la dispersión han hecho de este método el más general y más utilizado. En 1974 B. Stott y O. Alsaç desarrollaron el método desacoplado rápido en el cual se realizan varios supuestos válidos para la mayoría de los sistemas eléctricos, lo que permite obtener una solución en menor tiempo y con menor requerimiento de memoria [2]. Sin embargo, existen sistemas en los cuales no se cumplen del todo las hipótesis supuestas para llegar a la formulación desacoplada, con lo que el sistema se torna mal condicionado y los métodos tardan mucho en converger a la solución o incluso divergen.

Universidad de Cuenca

La optimización, también denominada programación matemática, sirve para encontrar la respuesta que proporciona el mejor resultado, la que logra mayores ganancias, mayor producción o la que logra el menor costo, desperdicio o malestar [4]. Con frecuencia, estos problemas implican utilizar de la manera más eficiente los recursos, tales como dinero, tiempo, maquinaria, personal, existencias, etc. Los problemas de optimización generalmente se clasifican en lineales y no lineales, según las relaciones del problema sean lineales con respecto a las variables. Varios problemas de optimización en ingeniería se formulan como problemas de programación no lineal; debido a la naturaleza no convexa de este tipo de problemas, no hay un enfoque eficiente disponible para derivar en un óptimo global a los problemas. Un tema importante en la teoría de la optimización es localizar una solución óptima global de un problema de programación no lineal. En las últimas décadas, los métodos de linealización por partes se han aplicado ampliamente para convertir un problema de programación no lineal en un problema de programación lineal o un problema de programación convexa de enteros mixtos para obtener una solución óptima global. En el proceso de transformación, se introducen variables binarias adicionales, variables continuas y restricciones para reformular el problema original. Estas variables y restricciones adicionales determinan principalmente la eficiencia de la solución del problema convertido.

1.2. Justificación.

Los métodos de optimización son una rama de las matemáticas que consiste en el uso de modelos matemáticos, estadísticos y algoritmos con el objeto de realizar un proceso de toma de decisiones. Frecuentemente trata del estudio de complejos sistemas reales, con la finalidad de mejorar (u optimizar) su funcionamiento. Los sistemas de distribución eléctrica presentan esta complejidad.

Los modelos actuales para la solución de flujos de carga para sistemas de distribución de energía eléctrica se basan en técnicas iterativas, los cuales no brindan soluciones exactas ya que se basan en cálculos de aproximaciones para la solución de un problema, es por esto que surge la necesidad de contar con modelos matemáticos basados en problemas de optimización que faciliten y mejoren la

resolución de flujos de carga para que sean los más cercanos posible a los valores reales del sistema.

1.3. Alcance.

El propósito del presente trabajo consiste en desarrollar una metodología basada en optimización matemática de segundo orden para formular un modelo de optimización matemática para la solución del problema de flujo de carga monofásico en sistemas de distribución de energía eléctrica. Los resultados obtenidos serán evaluados y analizados a través de comparaciones con los métodos iterativos de la herramienta Cymdist. Para las simulaciones, además del sistema de prueba de IEEE, sistemas reales de alimentadores de la Centro Sur serán utilizados, con el fin de destacar la eficiencia y desempeño de la metodología propuesta.

1.4. Problemática.

En la actualidad, las empresas eléctricas de distribución utilizan herramientas comerciales para la gestión de sus redes que demandan un alto costo de adquisición, que utilizan licencias corporativas y que, a pesar de que cuentan con un buen entorno gráfico, éstas se basan en resultados obtenidos de métodos iterativos los cuales no brindan soluciones exactas ya que se apoyan en cálculos de aproximaciones para la solución de un problema. Es por eso que se plantea elaborar un modelo matemático basado en un problema de optimización para resolver flujos de carga en sistemas de distribución de energía eléctrica con lo cual se eliminarían las aproximaciones generadas con los métodos iterativos garantizando soluciones óptimas globales.

1.5. Objetivos.

1.5.1. Objetivo general.

Elaborar una metodología para la solución de flujos de carga monofásicos en sistemas de distribución de energía eléctrica.

1.5.2. Objetivos específicos.

• Realizar el modelamiento de la red de distribución y sus componentes para la

solución de flujos de carga balanceados.

• Realizar una simulación del modelo en un sistema de prueba de IEEE.

• Comparar los resultados del modelo con los resultados de las técnicas iterativas de la herramienta Cymdist.

• Realizar una simulación del modelo en varios sistemas de la Empresa Eléctrica Regional Centro Sur.

• Comparar los resultados del modelo con los resultados de las técnicas iterativas de la herramienta Cymdist.

1.6. Metodología.

Para desarrollar la metodología para la solución del problema de flujos de carga en sistemas de distribución de energía eléctrica se realizará lo siguiente:

Levantamiento de información: Para conseguir información como calibre de conductores, configuración, demandas y consumos, se parte de la información ingresada en el GIS por personal capacitado, los cuales fiscalizan y validan la información con el fin de contar con un sistema lo más cercano a la realidad y así tener la menor cantidad de diferencias de cálculos entre lo real y lo simulado.

Recopilación de Información: de los elementos que conforman las redes de media tensión como son: conductores (redes aéreas), cables (redes subterráneas), transformadores de distribución y configuración de la red; esta información es obtenida de la herramienta Cymdist, la misma que contiene la información de catálogos de fabricantes de estos elementos.

Creación de modelos matemáticos: a partir de la información ingresada en el GIS, por medio de una interfaz se alimenta la herramienta Cymdist, en donde se realiza la distribución de carga y por medio de reportes, obtener la información necesaria para la creación del modelo basado en un problema de optimización.

Comparación y análisis de resultados: con los resultados obtenidos de los flujos

de carga con los distintos métodos iterativos que ofrece la herramienta Cymdist se procede a comparar el modelo propuesto y posteriormente realizar el análisis de los resultado obtenidos.

1.7. Estructura del documento.

Este documento está dividido en seis capítulos, los cuales tienen como finalidad presentar de forma organizada la investigación desarrollada. El capítulo 1 corresponde a la introducción y contiene la presentación formal del documento.

En el capítulo 2, se presentan los aspectos teóricos necesarios para la comprensión del tema. Primero se analizan los criterios que ocupa el software Cymdist para la resolución de flujos de carga en estado estable para sistemas de distribución así como la obtención de datos del SIG (Sistema de Información Geográfica) al Cymdist. Luego se habla sobre el programa AMPL, herramienta utilizada para la implementación del método propuesto en esta tesis.

En el capítulo 3, se formula el modelo matemático basado en un problema de optimización y se lo ejecuta con un caso base de sistemas de distribución de 4 barras de IEEE, comparándolos con los resultados de flujos de carga que ofrece el programa Cymdist como método de validación del modelo propuesto.

En el capítulo 4, se ejecutan y presentan los resultados de flujo de carga en redes de distribución reales de la Centro Sur utilizando el modelo matemático propuesto así como los obtenidos con los métodos iterativos de Cymdist tales como Newton - Raphson, Gauss - Seidel, Caídas de Tensión, Desacoplado Rápido.

En el capítulo 5, se comparan los resultados del modelo propuesto con los resultados del flujo de carga de los métodos iterativos que ofrece la herramienta Cymdist.

En el capítulo 6, se presentan las conclusiones de la tesis y se presentan propuestas de posibles trabajos futuros.

CAPÍTULO 2

2. MODELAMIENTO Y SOFTWARE DE GESTIÓN PARA LA SOLUCIÓN DE FLUJOS DE CARGA.

2.1. SOFTWARE CYMDIST COMO HERRAMIENTA DE GESTIÓN.

2.1.1. Antecedentes.

A partir del año 2003 la Empresa Eléctrica Regional Centro Sur tiene implementado el software GIS con el fin de contar con una herramienta de gestión y recopilación de información para fines técnicos (redes georreferenciadas, ubicación de clientes, sistema de consultas) y financieros (manejo de inventarios). A partir de esta fecha, se ha trabajado mucho para que la información ingresada sea de calidad y con un alto índice de actualización para poder contar con la mayor cantidad de información posible y cercana a la realidad.

Hoy en día, la información ingresada en el GIS cuenta con un índice de actualización aproximado del 99.9%, lo cual indica que se cuenta con gran cantidad de información comparada con los datos de clientes del sistema comercial de la empresa.

Por medio de una interfaz entre el GIS y el Cymdist, se recopila información de manera mensual correspondiente a redes, demandas, cargas, energías, configuraciones y estructuras en una base de datos. Con esta información más los datos de demandas en subestaciones de los perfiles de energía obtenidas de equipos de medición en cabecera de los alimentadores, se procede a realizar simulaciones con los métodos iterativos de flujos de carga en redes desbalanceadas para el cálculo de pérdidas de energía, análisis técnico del sistema, planificación a mediano y corto plazo e informes y reportes mensuales del estado actual del sistema.

De esta manera surge la necesidad de contar con un amplio conocimiento de esta herramienta que será de fuente de comparación del modelo matemático planteado en esta tesis.

2.1.2. Descripción general de la herramienta Cymdist [5].

La herramienta Cymdist, utilizada para el análisis técnico del sistema eléctrico de la Centro Sur, es una herramienta robusta y de gran fiabilidad, cuenta con varios procesos iterativos para la solución de flujos de carga tanto para redes balanceadas como desbalanceadas, cuenta con una plataforma gráfica, la cual lo hace amigable a la vista y brinda un amplio panorama del sistema a evaluar. Es comúnmente usado para la planificación, diseño, operación y explotación de redes eléctricas de distribución, industriales o transporte de energía eléctrica.

Cuenta con diversos tipos de análisis de la red de distribución como: análisis de flujo de carga y falla a cualquier nivel de tensión/carga, análisis de escenarios supuestos de contingencias, análisis de protecciones en toda la red, optimización de red (reducción de pérdidas, ubicación óptima de reconectadores, reguladores, banco de capacitores), integración con generación distribuida, análisis de redes de baja tensión, integración con datos AMI/AMR, análisis de armónicos, evaluación de confiabilidad.

Además, cuenta con una amplia biblioteca normalizada de líneas y cables, lo cual es útil para lograr una representación de las redes más realistas.

2.1.2.1. Modelamiento de la carga.

Para el modelamiento de la carga, Cymdist cuenta con un módulo en el cual es posible definir el modelo en función de la sensibilidad de tensión (se puede definir entre el modelo compuesto (ZIP) o el modelo exponencial), el modelo de carga en función de la sensibilidad de la frecuencia y la tensión de umbral bajo la cual todas las cargas se convierten en modelos de impedancia constante (para facilitar la resolución del flujo de carga en caso de no convergencia del modelo).

2.1.2.1.1. Modelo compuesto ZIP [5].

Este modelo permite especificar la porción de la carga que es la impedancia constante (Z), la corriente constante (I) y potencia constante (P), recordando que el total debe totalizar 100% tanto para P como para Q:

$$P = P_0 \left[a_0 + a_1 \left(\frac{v}{v_{base}} \right) + a_2 \left(\frac{v}{v_{base}} \right)^2 \right]$$
$$Q = Q_0 \left[b_0 + b_1 \left(\frac{v}{v_{base}} \right) + b_2 \left(\frac{v}{v_{base}} \right)^2 \right]$$

Donde:

 P_0 corresponde a la potencia activa nominal.

 Q_0 corresponde a la potencia reactiva nominal.

 a_0, a_1, a_2 corresponden a los coeficientes de la potencia activa.

 b_0, b_1, b_2 corresponden a los coeficientes de la potencia reactiva.

$$a_0 + a_1 + a_2 = 100 \%$$

 $b_0 + b_1 + b_2 = 100 \%$

El modelo de potencia constante es un modelo en el cual la potencia de la carga no presenta cambios con la variación de la tensión. El modelo de corriente constante es un modelo en el cual la variación de potencia es directamente proporcional a la variación de la magnitud de la tensión. El modelo de impedancia constante, o modelo de admitancia constante, es un modelo en el cual la potencia varía proporcionalmente con el cuadrado de la variación de la magnitud de la tensión.

2.1.2.1.2. Modelo exponencial [5].

En este modelo, los componentes activos y reactivos de cualquier carga variarán con la tensión. Estas componentes determinan como las potencias activas y reactivas varían con la tensión de la barra o del nodo. Para este modelo, usando los exponentes 0, 1 o 2 la carga puede ser representada como un modelo de potencia constante, corriente constante o impedancia constante, respectivamente.

$$P = P_0 \left(\frac{v}{v_{base}}\right)^{nP}$$

$$Q = Q_0 \left(\frac{v}{v_{base}}\right)^{nQ}$$

Donde:

 P_0 corresponde a la potencia activa nominal.

 Q_0 corresponde a la potencia reactiva nominal.

nP corresponde a la componente activa.

nQ corresponde a la componente reactiva.

2.1.2.1.3. Modelo de carga en función de la sensibilidad de la frecuencia [5].

Este modelo es parecido al modelo compuesto con la consideración de la variación de la frecuencia en el modelo, de esta manera, las ecuaciones para la potencia activa y reactiva están determinadas de la siguiente manera:

$$P = P_0 \left(\frac{v}{v_{base}}\right)^{nP} \left(1 - P_{frec} \left(\frac{F}{F_{basse}} - 1\right)\right)$$
$$Q = Q_0 \left(\frac{v}{v_{base}}\right)^{nQ} \left(1 - Q_{frec} \left(\frac{F}{F_{basse}} - 1\right)\right)$$

Donde:

 P_{frec} corresponde al factor de frecuencia de potencia activa.

 Q_{frec} corresponde al factor de frecuencia de potencia reactiva.

 F_{Base} corresponde al valor de frecuencia base del sistema.

F corresponde al valor de frecuencia nominal del sistema.

Sin embargo, dado que el sistema se asume con frecuencia constante al ser el estudio en estado estacionario, este modelo no es utilizado.

El modelo utilizado para la resolución y comparación de resultados planteadas en este documento es el de potencia constante, de esta manera las componentes activas y reactivas, así como la fórmula quedaría expresada de la siguiente manera:

$$nP = 0, \qquad nQ = 0$$
$$P = P_0 \left(\frac{v}{v_{base}}\right)^{nP} = P_0$$
$$Q = Q_0 \left(\frac{v}{v_{base}}\right)^{nQ} = Q_0$$

De esta manera se puede observar que tanto la potencia activa como la reactiva en las cargas no van a depender de tensión, es decir, permanecen constantes en la resolución del flujo de carga.

2.1.2.2. Distribución de carga [5].

Para determinar el flujo de carga, previamente se realiza una distribución de carga a lo largo del sistema, teniendo como datos iniciales la potencia, tensión, factor de carga y factor de pérdidas a nivel de cabecera del alimentador (estos dos últimos factores sirven para el análisis de pérdidas de energía anual).

La distribución de carga se utiliza para ajustar las cargas conectadas para igualarla a la medida de la demanda [6]. El software Cymdist asigna una porción de la medida de la demanda a cada fase de cada sección de acuerdo al tamaño del transformador de distribución (kVA conectados), los datos de consumo del cliente (kWh conectados), el consumo real (kVA o kW) o el método REA.

2.1.2.2.1. Método de los kVA conectados [5].

El Método de los kVA conectados divide la demanda medida entre las cargas proporcionalmente a la capacidad de cada transformador. Suponiendo que "s" representa al tramo y "k" a la fase, se tiene que:

$$TkVA(k) = \sum_{s} kVA \ conectado(s,k) * (Factor \ de \ carga)$$

$$kW Alloc(s,k) = kWdem(k) \left[\frac{kVA \ conectado(s,k) * (Factor \ de \ carga)}{TkVA(k)} \right]$$
$$kVAR \ Alloc(s,k) = kW \ Alloc(s,k) \sqrt{\left(\frac{1}{PF(k)}\right)^2 - 1}$$

Donde:

TkVA(k) corresponde al total de la potencia instalada aguas abajo del alimentador.

kWdem(k) corresponde a la demanda de cabecera en kW en la fase "k".

PF(k) corresponde al factor de potencia de la cabecera en la fase "k".

kW Alloc(s, k) corresponde al valor asignado de potencia activa en el tramo "s" de la fase "k"

 $kVAR \ Alloc(s, k)$ corresponde al valor asignado de potencia reactiva en el tramo "s" de la fase "k"

2.1.2.2.2. Método de los kWh conectados [5].

El método de los kWh conectados divide la demanda medida entre las cargas proporcionalmente al consumo de energía de las mismas. Suponiendo que "s" representa al tramo y "k" a la fase, se tiene que:

$$TkWh(k) = \sum_{s} kWh(s,k) * (Factor \ de \ carga)$$

$$kW \ Alloc(s,k) = kWdem(k) \left[\frac{kWh(s,k) * (Factor \ de \ carga)}{TkWh(k)} \right]$$

$$kVAR \ Alloc(s,k) = kW \ Alloc(s,k) \sqrt{\left(\frac{1}{PF(k)}\right)^2 - 1}$$

Donde:

Andrés Mauricio Valladarez Briones.

TkWh(k) corresponde al total de la energía aguas abajo del alimentador.

2.1.2.2.3. Método REA [5].

El método REA divide la demanda medida entre las cargas de acuerdo al número de consumidores que cada símbolo de carga representa. Este método se basa en la estratificación de la carga lo cual lo vuelve poco utilizada si se cuenta con valores de consumo mensual. Suponiendo que "s" representa al tramo y "k" a la fase, se definen las siguientes fórmulas:

$$A(s,k) = C(s,k) \left[1 - 0.4 * C(s,k) + 0.4 * \sqrt{C(s,k)^2 + 40} \right]$$
$$B(s,k) = 0.005925 * \left(\frac{kWh(s,k)}{C(s,k)} \right)^{0.885}$$
$$kWrea(s,k) = A(s,k) * B(s,k)$$

Donde:

kWh(s,k) corresponde al número de kWh facturados por el tramo "s" y la fase "k". C(s,k) corresponde al número de abonados en el tramos "s" y la fase "k".

De esta manera:

$$TkWrea(k) = \sum_{s} kWrea(s,k)$$

$$kW Alloc(s,k) = kWdem(k) \left(\frac{kWrea(s,k)}{TkWrea(k)}\right)$$

$$kVAR \ Alloc(s,k) = kW \ Alloc(s,k) \sqrt{\left(\frac{1}{PF(k)}\right)^2 - 1}$$

2.1.2.2.4. Método de los kVA reales [5].

El método de los kVA reales divide la demanda medida entre las cargas proporcionalmente a la carga kVA ya definida para cada carga. Este método es

Andrés Mauricio Valladarez Briones.

usado cuando quiere trabajar con valores de carga máxima en cada transformador, lo cual, al igual que el anterior método, no es muy utilizado. Suponiendo que "s" representa al tramo y "k" a la fase, se tiene que:

$$TkVA(k) = \sum_{s} kVA \ reales \ (s,k) * (Factor_Util)$$

$$kW Alloc(s,k) = kWdem(k) \left[\frac{kVA \, reales \, (s,k) * (Factor \, de \, carga)}{TkVA(k)} \right] * (Factor_Util)$$

$$kVAR \ Alloc(s,k) = kW \ Alloc(s,k) \sqrt{\left(\frac{1}{PF(k)}\right)^2 - 1}$$

Donde:

TkVA(k) corresponde al total de la potencia acumulada de los transformadores aguas abajo del alimentador.

Factor_Util corresponde al factor de utilización del cada transformador.

Normalmente, la empresa ha venido implementando una metodología híbrida entre el método de kVA Conectados, en la cual distribuye la demanda de cabecera hacia todas las cargas, luego se bloquean las cargas que no tengan un valor asignado de consumo (comúnmente debido a una desactualización en el sistema o una toma errónea de lectura, por tal motivo se encuentra en cero). Una vez bloqueadas las cargas se procede a realizar una nueva distribución mediante el método de los kWh conectados (consumo del cliente). El modelo utilizado para la resolución y comparación de resultados planteadas en este documento es el de los kVA conectados.

2.1.2.3. Algoritmos iterativos de solución.

Los algoritmos iterativos de solución que utiliza Cymdist para el análisis de flujos de carga son:

• Caídas de Tensión: Equilibrada y desequilibrada.

- Newton-Raphson: Equilibrado y desequilibrado.
- Gauss-Seidel: Equilibrado.
- Fast-Decoupled: Equilibrado.

A continuación se dará una breve explicación de los métodos de solución de flujos de carga mencionados anteriormente en base a una red equilibrada puesto que es el tipo de sistema evaluado en este documento.

2.1.2.3.1. Técnica de cálculo de la caída de tensión [5].

Es una técnica iterativa diseñada y optimizada por Cymdist para redes de distribución radiales o ligeramente malladas. Esta técnica calcula las tensiones y flujos de carga en cada tramo cada 10 o menos iteraciones. El resultado es válido cuando ninguna tensión calculada de cualquier tramo de la red cambia de una iteración a la siguiente según el margen de tolerancia asignada, por ejemplo: $\frac{|V_{nueva} - V_{antígua}|}{|V_{antígua}|} < error %.$

Este método se basa en el método de barrido Forward and Backward [1] para resolver problemas de flujo de carga en redes de distribución en el cual básicamente realiza un cálculo de caídas de tensión desde la subestación hacia la carga, para luego realizar el cálculo de corrientes desde la carga hacia la subestación (de ahí el nombre Forward and Backward).

Para ilustrar los tres algoritmos restantes para la solución de sistemas balanceados, se usará el siguiente sistema de prueba de 3 barras.

Figura 2.1 Sistema de prueba de 3 barras.

2.1.2.3.2. Newton – Raphson [5].

El método de Newton-Raphson para la solución de flujos de carga se basa en un algoritmo iterativo el cual resuelve un conjunto de ecuaciones no lineales simultáneas en un número igual de variables desconocidas basándose en las ecuaciones de series de Taylor para una función de dos o más variables.

Las ecuaciones de potencia en cada barra están determinadas de la siguiente manera:

$$p_{1} = v_{1}(y_{11}v_{1} + y_{12}v_{2} + y_{13}v_{3})$$

$$p_{2} = v_{2}(y_{21}v_{1} + y_{22}v_{2} + y_{23}v_{3})$$

$$p_{3} = v_{3}(y_{31}v_{1} + y_{32}v_{2} + y_{33}v_{3})$$

El término derivativo se determina como:

$$\begin{bmatrix} \Delta p_2 \\ \Delta p_3 \end{bmatrix} = \begin{bmatrix} \frac{\partial p_2}{\partial v_2} & \frac{\partial p_2}{\partial v_3} \\ \frac{\partial p_3}{\partial v_2} & \frac{\partial p_3}{\partial v_3} \end{bmatrix} \begin{bmatrix} \Delta v_2 \\ \Delta v_3 \end{bmatrix}$$

Los términos derivativos de potencia se determinan de la siguiente manera:

$$\frac{\partial p_2}{\partial v_2} = y_{21}v_1 + 2y_{22}v_2 + y_{23}v_3$$
$$\frac{\partial p_2}{\partial v_3} = y_{23}v_2$$
$$\frac{\partial p_3}{\partial v_2} = y_{32}v_3$$
$$\frac{\partial p_3}{\partial v_3} = y_{31}v_1 + 2y_{32}v_2 + y_{33}v_3$$

Dado que estas son ecuaciones no lineales, se debe adoptar una técnica iterativa con una suposición inicial de tensión 1.0 p.u. ("Flat start") como se ilustra en este

Andrés Mauricio Valladarez Briones.

organigrama del algoritmo Newton-Raphson.

Figura 2.2 Algoritmo de solución mediante el método de Newton-Raphson.

Las principales características de este método son:

- Capacidad de convergencia cuadrática.
- Solución en pocas iteraciones.
- La matriz Jacobiana "J" debe ser recalculada e invertida después de cada iteración, lo cual se vuelve un problema para redes de distribución ya que su resultante puede contener una matriz con muchos ceros (debido a la elevada relación R/X), esto puede provocar una divergencia en la resolución del método.

2.1.2.3.3. Gauss – Seidel [5].

La ecuación de la matriz de impedancia para el sistema de prueba de tres barras puede expresarse de la siguiente manera:

$$\begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} & y_{13} \\ y_{21} & y_{22} & y_{23} \\ y_{31} & y_{32} & y_{33} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

Las ecuaciones de tensión en nodos v_2 y v_3 se pueden expresar como una función de la potencia activa, de la admitancia y de las tensiones del sistema, de la siguiente manera:

$$v_{2} = \frac{1}{y_{22}} \left[\frac{p_{2}}{v_{2}} - (y_{21}v_{1} + y_{23}v_{3}) \right]$$
$$v_{3} = \frac{1}{y_{33}} \left[\frac{-p_{3}}{v_{3}} - (y_{31}v_{1} + y_{32}v_{2}) \right]$$

Dado que son ecuaciones no lineales, se debe adoptar una técnica iterativa con suposición inicial para las tensiones con un valor de 1.0 p.u. ("Flat Start") tal como se indica en el siguiente organigrama del algoritmo de solución del método Gauss-Seidel.

Figura 2.3 Algoritmo de solución mediante el método de Gauss-Seidel.

Por lo general, este método requiere de un mayor número de iteraciones para su convergencia, comparada con el resto de métodos de resolución.

Andrés Mauricio Valladarez Briones.

2.1.2.3.4. Fast – Decoupled [5].

El método de Desacoplado Rápido para la solución de flujos de carga, es una variante del método Newton-Raphson y se basa en el hecho que un cambio en el ángulo de tensión de una barra afecta principalmente en el flujo de potencia real en las líneas aéreas o cables subterráneos, mas no así en el flujo de potencia reactiva.

De la misma manera, un cambio en la magnitud de tensión tendrá un impacto directo en el flujo de potencia reactivo, mas no así al flujo de potencia activo.

Partiendo del método de Newton-Raphson que formula lo siguiente:

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} \frac{\partial P}{\partial \delta} & \frac{\partial P}{\partial V} \\ \frac{\partial Q}{\partial \delta} & \frac{\partial Q}{\partial V} \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta V \end{bmatrix}$$

Donde:

P corresponde a la potencia activa.

Q corresponde a la potencia reactiva.

V corresponde a la tensión de línea.

 δ corresponde al ángulo de la tensión.

Y teniendo en cuenta los argumentos, los términos derivativos siguientes pueden fijarse a un valor aproximado de cero, de esta manera:

$$\frac{\partial P}{\partial V} \cong 0, \qquad \frac{\partial Q}{\partial \delta} \cong 0$$

Los términos derivativos de potencia activa y reactiva se pueden aproximar mediante las siguientes ecuaciones simplificadas:

$$[\Delta P] = \left[\frac{\partial P}{\partial \delta}\right] [\Delta \delta], \qquad [\Delta Q] = \left[\frac{\partial Q}{\partial V}\right] [\Delta V]$$

La técnica iterativa del método de desacoplado rápido es la misma que la del método de Newton-Raphson.

Para la resolución y comparación de resultados planteados en este documento se utilizarán todos estos 4 algoritmos de solución y se revisará si todos los algoritmos convergen o divergen con los alimentadores en estudio.

2.1.2.4. Modelamiento en transformadores de distribución.

La información que Cymdist requiere para el modelamiento de los transformadores de distribución de dos devanados es el siguiente: tipo de transformador, tipo de aislamiento, tipo del devanado, capacidad nominal, tensión primaria, tensión secundaria, pérdidas en vacío: [7] para transformadores trifásico y [8] para transformadores monofásico, corriente magnetizante, configuración de conexión, impedancias de secuencia e impedancia de puesta a tierra.

2.1.2.5. Modelamiento en conductores aéreos.

La información requerida por este módulo engloba tanto las características eléctricas como constructivas del conductor como lo son: tipo de conductor, material del conductor, tamaño del conductor, superficie total del conductor, diámetro externo, número de alambres, RMG (radio medio geométrico), corriente permanente nominal, capacidad de soporte de cortocircuito, resistencia de la línea y frecuencia.

2.1.2.6. Espaciamiento entre conductores.

Cymdist cuenta con un módulo de ingreso de diversos tipos de espaciamientos entre conductores en base al tipo de estructura normalizada tanto para redes de subtransmisión, media tensión y baja tensión. Esta configuración puede ser para 3, 2 o 1 fase con o sin la consideración del neutro. Las distancias pueden ser expresadas en pies o metros. Este espaciamiento es utilizado para la configuración de fases para el modelamiento de los conductores.

2.1.2.7. Modelamiento en cables subterráneos.

La información requerida por este módulo engloba tanto las características eléctricas

como constructivas de los cables como lo son: tensión nominal, corriente permanente nominal, capacidad de soporte de cortocircuito, tipo (en base a la construcción del cable, material del conductor, unidad tamaño del conductor, tamaño del conductor, área del conductor, material del aislamiento, pantallas metálicas, neutros concéntricos, detalles constructivos del cable, impedancias (de secuencia directa y homopolar en base a las características constructivas del cable), frecuencia y temperatura a la que están calculados estos parámetros.

2.2. INVESTIGACIÓN OPERATIVA.

Es importante partir de la definición de investigación operativa, la cual se enfoca en la aplicación de métodos científicos en la mejora de la efectividad en las operaciones, decisiones y gestión. Consiste en construir un modelo científico del sistema del cual se puede predecir y comparar los resultados de diversas estrategias y decisiones.

Surge a raíz de la Primera Revolución Industrial cuando la mano de obra comienza a ser reemplazada por maquinarias, las compañías empiezan un proceso de expansión en donde se aumentan áreas de trabajo, las cuales cumplen diferentes objetivos y en ocasiones estos pueden tener conflictos. A principios de la Segunda Guerra Mundial surge la necesidad de distribuir recursos a distintas operaciones militares de la mejor manera posible, para lo cual, con ayuda de científicos, se logran grandes resultados como la integración del radar como soporte en las tareas de defensa aérea, esto impulsó a que las industrias empiecen a interesarse a esta nueva ciencia [9].

La investigación operativa utiliza técnicas de modelamiento matemático, optimización matemática y análisis estadístico cuyo objetivo es obtener soluciones óptimas o cercanas cuando se tienen problemas de decisión complejas, su enfoque es el modelamiento. Un modelo de optimización considera una función objetivo a la que se desea maximizar o minimizar. Estas variables cuentan con restricciones que adoptan la forma de ecuaciones o inecuaciones que buscan representar las limitantes asociadas a la problemática en cuestión. El propósito del modelamiento es proporcionar un medio para analizar el comportamiento de las componentes de un sistema con el fin de optimizar su rendimiento [10].

El proceso asociado a la construcción de un modelo de optimización se basa en el siguiente esquema:

Figura 2.4 Esquema de construcción de modelo de optimización.

2.2.1. Definición del problema.

Parte delicada del proceso ya que se debe establecer una definición clara y precisa del problema planteado. En este punto se definen las variables de decisión, el objetivo y las restricciones del mismo. La calidad del modelo de optimización está en relación directa con la definición del problema.

2.2.2. Construcción de un modelo.

Un modelo matemático de optimización considera una abstracción o simplificación de la realidad. Debe ser tanto representativo del problema real así como simple para favorecer su resolución. Este modelo cuenta con un conjunto de ecuaciones y expresiones matemáticas relacionadas entre sí. Las alternativas y aspectos del problema se modelan utilizando variables, las cuales miden la calidad de una u otra alternativa dentro de la función objetivo, mientras que las limitaciones que impiden que las variables tomen cualquier valor (modeladas en ecuaciones y desigualdades) se las plantean como restricciones del problema.

2.2.3. Solución del modelo.

Después de construir el modelo matemático se deben identificar las alternativas de resolución, esto se lleva a cabo mediante programación computacional, los cuales

utilizan algoritmos de resolución que dependen de las características propias del modelo construido. Para ejemplificar esto se puede decir que para resolver un problema de programación lineal (variables lineales tanto para la función objetivo como para las restricciones) se podría utilizar el método Simplex.

Se debe tener en cuenta que el modelo matemático es una simplificación de la realidad, para lo cual es necesario un análisis de sensibilidad que permita valorar la variabilidad de la solución óptima ante pequeños cambios en los resultados asignados a cada variable.

2.2.4. Validación.

En este punto se comprueba que el modelo propuesto brinde los resultados deseados. Para esto se debe contrastar los resultados con una proyección de valores esperados, utilizando mediciones reales o utilizando casos base de estudio en los cuales se tengan los resultados comprobados con antelación. También se comprueba que la solución cumpla con todas las restricciones impuestas para la solución acogida.

2.2.5. Implementación y control de la solución.

Una vez validado el modelo matemático mediante las técnicas antes mencionadas, se procede a la implementación del modelo. También se debe tener en cuenta que es necesario establecer un control de la solución encontrada de manera que el modelo presente los valores esperados.

2.3. OPTIMIZACIÓN [11].

La optimización es una parte relevante dentro de la investigación operativa, cuenta con una amplia variedad de problemas como: lineales, no lineales, enteros, estocásticos, multiobjetivo, entre otros. Se engloban dentro de la investigación operativa la teoría de grafos o flujos de redes, teoría de juegos y de decisión. Los algoritmos metaheurísticos, redes neuronales y otras técnicas de inteligencia artificial, se incluyen dentro de la investigación operativa, sin embargo se las estudian con mayor detenimiento en la ingeniería informática como la inteligencia artificial y a

la estadística.

Los problemas de optimización se componen de tres partes fundamentales: Función Objetivo, Variables de Decisión y Restricciones. A continuación se detalla cada una de estas partes.

2.3.1. Función objetivo.

La Función Objetivo es la medida cuantitativa del funcionamiento del sistema que se desea optimizar ya sea mediante una maximización o minimización del mismo. A manera de ejemplo se pueden mencionar funciones objetivo como: minimización de costos de operación de un sistema eléctrico, el despacho de centrales de generación, la minimización del material utilizado en la fabricación de un producto, la minimización de pérdidas del sistema eléctrico, entre otras.

2.3.2. Variables de decisión.

Como su nombre lo indica, representan las decisiones que se pueden tomar, mismos que afectan al resultado de la función objetivo. Desde el punto de vista funcional, las variables se pueden clasificar en: variables independientes, principales o de control, y variables dependientes, auxiliares o de estado (matemáticamente todas estas variables son iguales). Para el caso de un sistema eléctrico pueden ser valores de flujos por las líneas o valores de producción de generadores de potencia, para el caso de ventas, puede ser la cantidad de cada producto a vender o fabricar, o para el caso de la fabricación de productos puede ser su dimensión física.

2.3.3. Restricciones.

Las restricciones representan el conjunto de relaciones que ciertas variables están obligadas a satisfacer, expresadas mediante ecuaciones e inecuaciones. Un ejemplo de restricciones pueden ser las potencias máximas y mínimas de operación de un grupo de generación, los límites térmicos de los conductores y cables subterráneos, la capacidad de producción de una fábrica para diversos productos, entre otros.

Los métodos de optimización se pueden clasificar en: métodos clásicos y métodos metaheurísticos.

- Métodos clásicos: Son algoritmos propios de optimización, dentro de este método se encuentran: la optimización lineal, lineal entera mixta, no lineal, estocástica, dinámica, etc. Estos métodos buscan y garantizan una solución óptima local.
- Métodos metaheurísticos: Estos métodos están ligados a la inteligencia artificial, mismos que imitan fenómenos sencillos observados en la naturaleza. Dentro de este método se incluyen: algoritmos evolutivos, método del recocido simulado (simulated annealing), búsquedas heurísticas (método tabú, búsqueda aleatoria, etc.) y sistemas multi-agente. Esto métodos tienen mecanismos específicos para alcanzar una solución óptima global, aunque no garantizan su alcance.

La siguiente tabla muestra las expresiones matemáticas generales de varios tipos de problemas de optimización dentro de los métodos clásicos. Estos problemas se clasifican por el carácter de las funciones que interviene (lineales, no lineales, lineal entera mixta, cuadrática) y de las variables (reales/continuas \mathbb{R} o enteras/discretas \mathbb{Z}).

Programación lineal	$\min c^T x$
(linear programming)	Ax = b
LP	$x \ge 0$
	$x \in \mathbb{R}^n, c \in \mathbb{R}^n, A \in \mathbb{R}^{m imes n}, b \in \mathbb{R}^m$
Programación lineal entera mixta	$\min_{x} c^{T} x + d^{T} y$
(mixed integer programming)	Ax + By = b
MIP	$x, y \ge 0$
	$x \in \mathbb{Z}^n, y \in \mathbb{R}^l, c \in \mathbb{R}^n, d \in \mathbb{R}^l$
	$A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times l}, b \in \mathbb{R}^m$
Programación cuadrática	$\min c^T x + \frac{1}{2} x^T Q x$
(quadratic programming)	$a^{*} = b^{*}$
QP	x > 0
	$x \in \mathbb{R}^n \ c \in \mathbb{R}^n \ A \in \mathbb{R}^{m \times n}$
	$Q \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{m}$
Programación no lineal	$\min f(x)$
(non linear programming)	g(x) = 0
NLP	$h(x) \leq 0$
	$l \leq x \leq u$
	$f:\mathbb{R}^n ightarrow\mathbb{R}$
	$g,h:\mathbb{R}^n \to \mathbb{R}^m$

Tabla 2.1	Tipos de	problemas	de	optimización	dentro	del	método	clásico.
-----------	----------	-----------	----	--------------	--------	-----	--------	----------

Debido a que existen variables de decisión que deben ser discretas (como en la planificación de la expansión de la generación o del sistema, contratación de personal) o binarias (como la localización de plantas, almacenes o de una subestación), los problemas lineales con variables enteras se pueden clasificar en: Programación Entera Pura "PIP" si todas las variables son enteras, Programación Entera Binaria "BIP" si todas las variables son binarias, o Programación Lineal Entera Mixta "MIP" si varias son enteras, otras binarias y el resto continuas.

Existen otros tipos de problemas de optimización que alteran ligeramente el esquema antes mencionado como lo son:

- Sistemas de ecuaciones lineales no lineales: En este caso no existe una función objetivo como tal, únicamente interesa encontrar una solución factible a un problema con un conjunto de restricciones.
- Optimización sin restricciones: Se trata de encontrar el conjunto de valores de las variables que determinan el mínimo o máximo de una función. Técnica utilizada comúnmente en programación no lineal.
- Optimización multiobjetivo: Esto se da cuando existe más de una función objetivo, el problema se plantea como tratar varias funciones objetivo a la vez. En este método hay que tener en cuenta que el óptimo para un objetivo, no necesariamente lo es para el otro, es decir, existe un conflicto entre sí. Este método se enmarca dentro de las variables de decisión multicriterio MCDM.

2.4. LENGUAJES DE MODELADO [12].

Las principales alternativas para el desarrollo de modelos de optimización son:

 Lenguajes de programación de propósito general: Estos llaman a una biblioteca de optimización, son utilizados cuando el tiempo de resolución es crítico o cuando el modelo es ejecutado con frecuencia o cuando el modelo tiene que ser integrado en otra aplicación. Permiten la implantación del modelo en un entorno software o hardware especial, sin embargo, requiere de un elevado tiempo de desarrollo y un alto consumo de recursos para el mantenimiento del código. Entre estos se encuentra C++, Java, Visual Basic.

- Lenguajes o entornos de cálculo numérico o simbólico: como Matlab, hojas de cálculo o Mathematica. Los optimizadores de hojas de cálculo al ser conocidas y comunes, facilitan la explicación del modelo y de sus resultados, sin embargo no inducen una buena práctica de programación ya que presenta dificultad en su desarrollo, verificación, validación o mantenimiento del modelo. No permiten resolver problemas complejos o de gran tamaño. Estos no son específicos para la resolución de problemas de optimización pero facilitan la manipulación numérica o simbólica de matrices y vectores.
- Lenguajes algebraicos de modelado: Estas son alternativas más complejas y potentes por su capacidad de indexación de las variables y ecuaciones, permiten cambiar las dimensiones del modelado sin dificultades, así como separan de forma natural los datos de los resultados. Permite la detección de errores en la definición y verificación del modelo, además, simplifica en gran medida su mantenimiento. Entre los lenguajes de modelado comúnmente conocidos se tienen: GAMS, AMPL, MPL, AIMMS y XPRESS-MP.

2.4.1. Lenguajes algebraicos de modelado [11].

Los lenguajes algebraicos de modelado son lenguajes de alto nivel que han sido específicamente diseñados para el desarrollo e implantación de modelos matemáticos de optimización, de una forma más directa para el desarrollador y más inteligible para los usuarios. Entre sus principales características y ventajas se destacan las siguientes:

- Proporcionan una formulación sencilla de modelos grandes y complejos.
- Mejoran la productividad de los modeladores ya que no pierden su tiempo en la codificación del mismo y se centran más al diseño, ejecución y análisis del modelo y sus resultados.
- Cuenta con una representación concisa y exacta de los parámetros, variables y sus relaciones.
- Recogen de manera simultánea la estructura del modelo y su documentación.
- Separa naturalmente los datos de la estructura del modelo con los algoritmos de solución.

- La formulación del problema es independiente de su tamaño.
- Los optimizadores pueden ser intercambiados sin dificultad, gracias a esto se pueden probar nuevos optimizadores, nuevos métodos o nuevas versiones.
- Permiten la realización de cambios en el modelo de manera sencilla y segura para poder afrontar un refinamiento continuo en la formulación del problema.

Entre las principales desventajas se pueden mencionar las siguientes:

- No son recomendados en la resolución de problemas de un tamaño pequeño por parte de usuarios esporádicos debido a la barrera de entrada que supone el aprendizaje de un nuevo tipo de lenguaje.
- No se pueden utilizar en la resolución directa de problemas muy grandes en cuya formulación completa no sea posible realizar.
- Cuando el tiempo de ejecución sea un factor crítico, no es recomendable debido a que el tiempo de creación del modelo y la interfaz con el optimizador ralentiza la obtención de la solución.

2.5. DESCRIPCIÓN DEL SOFTWARE AMPL [13].

El Software AMPL es un lenguaje de modelado algebraico utilizado para la programación matemática capaz de expresar en notación algebraica problemas de optimización tales como problemas de programación lineal o no lineal.

AMPL se creó en el año de 1987 en aquella época llamado el Centro de Investigación de Ciencias de la Computación perteneciente a los Laboratorios Bell en donde se crearon varios lenguajes como C, C++ y AWK, por lo que este sistema utiliza similares convenciones de notación que los lenguajes antes mencionados tales como corchetes para subíndices. Originalmente fue diseñado para expresar problemas de programación lineal, paulatinamente se fue expandiendo hasta lograr abarcar problemas de programación no lineal, con restricciones complementarias y variables enteras [14].

Este software está divido en tres subregiones de lenguajes o ficheros: el primero para declaraciones como Set, Var, Param, y declaración de objetivos (minimize o maximize), el segundo es un lenguaje simplificado para asignar valores a conjuntos

y parámetros (secciones de datos), el tercero es un lenguaje de comandos en donde es posible modificar valores, resolver problemas y presentar los resultados de distintas formas [15].

Es importante aclarar que AMPL no resuelve los problemas por sí solo, sino que cuenta con una biblioteca de solucionadores (Solver), los cuales extraen información del problema planteado, una vez encontradas las soluciones, el Solver devuelve el resultado a AMPL para que este lo presente.

CAPÍTULO 3

3. FORMULACIÓN DE MODELO MATEMÁTICO BASADO EN UN PROBLEMA DE OPTIMIZACIÓN PARA RESOLUCIÓN DE FLUJOS DE CARGA EN SISTEMAS DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA.

Recordando que la solución de flujo de carga sirve para mostrar el estado del sistema evaluado en un instante de tiempo determinado representado por las magnitudes de tensión en los nodos, flujos de corriente y potencia por las líneas, pérdidas de potencia y de energía del sistema, entre otras; si bien la mayoría de los modelos de flujos de carga tienen formatos polares o rectangulares en donde la componente angular es parte del análisis, sin embargo, existe otro método para la solución de flujos de carga en redes de distribución en el cual se obtiene un equivalente eléctrico junto con la eliminación del ángulo de tensión que permita trabajar en la solución únicamente con los valores de magnitud de la tensión [16].

Figura 3.1 Esquema radial de una línea de distribución.

En base a la figura anterior se plantean las siguientes ecuaciones de inyección de potencia activa y reactiva en los nodos para un sistema de distribución radial [17]:

$$P_{k} = (P_{km} + R_{km}I_{km}^{2}) - (P_{jk})$$
$$Q_{k} = (Q_{km} + X_{km}I_{km}^{2}) - (Q_{jk})$$

En donde los términos $R_{km}I_{km}^2 y X_{km}I_{km}^2$ corresponden a las pérdidas activas y reactivas entre los nodos "*k*" *y* "*m*". Las ecuaciones anteriores indican que la potencia en la barra *k* es igual a la que se transfiere desde la barra "*k*" a la barra "*m*" más las pérdidas en este recorrido, menos la potencia que llega de la barra "*j*" a la

barra "k".

El valor de caída de tensión entre los nodos "k" y "m" está definido por la siguiente fórmula:

$$\overrightarrow{V_k} - \overrightarrow{V_m} = \overrightarrow{I_{km}}(R_{km} + jX_{km})$$

En donde, la corriente I_{km} también puede ser expresada como:

$$\overrightarrow{I_{km}} = \left(\frac{P_{km} + jQ_{km}}{\overrightarrow{V_k}}\right)^*$$

Reemplazando el valor de la corriente en la expresión de caída de tensión se tiene:

$$\left(\overrightarrow{V_k} - \overrightarrow{V_m}\right)\overrightarrow{V_k^*} = (P_{km} - jQ_{km})(R_{km} + jX_{km})$$

Sabiendo que:

$$\overrightarrow{V_k} = V_k(\cos\theta_k + j \sin\theta_k)$$
$$\overrightarrow{V_m} = V_m(\cos\theta_m + j \sin\theta_m)$$
$$\theta_{km} = \theta_k - \theta_m$$

Se tiene la siguiente expresión:

$$(V_k(\cos\theta_k + j \sin\theta_k) - V_m(\cos\theta_m + j \sin\theta_m))V_k(\cos\theta_k - j \sin\theta_k)$$

= $(P_{km} - jQ_{km})(R_{km} + jX_{km})$

$$V_k^2(\cos^2\theta_k + \sin^2\theta_k) - V_kV_m(\cos\theta_{km} + j\sin\theta_{km}) = (P_{km} - jQ_{km})(R_{km} + jX_{km})$$

Sabiendo, además, que $\cos^2 \theta_k + \sin^2 \theta_k = 1$, se tiene:

$$V_k^2 - V_k V_m(\cos \theta_{km} + j \sin \theta_{km}) = (P_{km} - jQ_{km})(R_{km} + jX_{km})$$

Ahora se separan las componentes reales e imaginarias de la ecuación anterior teniendo así:

Andrés Mauricio Valladarez Briones.

$$V_k V_m \cos \theta_{km} = V_k^2 - (R_{km} P_{km} + X_{km} Q_{km})$$
$$V_k V_m \sin \theta_{km} = R_{km} Q_{km} - X_{km} P_{km}$$

Elevamos al cuadrado cada ecuación para eliminar la componente angular, de esta manera:

$$V_k^2 V_m^2 \cos^2 \theta_{km} = \left(V_k^2 - (R_{km}P_{km} + X_{km}Q_{km})\right)^2$$
$$V_k^2 V_m^2 \sin^2 \theta_{km} = (R_{km}Q_{km} - X_{km}P_{km})^2$$

Luego sumamos ambas ecuaciones:

$$V_{k}^{2}V_{m}^{2}(\cos^{2}\theta_{km} + \sin^{2}\theta_{km})$$

= $V_{k}^{4} - 2V_{k}^{2}(R_{km}P_{km} + X_{km}Q_{km}) + R_{km}^{2}P_{km}^{2} + 2(R_{km}P_{km}X_{km}Q_{km})$
+ $X_{km}^{2}Q_{km}^{2} + R_{km}^{2}Q_{km}^{2} - 2(X_{km}P_{km}R_{km}Q_{km}) + X_{km}^{2}P_{km}^{2}$

$$V_k^2 V_m^2 (\cos^2 \theta_{km} + \sin^2 \theta_{km})$$

= $V_k^4 - 2V_k^2 (R_{km} P_{km} + X_{km} Q_{km}) + R_{km}^2 P_{km}^2 + X_{km}^2 Q_{km}^2 + R_{km}^2 Q_{km}^2$
+ $X_{km}^2 P_{km}^2$

$$V_{k}^{2}V_{m}^{2} + 2V_{k}^{2}(R_{km}P_{km} + X_{km}Q_{km}) = V_{k}^{4} + R_{km}^{2}(P_{km}^{2} + Q_{km}^{2}) + X_{km}^{2}(P_{km}^{2} + Q_{km}^{2})$$
$$V_{k}^{2}(V_{m}^{2} + 2(R_{km}P_{km} + X_{km}Q_{km})) = V_{k}^{4} + Z_{km}^{2}(P_{km}^{2} + Q_{km}^{2})$$

Recordando que la inyección de flujo de corriente también puede ser expresado en términos cuadráticos como:

$${I_{km}}^2 = \frac{{P_{km}}^2 + {Q_{km}}^2}{{V_k}^2}$$

Se lo reemplaza en la ecuación anterior teniendo:

$$V_k^2 (V_m^2 + 2(R_{km}P_{km} + X_{km}Q_{km})) = V_k^4 + Z_{km}^2 I_{km}^2 V_k^2$$

Por lo tanto, eliminando el término V_k^2 se tiene:

Andrés Mauricio Valladarez Briones.

$$V_m^2 + 2(R_{km}P_{km} + X_{km}Q_{km}) = V_k^2 + Z_{km}^2 I_{km}^2$$
$$V_k^2 - V_m^2 = 2(R_{km}P_{km} + X_{km}Q_{km}) - (R_{km}^2 + X_{km}^2)I_{km}^2$$

De esta manera, se pueden definir las restricciones generalizadas del problema de la siguiente manera, en donde "B" hace referencia a los nodos o barras del sistema y "BR" a las líneas o ramales del mismo.

$$P_{k} = \sum_{j \in \alpha(k)} (P_{km} + R_{km}I_{km}^{2}) - \sum_{j \in \alpha(k)} (P_{jk}) \quad \forall k \in B$$
$$Q_{k} = \sum_{j \in \alpha(k)} (Q_{km} + X_{km}I_{km}^{2}) - \sum_{j \in \alpha(k)} (Q_{jk}) \quad \forall k \in B$$
$$V_{k}^{2} - V_{m}^{2} = 2(R_{km}P_{km} + X_{km}Q_{km}) - (R_{km}^{2} + X_{km}^{2})I_{km}^{2} \quad \forall km \in BR$$
$$V_{m}^{2}I_{km}^{2} = P_{km}^{2} + Q_{km}^{2} \quad \forall km \in BR$$

Estas ecuaciones se las utiliza para formular el modelo matemático basado en un problema de optimización tomando en cuenta que éstas se convierten en las restricciones del modelo. Además se define la función objetivo la cual se basa en minimizar las pérdidas de potencia real del sistema [18]. De esta manera se elabora el modelo del flujo de carga para redes radiales de distribución como un problema de optimización no lineal no convexo expresado de la siguiente manera:

$$\min \sum_{j \in \alpha(k)} R_{km} I_{km}^2 \quad \forall km \in BR$$

sujeto a:

$$P_{k} = \sum_{j \in \alpha(k)} (P_{km} + R_{km}I_{km}^{2}) - \sum_{j \in \alpha(k)} (P_{jk}) \quad \forall k \in B$$
$$Q_{k} = \sum_{j \in \alpha(k)} (Q_{km} + X_{km}I_{km}^{2}) - \sum_{j \in \alpha(k)} (Q_{jk}) \quad \forall k \in B$$
$$V_{k}^{2} - V_{m}^{2} = 2(R_{km}P_{km} + X_{km}Q_{km}) - (R_{km}^{2} + X_{km}^{2})I_{km}^{2} \quad \forall km \in BR$$

$$V_m^2 I_{km}^2 = P_{km}^2 + Q_{km}^2 \quad \forall km \in BR$$
$$P_k = P_k^{SE} - P_k^D \; \forall km \in B$$
$$Q_k = Q_k^{SE} - Q_k^D \; \forall km \in B$$

Este es un problema no lineal debido a los términos cuadráticos que se encuentran tanto en las restricciones como en la función objetivo esto es, los términos de corriente " I_{km}^2 " y los de tensión " V_k^2 " y " V_m^2 ". Sin embargo es posible eliminar la no linealidad del problema utilizando variables auxiliares que representen a estos términos cuadráticos de la siguiente forma: $i_{km} = I_{km}^2$, $v_k = V_k^2$ y $v_m = V_m^2$, además, se puede convexificar la ecuación de inyección de flujo de potencia aparente en las líneas mediante la programación cónica de segundo orden (SOCP por sus siglas en inglés) [19] en donde se relaja a una restricción de desigualdad $v_m i_{km} \ge P_{km}^2 + Q_{km}^2$. De esta manera se elabora el modelo del flujo de carga para redes radiales de distribución como un problema de optimización lineal convexo expresado de la siguiente manera:

$$\min \sum_{j \in \alpha(k)} R_{km} i_{km} \ \forall km \in BR$$

sujeto a:

$$P_k^{SE} - P_k^D = \sum_{j \in \alpha(k)} (P_{km} + R_{km}i_{km}) - \sum_{j \in \alpha(k)} (P_{jk}) \quad \forall k \in B$$
$$Q_k^{SE} - Q_k^D = \sum_{j \in \alpha(k)} (Q_{km} + X_{km}i_{km}) - \sum_{j \in \alpha(k)} (Q_{jk}) \quad \forall k \in B$$
$$v_k - v_m = 2(R_{km}P_{km} + X_{km}Q_{km}) - (R_{km}^2 + X_{km}^2)i_{km} \quad \forall km \in BR$$
$$v_m i_{km} \ge P_{km}^2 + Q_{km}^2 \quad \forall km \in BR$$

Esta información es la que será ingresada en el programa AMPL para realizar las pruebas y comparaciones de resultados frente a los métodos iterativos que ofrece la herramienta Cymdist, primero en un sistema de prueba, para posteriormente

proceder a realizar el análisis de flujos de carga con sistemas reales.

En la tabla 3.1, se muestran los resultados de la solución del problema de flujo de carga para el sistema de 4 barras de IEEE utilizando el modelo propuesto (el cual brinda una solución óptima global) frente a las técnicas iterativas de la herramienta Cymdist y un método iterativo Forward and Backward ejecutado en Excel (estas últimas brindan resultados óptimos locales).

COMPARACION DE RESULTADOS DE SISTEMA EQUILIBRADO											
	BAR	RA2	BARR	A 3	BARR	A 4	PERDIDAS	PERDIDAS	POTEN	CIA EN SUB	ESTACION
SIMULACION	CORRIENTE	TENSION	CORRIENTE	TENSION	CORRIENTE	TENSION	POR FASE	TOTALES	ACTIVA	REACTIVA	APARENTE
	(A)	(kV)	(A)	(kV)	(A)	(kV)	(kW)	(kW)	(kV)	(kVAR)	(kVA)
CYME NEWTON-RAPHSON	77.25	7.18	77.26	7.17	77.26	6.97	6.05	18.16	1518.16	692.28	1668.55
CYME GAUSS-SEIDEL	77.26	7.18	77.26	7.17	77.26	6.97	6.10	18.29	1518.30	692.25	1668.66
CYME DESACOPLADO RAPIDO	77.25	7.18	77.26	7.17	77.26	6.97	6.04	18.13	1518.13	692.24	1668.50
CYME CAIDAS DE TENSION	77.25	7.18	77.26	7.17	77.26	6.97	6.05	18.16	1518.16	692.27	1668.55
ITERATIVO FORWARD AND BACKWARD	77.14	7.19	77.14	7.17	77.14	6.98	6.05	18.15	1516.65	689.78	1666.14
METODO PROPUESTO	77.27	7.18	77.27	7.17	77.27	6.97	6.06	18.17	1518.2	693.13	1668.91

Tabla 3.1	Resultados	del sistema	equilibrado.
-----------	------------	-------------	--------------

Para comparar estos resultados se realiza una tabla en la que se muestra la diferencia entre cada método utilizado con respecto al modelo propuesto.

DIFERENCIA CON RESPECTO AL METODO PROPUESTO												
SIMULACION	BAR	RA2	A2 BARRA 3		BARRA 4		PERDIDAS	PERDIDAS	POTEN	CIA EN SUB	ESTACION	MAXIMA
SINULACION	CORRIENTE	TENSION	CORRIENTE	TENSION	CORRIENTE	TENSION	POR FASE	TOTALES	ACTIVA	REACTIVA	APARENTE	DIFERENCIA
CYME NEWTON-RAPHSON	-0.023%	0.063%	-0.014%	-0.058%	-0.014%	-0.009%	- <mark>0.037%</mark>	-0.037%	0.000%	-0.123%	-0.021%	0.063%
CYME GAUSS-SEIDEL	-0.017%	0.063%	-0.010%	-0.058%	-0.010%	-0.009%	0.688%	0.688%	0.008%	-0.128%	-0.015%	0.688%
CYME DESACOPLADO RAPIDO	-0.026%	0.063%	-0.014%	-0.058%	-0.014%	-0.009%	-0.237%	-0.237%	-0.003%	-0.129%	-0.024%	0.237%
CYME CAIDAS DE TENSION	-0.025%	0.063%	-0.016%	-0.058%	-0.016%	-0.008%	-0.038%	-0.038%	0.000%	-0.123%	-0.021%	0.063%
ITERATIVO FORWARD AND BACKWARD	-0.168%	0.070%	-0.168%	-0.045%	-0.168%	0.166%	-0.106%	-0.106%	-0.100%	-0.483%	-0.166%	0.168%
MAXIMA DIFERENCIA	0.026%	0.063%	0.016%	0.058%	0.016%	0.009%	0.688%	0.688%	0.008%	0.129%	0.024%	0.688%

Tabla 3.2 Diferencia de resultados con respecto al modelo propuesto.

De la tabla anterior se puede observar que existe una diferencia muy pequeña entre los resultados obtenidos.

- En lo referente a corrientes en barra, la máxima diferencia tiene un valor de 0.168% en todas las barras y corresponde al método iterativo Forward and Backward realizada en Excel.
- Para las tensiones en barra, la máxima diferencia es de 0.166% en la barra 4 y se da con el método iterativo Forward and Backward realizada en Excel.

- Con relación a las pérdidas totales y por fase, la máxima diferencia se encentra en el método iterativo de Gauss-Seidel ejecutado con la herramienta Cymdist, su valor es de 0.688%.
- Con relación a la potencia activa en la subestación o cabecera de alimentador, se observa que la máxima diferencia se da con el método iterativo Forward and Backward realizada en Excel con un valor del 0.100%.
- Con respecto a la potencia reactiva y aparente, se observa que la máxima diferencia se encuentra en el método iterativo Forward and Backward realizada en Excel, con valores del 0.483% y 0.166% respectivamente.

CAPÍTULO 4

4. IMPLEMENTACIÓN DEL MODELO MATEMÁTICO EN REDES DEL SISTEMA DE DITRIBUCIÓN DE LA EMPRESA ELÉCTRICA REGIONAL CENTRO SUR.

Una vez formulado el modelo matemático basado en un problema de optimización para la resolución de flujos de carga en sistemas de distribución de energía eléctrica, establecido en el capítulo 3, se procede realizar el cálculo de flujos de carga en varios alimentadores de la Centro Sur.

Debido a que el alcance de esta tesis se basa en un sistema equilibrado, se implementó el modelo de flujo de carga monofásico ya que se puede tratar a los sistemas trifásicos balanceados como sistemas monofásicos, teniendo como consideración que al final los valores de potencias y pérdidas se multiplican por 3 para obtener los resultados como un sistema trifásico. De esta manera se identificaron los alimentadores de la empresa que tengan características de un alimentador completamente trifásico, entre los cuales están los alimentadores ubicados en el centro histórico de la ciudad, pertenecientes a las subestaciones 01, 02, además de alimentadores parte de la subestación 04 que particularmente son cargas trifásicas industriales. Los alimentadores con los que se realizará la comparación entre el modelo matemático propuesto en el software AMPL frente a los métodos iterativos del software Cymdist son: 0101, 0102, 0103, 0104 y 0421.

4.1. IMPLEMENTACIÓN DE FLUJO DE CARGA EN REDES DE DISTRIBUCÍON UTILIZANDO EL SOFTWARE CYMDIST.

Definidos los alimentadores que se utilizarán para comparar los resultados del modelo matemático propuesto, se procede a resolver los flujos de carga de estos alimentadores utilizando los métodos iterativos que la herramienta Cymdist ofrece, tales como: métodos de Caída de Tensión, Newton Raphson, Gauss-Seidel, Desacoplado Rápido. A continuación se dará una breve descripción y características de cada alimentador, seguido de los resultados del flujo de carga.

4.1.1. Alimentador 0101.

El alimentador 0101 cuenta con una carga instalada de 4410 kVA distribuidos en 27 transformadores trifásicos, una demanda de 1515 kW de potencia activa y de 282 kVAR de potencia reactiva, 490 cargas de alumbrado público y 3791 clientes. Además cuenta con 189 nodos y 188 líneas de distribución. A continuación se presenta el diagrama unifilar del alimentador.

Figura 4.1 Diagrama del alimentador 0101.

Con estos antecedentes, se procede a realizar el cálculo de flujo de carga del alimentador 0101 con los métodos iterativos descritos anteriormente.

4.1.1.1. Método de Caídas de Tensión.

Se procede a realizar el cálculo de flujos de carga con una precisión del 1% y el modelo de carga como potencia constante. Los resultados se muestran en la siguiente tabla.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	1514.48	282.38	1540.59	98.31
Producción total	1514.48	282.38	1540.59	98.31
Carga leída (no regulada)	1501.73	248.89	1522.22	98.65
Carga utilizada (regulada)	1500.89	248.75	1521.36	98.65
Cargas totales	1500.89	248.75	1521.36	98.65
Pérdidas en las líneas	0.00	0.00	0.00	0.00
Pérdidas en los cables	6.45	5.03	8.18	78.83
Pérdidas de carga del transformador	7.15	28.60	29.48	24.25
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	13.60	33.63	36.28	37.48

Tabla 4.1 Reporte sumario método Caídas de Tensión en alimentador 0101.

4.1.1.2. Método de Newton Raphson.

Se procede a realizar el cálculo de flujos de carga con una precisión del 15 MVA y el modelo de carga como potencia constante. Debido a que se tuvo que ampliar el valor de la precisión a valores relativamente altos, su resultado es erróneo, es por esto que, para los métodos iterativos, es primordial elegir un adecuado margen de tolerancia ya que si bien el sistema puede converger, sin embargo los resultados pueden ser erróneos. Los resultados se muestran en la siguiente tabla.

Resumen total	E W	kuar	EV/A	ED(%)
	N.V.V	KVdi	NVA.	FF(70)
Fuentes (Potencia de equilibrio)	499691930.89	543085977.57	737993499.18	67.71
Producción total	499691930.89	543085977.57	737993499.18	67.71
Carga leída (no regulada)	1501.73	248.89	1522.22	98.65
Carga utilizada (regulada)	465.25	61.91	469.35	99.13
Cargas totales	465.25	61.91	469.35	99.13
Pérdidas en las líneas	0.00	0.00	0.00	0.00
Pérdidas en los cables	502773966.88	542132018.24	739384059.18	68.00
Pérdidas de carga del transformador	-3077801.01	949393.56	3220901.61	-95.56
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	499696165.87	543081411.80	737993006.76	67.71

Tabla 4.2 Reporte sumario método Newton Raphson en alimentador 0101.

4.1.1.3. Método de Gauss - Seidel.

Se procede a realizar el cálculo de flujos de carga con una precisión del 166 MVA y el modelo de carga como potencia constante. Como en el método Newton Raphson, debido a que se tuvo que ampliar el valor de la precisión a valores relativamente altos, su resultado es erróneo, es por esto que, para los métodos iterativos, es primordial elegir un adecuado margen de tolerancia ya que si bien el sistema puede converger, sin embargo los resultados pueden ser erróneos. Los resultados se muestran en la siguiente tabla.

Resumen total	ĸW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	-10406.07	615763.78	615851.71	-1.69
Producción total	-10406.07	615763.78	615851.71	-1.69
Carga leída (no regulada)	1501.73	248.89	1522.22	98.65
Carga utilizada (regulada)	1501.73	248.89	1522.22	98.65
Cargas totales	1501.73	248.89	1522.22	98.65
Pérdidas en las líneas	0.00	0.00	0.00	0.00
Pérdidas en los cables	2849.12	614451.66	614458.27	0.46
Pérdidas de carga del transformador	-14756.96	1063.24	14795.21	-99.74
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	-11907.84	615514.90	615630.08	-1.93

Tabla 4.3 Reporte sumario método Gauss Seidel en alimentador 0101.

4.1.1.4. Método de Desacoplado Rápido.

Se procede a realizar el cálculo de flujos de carga con una precisión del 0.001 MVA y el modelo de carga como potencia constante. Los resultados se muestran en la siguiente tabla.

Tabla 4.4 Reporte sumario método Desacoplado Rápido en alimentador 0101.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	1515.79	282.57	1541.90	98.31
Producción total	1515.79	282.57	1541.90	98.31
Carga leída (no regulada)	1501.73	248.89	1522.22	98.65
Carga utilizada (regulada)	1501.73	248.89	1522.22	98.65
Cargas totales	1501.73	248.89	1522.22	98.65
Pérdidas en las líneas	0.00	0.00	0.00	0.00
Pérdidas en los cables	8.07	-5.23	9.62	-83.92
Pérdidas de carga del transformador	5.98	38.91	39.37	15.19
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	14.06	33.68	36.50	38.51

A continuación, se detalla una tabla comparativa de los resultados obtenidos con los métodos iterativos analizados en este alimentador:

Método	Resumen total	kW	kvar	kVA	FP(%)
	Producción total	1514.48	282.38	1540.59	98.31
Calda de Tension Precisión 1%	Cargas totales	1500.89	248.75	1521.36	98.65
	Pérdidas totales	13.60	33.63	36.28	37.48
	Producción total	1515.79	282.57	1541.90	98.31
Desacoplado Rapido Precisión 0.001 MVA	Cargas totales	1501.73	248.89	1522.22	98.65
	Pérdidas totales	14.06	33.68	36.50	38.51
	Producción total	499691930.89	543085977.57	737993499.18	67.71
Newton Raphson	Cargas totales	465.25	61.91	469.35	99.13
Precision 15 MVA	Pérdidas totales	499696165.87	543081411.80	737993006.76	67.71
2000000000000	Producción total	-10406.07	615763.78	615851.71	-1.69
Gauss Seidel	Cargas totales	1501.73	248.89	1522.22	98.65
TIECISION TOO MIVA	Pérdidas totales	-11907.84	615514.90	615630.08	- <mark>1.9</mark> 3

Tabla 4.5 Resumen de resultados en alimentador 0101.

En la tabla anterior se observa que los métodos de Caída de Tensión y Desacoplado Rápido fueron los únicos que dieron soluciones aceptables, mientras que los métodos de Newton Raphson y Gauss Seidel dieron resultados erróneos debido a que la precisión de convergencia de estos métodos fue muy baja.

4.1.2. Alimentador 0102.

El alimentador 0102 cuenta con una carga instalada de 5137 kVA distribuidos en 37 transformadores trifásicos, una demanda de 1627 kW de potencia activa y de 0 kVAR de potencia reactiva, 531 cargas de alumbrado público y 2112 clientes. Además cuenta con 201 nodos y 201 líneas de distribución. A continuación se presenta el diagrama unifilar del alimentador.

Figura 4.2 Diagrama del alimentador 0102.

Con estos antecedentes, se procede a realizar el cálculo de flujo de carga del alimentador 0102 con los métodos iterativos descritos anteriormente.

4.1.2.1. Método de Caídas de Tensión.

Se procede a realizar el cálculo de flujos de carga con una precisión del 1% y el modelo de carga como potencia constante. Los resultados se muestran en la siguiente tabla.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	1625.51	0.58	1625.51	100.00
Producción total	1625.51	0.58	1625.51	100.00
Carga leída (no regulada)	1611.06	-34.89	1611.43	-99.98
Carga utilizada (regulada)	1610.14	-34.87	1610.52	-99.98
Cargas totales	1610.14	-34.87	1610.52	-99.98
Pérdidas en las líneas	0.00	0.00	0.00	0.00
Pérdidas en los cables	9.04	8.99	12.75	70.89
Pérdidas de carga del transformador	6.33	26.46	27.21	23.27
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	15.37	35.45	38.64	39.77

Tabla 4.6 Reporte sumario método Caídas de Tensión en alimentador 0102.

4.1.2.2. Método de Newton Raphson.

Se procede a realizar el cálculo de flujos de carga con una precisión del 700 MVA y el modelo de carga como potencia constante. Debido a que se tuvo que ampliar el valor de la precisión a valores relativamente altos, su resultado es erróneo, es por esto que, para los métodos iterativos, es primordial elegir un adecuado margen de tolerancia ya que si bien el sistema puede converger, sin embargo los resultados pueden ser erróneos. Los resultados se muestran en la siguiente tabla.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	912217528.28	1394026984.29	1665968802.78	54.76
Generadores	0.00	0.00	0.00	0.00
Producción total	912217528.28	1394026984.29	1665968802.78	54.76
Carga leída (no regulada)	1611.06	-34.89	1611.43	-99.98
Carga utilizada (regulada)	0.00	0.00	0.00	0.00
Cargas totales	0.00	0.00	0.00	0.00
Pérdidas en las líneas	0.00	0.00	0.00	0.00
Pérdidas en los cables	912216682.57	1394032318.17	1665972802.92	54.76
Pérdidas de carga del transformador	0.00	0.00	0.00	0.00
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	912216682.57	1394032318.17	1665972802.92	54.76

Tabla 4.7 Reporte sumario método Newton Raphson en alimentador 0102.

4.1.2.3. Método de Gauss - Seidel.

Se procede a realizar el cálculo de flujos de carga con una precisión del 100 MVA y el modelo de carga como potencia constante. Como en el método Newton Raphson, debido a que se tuvo que ampliar el valor de la precisión a valores relativamente altos, su resultado es erróneo, es por esto que, para los métodos iterativos, es primordial elegir un adecuado margen de tolerancia ya que si bien el sistema puede converger, sin embargo los resultados pueden ser erróneos. Los resultados se muestran en la siguiente tabla.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	-30554.06	404508.65	405660.94	-7.53
Producción total	-30554.06	404508.65	405660.94	-7.53
Carga leída (no regulada)	1611.06	-34.89	1611.43	-99.98
Carga utilizada (regulada)	1611.06	-34.89	1611.43	-99.98
Cargas totales	1611.06	-34.89	1611.43	-99.98
Pérdidas en las líneas	0.00	0.00	0.00	0.00
Pérdidas en los cables	-21697.16	402718.77	403302.83	-5.38
Pérdidas de carga del transformador	-10467.76	1824.60	10625.59	-98.51
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	-32164.92	404543.37	405820.06	-7.93

Tabla 4.8 Reporte sumario método Gauss Seidel en alimentador 0102.

4.1.2.4. Método de Desacoplado Rápido.

Se procede a realizar el cálculo de flujos de carga con una precisión del 0.1 MVA y el modelo de carga como potencia constante. Los resultados se muestran en la siguiente tabla.

Tabla 4.9 Reporte sumario método Desacoplado Rápido en alimentador 0102.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	1632.36	0.62	1632.36	100.00
Producción total	1632.36	0.62	1632.36	100.00
Carga leída (no regulada)	1611.06	-34.89	1611.43	-99.98
Carga utilizada (regulada)	1611.06	-34.89	1611.43	-99.98
Cargas totales	1611.06	-34.89	1611.43	-99.98
Pérdidas en las líneas	0.00	0.00	0.00	0.00
Pérdidas en los cables	13.57	1.51	13.65	99.39
Pérdidas de carga del transformador	7.73	34.00	34.86	22.17
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	21.30	35.51	41.41	51.45

A continuación se detalla una tabla comparativa de los resultados obtenidos con los métodos iterativos analizados en este alimentador:

Método	Resumen total	kW	kvar	kVA	FP(%)
	Producción total	1625.51	0.58	1625.51	100.00
Laida de Tension Precisión 1%	Cargas totales	1610.14	-34.87	1610.52	-99.98
Frecision 1/2	Pérdidas totales	15.37	35.45	38.64	39.77
	Producción total	1632.36	0.62	1632.36	100.00
Desacoplado Hápido Precisión 0.1 MVA	Cargas totales	1611.06	-34.89	1611.43	-99.98
	Pérdidas totales	21.30	35.51	41.41	51.45
	Producción total	912217528.28	1394026984.29	1665968802.78	54.76
Newton Haphson Precisión 700 MVA	Cargas totales	0.00	0.00	0.00	0.00
FIECISION 700 MYA	Pérdidas totales	912216682.57	1394032318.17	1665972802.92	54.76
	Producción total	-30554.06	404508.65	405660.94	-7.53
Gauss Seidel Precisión 100 MVA	Cargas totales	1611.06	-34.89	1611.43	-99.98
	Pérdidas totales	-32164.92	404543.37	405820.06	-7.93

Tabla 4.10 Resumen de resultados en alimentador 0102.

En la tabla anterior se observa que los métodos de Caída de Tensión y Desacoplado Rápido fueron los únicos que dieron soluciones aceptables, mientras que los métodos de Newton Raphson y Gauss Seidel dieron resultados erróneos debido a que la precisión de convergencia de estos métodos fue muy baja.

4.1.3. Alimentador 0103.

El alimentador 0103 cuenta con una carga instalada de 2715 kVA distribuidos en 14 transformadores trifásicos, una demanda de 1043 kW de potencia activa y de -119 kVAR de potencia reactiva, 247 cargas de alumbrado público y 2201 clientes. Además cuenta con 101 nodos y 100 líneas de distribución. A continuación se presenta el diagrama unifilar del alimentador.

Figura 4.3 Diagrama del alimentador 0103.

Con estos antecedentes, se procede a realizar el cálculo de flujo de carga del alimentador 0103 con los métodos iterativos descritos anteriormente.

4.1.3.1. Método de Caídas de Tensión.

Se procede a realizar el cálculo de flujos de carga con una precisión del 1% y el modelo de carga como potencia constante. Los resultados se muestran en la siguiente tabla.

Resumen total				
	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	1042.31	-118.85	1049.06	-99.36
Producción total	1042.31	-118.85	1049.06	-99.36
Carga leída (no regulada)	1033.82	-143.35	1043.71	-99.05
Carga utilizada (regulada)	1033.92	-143.27	1043.80	-99.05
Cargas totales	1033.92	-143.27	1043.80	-99.05
Pérdidas en las líneas	0.00	0.00	0.00	0.00
Pérdidas en los cables	3.05	3.04	4.31	70.81
Pérdidas de carga del transformador	5.34	21.37	22.03	24.25
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	8.39	24.41	26.06	35.01

Tabla 4.11 Reporte sumario método Caídas de Tensión en alimentador 0103.

4.1.3.2. Método de Newton Raphson.

Se procede a realizar el cálculo de flujos de carga con una precisión del 360 MVA y el modelo de carga como potencia constante. Debido a que se tuvo que ampliar el valor de la precisión a valores relativamente altos, su resultado es erróneo, es por esto que, para los métodos iterativos, es primordial elegir un adecuado margen de tolerancia ya que si bien el sistema puede converger, sin embargo los resultados pueden ser erróneos. Los resultados se muestran en la siguiente tabla.

Resumen total				
	kW	kvar	KVA	FP(%)
Fuentes (Potencia de equilibrio)	918394538.38	1375773720.51	1654146867.17	55.52
Producción total	918394538.38	1375773720.51	1654146867.17	55.52
Carga leída (no regulada)	1033.82	-143.35	1043.71	-99.05
Carga utilizada (regulada)	785.94	-107.06	793.19	-99.08
Cargas totales	785.94	-107.06	793.19	-99.08
Pérdidas en las líneas	0.00	0.00	0.00	0.00
Pérdidas en los cables	918268779.33	1375809502.45	1654106809.77	55.51
Pérdidas de carga del transformador	125265.18	-36339.92	130429.89	-96.04
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	918394045.24	1375773162.54	1654146129.30	55.52

Tabla 4.12 Reporte sumario método Newton Raphson en alimentador 0103.

4.1.3.3. Método de Gauss - Seidel.

Se procede a realizar el cálculo de flujos de carga con una precisión del 51 MVA y el modelo de carga como potencia constante. Como en el método Newton Raphson, debido a que se tuvo que ampliar el valor de la precisión a valores relativamente altos, su resultado es erróneo, es por esto que, para los métodos iterativos, es primordial elegir un adecuado margen de tolerancia ya que si bien el sistema puede converger, sin embargo los resultados pueden ser erróneos. Los resultados se muestran en la siguiente tabla.

Resumen total	L'AV	huar	LV/A	ED/(4)
	NAA.	KVdi	KV/N	FF(70)
Fuentes (Potencia de equilíbrio)	-22193.77	357062.41	357751.49	-6.20
Producción total	-22193.77	357062.41	357751.49	-6.20
Carga leída (no regulada)	1033.82	-143.35	1043.71	-99.05
Carga utilizada (regulada)	1033.82	-143.35	1043.71	-99.05
Cargas totales	1033.82	-143.35	1043.71	-99.05
Pérdidas en las líneas	0.00	0.00	0.00	0.00
Pérdidas en los cables	-17036.58	356571.31	356978.07	-4.77
Pérdidas de carga del transformador	-6191.07	634.50	6223.50	-99.48
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	-23226.92	357205.80	357960.16	-6.49

Tabla 4.13 Reporte sumario método Gauss Seidel en alimentador 0103.

4.1.3.4. Método de Desacoplado Rápido.

Se procede a realizar el cálculo de flujos de carga con una precisión del 0.1 MVA y el modelo de carga como potencia constante. Los resultados se muestran en la siguiente tabla.

Tabla 4.14 Reporte sumario método Desacoplado Rápido en alimentador 0103.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	1054.73	-118.96	1061.42	-99.37
Producción total	1054.73	-118.96	1061.42	-99.37
Carga leída (no regulada)	1033.82	-143.35	1043.71	-99.05
Carga utilizada (regulada)	1033.82	-143.35	1043.71	-99.05
Cargas totales	1033.82	-143.35	1043.71	-99.05
Pérdidas en las líneas	0.00	0.00	0.00	0.00
Pérdidas en los cables	14.32	-4.43	14.99	-95.54
Pérdidas de carga del transformador	6.60	28.82	29.57	22.31
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	21.65	24.40	32.62	66.37

A continuación se detalla una tabla comparativa de los resultados obtenidos con los métodos iterativos analizados en este alimentador:

Método	Resumen total	kW	kvar	kVA	FP(%)
	Producción total	1042.31	-118.85	1049.06	-99.36
Precisión 1%	Cargas totales	1033.92	-143.27	1043.80	-99.05
FIECISION 1/6	Pérdidas totales	8.39	24.41	26.06	35.01
Desacoplado	Producción total	1054.73	-118.96	1061.42	-99.37
Rápido Precisión 0.1 MVA	Cargas totales	1033.82	-143.35	1043.71	-99.05
	Pérdidas totales	21.65	24.40	32.62	66.37
Newter Deskars	Producción total	918394538.38	1375773720.51	1654146867.17	55.52
Precisión 360 MVA	Cargas totales	785.94	-107.06	793.19	-99.08
	Pérdidas totales	918394045.24	1375773162.54	1654146129.30	55.52
	Producción total	-22193.77	357062.41	357751.49	-6.20
Precisión 51 MVA	Cargas totales	1033.82	-143.35	1043.71	-99.05
	Pérdidas totales	-23226.92	357205.80	357960.16	-6.49

Tabla 4.15 Resumen de resultados en alimentador 0103.

En la tabla anterior se observa que los métodos de Caída de Tensión y Desacoplado Rápido fueron los únicos que dieron soluciones aceptables, mientras que los métodos de Newton Raphson y Gauss Seidel dieron resultados erróneos debido a que la precisión de convergencia de estos métodos fue muy baja.

4.1.4. Alimentador 0104.

El alimentador 0104 cuenta con una carga instalada de 4760 kVA distribuidos en 64 transformadores trifásicos, una demanda de 1876 kW de potencia activa y de 399 kVAR de potencia reactiva, 751 cargas de alumbrado público y 4753 clientes. Además cuenta con 568 nodos y 567 líneas de distribución. A continuación se presenta el diagrama unifilar del alimentador.

Figura 4.4 Diagrama del alimentador 0104.

Con estos antecedentes, se procede a realizar el cálculo de flujo de carga del alimentador 0104 con los métodos iterativos descritos anteriormente.

4.1.4.1. Método de Caídas de Tensión.

Se procede a realizar el cálculo de flujos de carga con una precisión del 1% y el modelo de carga como potencia constante. Los resultados se muestran en la siguiente tabla.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	1874.13	398.66	1916.06	97.81
Producción total	1874.13	398.66	1916.06	97.81
Carga leída (no regulada)	1845.85	348.80	1878.52	98.26
Carga utilizada (regulada)	1848.78	348.48	1881.34	98.27
Cargas totales	1848.78	348.48	1881.34	98.27
Pérdidas en las líneas	16.12	16.25	22.88	70.42
Pérdidas en los cables	0.59	0.55	0.81	73.10
Pérdidas de carga del transformador	8.64	34.57	35.64	24.25
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	25.35	51.37	59.51	50.46

Tabla 4.16 Reporte sumario método Caídas de Tensión en alimentador 0104.

4.1.4.2. Método de Newton Raphson.

Se procede a realizar el cálculo de flujos de carga con una precisión del 15 MVA y el modelo de carga como potencia constante. Debido a que se tuvo que ampliar el valor de la precisión a valores relativamente altos, su resultado es erróneo, es por esto que, para los métodos iterativos, es primordial elegir un adecuado margen de tolerancia ya que si bien el sistema puede converger, sin embargo los resultados pueden ser erróneos. Los resultados se muestran en la siguiente tabla.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	975546647.98	1362989501.33	1676135926.20	58.20
Producción total	975546647.98	1362989501.33	1676135926.20	58.20
Carga leída (no regulada)	1845.85	348.80	1878.52	98.26
Carga utilizada (regulada)	192.77	36.54	196.20	98.25
Cargas totales	192.77	36.54	196.20	98.25
Pérdidas en las líneas	-417.23	22713.95	22717.78	-1.84
Pérdidas en los cables	975547323.99	1362983601.23	1676131521.85	58.20
Pérdidas de carga del transformador	-498.00	-18643.18	18649.83	2.67
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	975546413.43	1362987672.00	1676134302.13	58.20

Tabla 4.17 Reporte sumario método Newton Raphson en alimentador 0104.

4.1.4.3. Método de Gauss - Seidel.

Se procede a realizar el cálculo de flujos de carga con una precisión del 130 MVA y el modelo de carga como potencia constante. Como en el método Newton Raphson, debido a que se tuvo que ampliar el valor de la precisión a valores relativamente altos, su resultado es erróneo, es por esto que, para los métodos iterativos, es primordial elegir un adecuado margen de tolerancia ya que si bien el sistema puede converger, sin embargo los resultados pueden ser erróneos. Los resultados se muestran en la siguiente tabla.

Begumen total			2	
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	-66672.38	676687.98	679964.58	-9.81
Producción total	-66672.38	676687.98	679964.58	-9.81
Carga leída (no regulada)	1845.85	348.80	1878.52	98.26
Carga utilizada (regulada)	1845.85	348.80	1878.52	98.26
Cargas totales	1845.85	348.80	1878.52	98.26
Pérdidas en las líneas	29038.09	529755.42	530550.67	5.47
Pérdidas en los cables	-84402.83	143963.78	166881.42	-50.58
Pérdidas de carga del transformador	-13153.31	2620.94	13411.90	-98.07
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	-68513.39	676340.14	679801.49	-10.08

Tabla 4.18 Reporte sumario método Gauss Seidel en alimentador 0104.

4.1.4.4. Método de Desacoplado Rápido.

Se procede a realizar el cálculo de flujos de carga con una precisión del 1 MVA y el modelo de carga como potencia constante. En este caso particular, el programa dio un resultado a un valor bajo de precisión, sin embargo, esta solución es incoherente, esto llama la atención ya que el software no entregó ningún reporte ni de problemas de convergencia ni de solución inválida, tal como indica la siguiente tabla.

Tabla 4.19 Reporte sumario método Desacoplado Rápido en alimentador 0104.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	0.00	0.00	0.00	0.00
Producción total	0.00	0.00	0.00	0.00
Carga leída (no regulada)	1845.85	348.80	1878.52	98.26
Carga utilizada (regulada)	0.00	0.00	0.00	0.00
Cargas totales	0.00	0.00	0.00	0.00
Pérdidas en las líneas	0.00	0.00	0.00	0.00
Pérdidas en los cables	508429673.80	619708140.09	801585249.43	63.43
Pérdidas de carga del transformador	0.00	0.00	0.00	0.00
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	508429678.48	619708140.09	801585252.39	63.43

A continuación se detalla una tabla comparativa de los resultados obtenidos con los métodos iterativos analizados en este alimentador:

Método	Resumen total	kW	kvar	kVA	FP(%)
Caída de Tensión	Producción total	1874.13	398.66	1916.06	97.81
	Cargas totales	1848.78	348.48	1881.34	98.27
	Pérdidas totales	25.35	51.37	59.51	50.46
Desacoplado Rápido	Producción total	0.00	0.00	0.00	0.00
	Cargas totales	0.00	0.00	0.00	0.00
Precisión 1 MVA	Pérdidas totales	508429678.48	619708140.09	801585252.39	63.43
Newton Raphson Precisión 15 MVA	Producción total	975546647.98	1362989501.33	1676135926.20	58.20
	Cargas totales	192.77	36.54	196.20	98.25
	Pérdidas totales	975546413.43	1362987672.00	1676134302.13	58.20
Gauss Seidel Precisión 130 MVA	Producción total	-66672.38	676687.98	679964.58	-9.81
	Cargas totales	1845.85	348.80	1878.52	98.26
	Pérdidas totales	-68513.39	676340.14	679801.49	-10.08

Tabla 4.20 Resumen de resultados en alimentador 0104.

En la tabla anterior se observa que solo el método de Caída de Tensión fue el único que dio una solución aceptable, mientras que los métodos de Newton Raphson, Gauss Seidel y Desacoplado Rápido, dieron resultados erróneos debido a que la precisión de convergencia de estos métodos fue muy baja en los dos primeros casos mientras que en el último es un caso particular ya que no dio una buena solución aun teniendo un valor de precisión bajo.

4.1.5. Alimentador 0421.

El alimentador 0421 cuenta con una carga instalada de 10580 kVA distribuidos en 50 transformadores trifásicos, una demanda de 5037.95 kW de potencia activa y de 1585.72 kVAR de potencia reactiva, 40 cargas de alumbrado público y 73 clientes. Además cuenta con 341 nodos y 340 líneas de distribución. A continuación se presenta el diagrama unifilar del alimentador.

Figura 4.5 Diagrama del alimentador 0421.

Con estos antecedentes, se procede a realizar el cálculo de flujo de carga del alimentador 0421 con los métodos iterativos descritos anteriormente.

4.1.5.1. Método de Caídas de Tensión.

Se procede a realizar el cálculo de flujos de carga con una precisión del 1% y el modelo de carga como potencia constante. Los resultados se muestran en la siguiente tabla.

Tabla 4.21 Reporte sumario método Caídas de Tensión en alimentador 0421.

Resumen total	LAW .	lavas	LV A	
	KVV	Kvar	KVA	FP(70)
Fuentes (Potencia de equilibrio)	5034.12	1584.46	5277.58	95.39
Producción total	5034.12	1584.46	5277.58	95.39
Carga leída (no regulada)	4999.30	1439.10	5202.30	96.10
Carga utilizada (regulada)	4994.82	1437.81	5197.64	96.10
Cargas totales	4994.82	1437.81	5197.64	96.10
Pérdidas en las líneas	7.27	11.77	13.84	52.57
Pérdidas en los cables	0.58	0.40	0.71	82.56
Pérdidas de carga del transformador	31.44	139.90	143.39	21.93
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	39.30	152.07	157.06	25.02

4.1.5.2. Método de Newton Raphson.

Para este método, el software no dio ninguna solución a pesar de que se trató de asignar un valor elevado de precisión.

4.1.5.3. Método de Gauss - Seidel.

Se procede a realizar el cálculo de flujos de carga con una precisión del 315 MVA y el modelo de carga como potencia constante. Como en el método Newton Raphson, debido a que se tuvo que ampliar el valor de la precisión a valores relativamente altos, su resultado es erróneo, es por esto que, para los métodos iterativos, es primordial elegir un adecuado margen de tolerancia ya que si bien el sistema puede converger, sin embargo los resultados pueden ser erróneos. Los resultados se muestran en la siguiente tabla.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	-1090925.59	4076672.14	4220115.45	-25.85
Producción total	-1090925.59	4076672.14	4220115.45	-25.85
Carga leída (no regulada)	4999.30	1439.10	5202.30	96.10
Carga utilizada (regulada)	4999.30	1439.10	5202.30	96.10
Cargas totales	4999.30	1439.10	5202.30	96.10
Pérdidas en las líneas	-400260.06	3622102.45	3644150.69	-10.98
Pérdidas en los cables	-665547.77	452005.30	804526.34	-82.73
Pérdidas de carga del transformador	-30116.59	1131.21	30137.83	-99.93
Pérdidas en vacío del transformador	0.00	0.00	0.00	0.00
Pérdidas totales	-1095924.42	4075238.97	4220026.42	-25.97

Tabla 4.22 Reporte sumario método Gauss Seidel en alimentador 0421.

4.1.5.4. Método de Desacoplado Rápido.

Para este método, es programa no dio ninguna solución a pesar de que se trató de asignar un valor elevado de precisión.

A continuación se detalla una tabla comparativa de los resultados obtenidos con los métodos iterativos analizados en este alimentador:

Método	Resumen total	kW	kvar	kVA	FP(%)
Caída de Tensión Precisión 1%	Producción total	5034.12	1584.46	5277.58	95.39
	Cargas totales	4994.82	1437.81	5197.64	96.10
	Pérdidas totales	39.30	152.07	157.06	25.02
Desacoplado Rápido	Producción total	NIC	NIC	NIC	N⊮C
	Cargas totales	NIC	NIC	NIC	N⊮C
Precisión 1 MVA	Pérdidas totales	NIC	NIC	NIC	N⊮C
Newton Raphson Precisión 1000 MVA	Producción total	NIC	NIC	NIC	N⊮C
	Cargas totales	NIC	NIC	NIC	N⊮C
	Pérdidas totales	NIC	NIC	NIC	NIC
Gauss Seidel Precisión 315 MVA	Producción total	-1090925.59	4076672.14	4220115.45	-25.85
	Cargas totales	4999.30	1439.10	5202.30	96.10
	Pérdidas totales	-1095924.42	4075238.97	4220026.42	-25.97

Tabla 4.23 Resumen de resultados en alimentador 0421

En la tabla anterior se observa que solo el método de Caída de Tensión fue el único que dio una solución aceptable, mientras que el método Gauss Seidel dio resultados erróneos debido a que la precisión de convergencia de estos métodos fue muy baja. Así también, se observa que los métodos de Newton Raphson y Desacoplado Rápido no entregaron ninguna solución, por lo tanto el sistema no converge aun asignando una precisión baja.

De esta manera se puede concluir que el mejor método para la solución de flujos de carga para redes balanceadas en sistemas de distribución que el software Cymdist entrega como algoritmos de solución es el método de Caídas de Tensión ya que entrega soluciones con un valor bajo de tolerancia en todos los casos evaluados. Por lo tanto, el modelo matemático planteado en este documento se comparará contra este método para encontrar diferencias y similitudes en sus resultados.

4.2. IMPLEMENTACIÓN DEL MODELO DE FLUJO DE CARGA MONOFÁSICO BASADO EN OPTIMIZACIÓN MATEMÁTICA.

Luego de resolver los flujos de carga mediante la herramienta Cymdist, se procede a resolver el problema de flujos carga de los alimentadores planteados mediante la implementación del modelo matemático propuesto.

4.2.1. Alimentador 0101.

En la subregión o fichero para conjuntos y parámetros se ingresan los insumos de datos del sistema tales como potencia activa y reactiva en cada nodo, impedancias por las líneas de distribución expresadas en ohmios (Ω) y parámetros de cabecera del alimentador como capacidad de la subestación, potencia y tensión base, tensión nominal y de servicio tanto de fase como de línea y definición del tipo en nodo.

Los resultados del flujo de carga del alimentador 0101 se detallan en los siguientes párrafos, teniendo en cuenta que son obtenidos del fichero de presentación de resultados de la herramienta AMPL.

Primero se obtienen los valores de pérdidas de potencia activa generadas en las líneas y transformadores (ver Anexo 1) así como las pérdidas totales del sistema que para este alimentador es de 13.59 kW y de 4.53 kW de pérdidas por fase.

Luego se obtienen los valores de tensión de línea y por fase en cada nodo (ver Anexo 2), en la cual se puede observar la caída de tensión que se produce aguas abajo de la subestación.

Posteriormente se obtienen los datos de potencia activa, reactiva y aparente en cabecera del alimentador, así como potencia activa y reactiva de paso en cada línea de distribución (ver Anexo 3), en la cual se puede observar la distribución de potencia en función de la carga conectada aguas abajo de la subestación.

Finalmente se obtienen los valores de corriente en cada línea de distribución (ver Anexo 4), en la cual se puede observar la capacidad de flujo de corriente por las líneas en función de la carga conectada aguas abajo de la subestación.

4.2.2. Alimentador 0102.

En la subregión o fichero para conjuntos y parámetros se ingresan los insumos de datos del sistema tales como potencia activa y reactiva en cada nodo, impedancias por las líneas de distribución expresadas en ohmios (Ω) y parámetros de cabecera del alimentador como capacidad de la subestación, potencia y tensión base, tensión nominal y de servicio tanto de fase como de línea y definición del tipo en nodo.

Los resultados del flujo de carga del alimentador 0102 se detallan en los siguientes párrafos, teniendo en cuenta que son obtenidos del fichero de presentación de resultados de la herramienta AMPL.

Primero se obtienen los valores de pérdidas de potencia activa generadas en las líneas y transformadores (ver Anexo 5) así como las pérdidas totales del sistema que para este alimentador es de 15.36 kW y de 5.12 kW de pérdidas por fase.

Luego se obtienen los valores de tensión de línea y por fase en cada nodo (ver Anexo 6), en la cual se puede observar la caída de tensión que se produce aguas abajo de la subestación.

Posteriormente se obtienen los datos de potencia activa, reactiva y aparente en cabecera del alimentador, así como potencia activa y reactiva de paso en cada línea de distribución (ver Anexo 7), en la cual se puede observar la distribución de potencia en función de la carga conectada aguas abajo de la subestación.

Finalmente se obtienen los valores de corriente en cada línea de distribución (ver Anexo 8), en la cual se puede observar la capacidad de flujo de corriente por las líneas en función de la carga conectada aguas abajo de la subestación.

4.2.3. Alimentador 0103.

En la subregión o fichero para conjuntos y parámetros se ingresan los insumos de datos del sistema tales como potencia activa y reactiva en cada nodo, impedancias por las líneas de distribución expresadas en ohmios (Ω) y parámetros de cabecera del alimentador como capacidad de la subestación, potencia y tensión base, tensión nominal y de servicio tanto de fase como de línea y definición del tipo en nodo.

Los resultados del flujo de carga del alimentador 0103 se detallan en los siguientes párrafos, teniendo en cuenta que son obtenidos del fichero de presentación de resultados de la herramienta AMPL.

Primero se obtienen los valores de pérdidas de potencia activa generadas en las líneas y transformadores (ver Anexo 9) así como las pérdidas totales del sistema que para este alimentador es de 8.39 kW y de 2.79 kW de pérdidas por fase.

Luego se obtienen los valores de tensión de línea y por fase en cada nodo (ver Anexo 10), en la cual se puede observar la caída de tensión que se produce aguas abajo de la subestación.

Posteriormente se obtienen los datos de potencia activa, reactiva y aparente en cabecera del alimentador, así como potencia activa y reactiva de paso en cada línea de distribución (ver Anexo 11), en la cual se puede observar la distribución de potencia en función de la carga conectada aguas abajo de la subestación.

Finalmente se obtienen los valores de corriente en cada línea de distribución (ver Anexo 12), en la cual se puede observar la capacidad de flujo de corriente por las líneas en función de la carga conectada aguas abajo de la subestación.

4.2.4. Alimentador 0104.

En la subregión o fichero para conjuntos y parámetros se ingresan los insumos de datos del sistema tales como potencia activa y reactiva en cada nodo, impedancias por las líneas de distribución expresadas en ohmios (Ω) y parámetros de cabecera del alimentador como capacidad de la subestación, potencia y tensión base, tensión nominal y de servicio tanto de fase como de línea y definición del tipo en nodo.

Los resultados del flujo de carga del alimentador 0104 se detallan en los siguientes párrafos, teniendo en cuenta que son obtenidos del fichero de presentación de resultados de la herramienta AMPL.

Primero se obtienen los valores de pérdidas de potencia activa generadas en las líneas y transformadores (ver Anexo 13) así como las pérdidas totales del sistema que para este alimentador es de 25.35 kW y de 8.45 kW de pérdidas por fase.

Luego se obtienen los valores de tensión de línea y por fase en cada nodo (ver Anexo 14), en la cual se puede observar la caída de tensión que se produce aguas abajo de la subestación.

Posteriormente se obtienen los datos de potencia activa, reactiva y aparente en cabecera del alimentador, así como potencia activa y reactiva de paso en cada línea de distribución (ver Anexo 15), en la cual se puede observar la distribución de potencia en función de la carga conectada aguas abajo de la subestación.

Finalmente se obtienen los valores de corriente en cada línea de distribución (ver Anexo 16), en la cual se puede observar la capacidad de flujo de corriente por las líneas en función de la carga conectada aguas abajo de la subestación.

4.2.5. Alimentador 0421.

En la subregión o fichero para conjuntos y parámetros se ingresan los insumos de datos del sistema tales como potencia activa y reactiva en cada nodo, impedancias por las líneas de distribución expresadas en ohmios (Ω) y parámetros de cabecera del alimentador como capacidad de la subestación, potencia y tensión base, tensión nominal y de servicio tanto de fase como de línea y definición del tipo en nodo.

Los resultados del flujo de carga del alimentador 0421 se detallan en los siguientes párrafos, teniendo en cuenta que son obtenidos del fichero de presentación de resultados de la herramienta AMPL.

Primero se obtienen los valores de pérdidas de potencia activa generadas en las líneas y transformadores (ver Anexo 17) así como las pérdidas totales del sistema que para este alimentador es de 39.25 kW y de 13.08 kW de pérdidas por fase.

Luego se obtienen los valores de tensión de línea y por fase en cada nodo (ver Anexo 18), en la cual se puede observar la caída de tensión que se produce aguas abajo de la subestación

Posteriormente se obtienen los datos de potencia activa, reactiva y aparente en cabecera del alimentador, así como potencia activa y reactiva de paso en cada línea de distribución (ver Anexo 19), en la cual se puede observar la distribución de

potencia en función de la carga conectada aguas abajo de la subestación.

Finalmente se obtienen los valores de corriente en cada línea de distribución (ver Anexo 20), en la cual se puede observar la capacidad de flujo de corriente por las líneas en función de la carga conectada aguas abajo de la subestación.

CAPÍTULO 5

5. COMPARACIÓN DE RESULTADOS DEL MODELO PROPUESTO.

Una vez definido en el capítulo 4 que el método iterativo de Caída de Tensión es el que mejores resultados entrega utilizando la herramienta Cymdist, y contando con los resultados de flujo de carga de este método y del modelo matemático propuesto basado en un problema de optimización con la herramienta AMPL, se procede a realizar una comparación de los resultados para determinar las diferencias y similitudes que existen entre un resultado óptimo global (método propuesto) y un óptimo local con niveles de tolerancia en sus cálculos iterativos (Método de Caídas de Tensión).

A continuación se presenta la comparación de resultados de los parámetros más relevantes de cada alimentador en análisis tales como potencia activa, reactiva y aparente en cabecera de alimentador, pérdidas de potencia totales, carga total instalada, máxima diferencia entre tensiones en cada nodo, corriente por las líneas y potencia de paso activa y reactiva por las líneas de distribución.

5.1. Alimentador 0101.

Para el alimentador 0101, a nivel general, se determinaron las siguientes comparaciones entre los resultados de flujos de carga mediante el modelo matemático propuesto basado en un problema de optimización (resultado óptimo global), frente al método iterativo de Caídas de Tensión (resultado óptimo local).

	MÉTODO DE	MODELO	DIFERENCIA
PARÁMETROS DE COMPARACIÓN	CAÍDAS DE	MATEMÁTICO	ENTRE
	TENSIÓN	PROPUESTO	MÉTODOS
PRODUCCIÓN DE POTENCIA ACTIVA (kW)	1514.48	1514.48	-0.00033%
PRODUCCIÓN DE POTENCIA REACTIVA (kVAR)	282.38	282.37	-0.00483%
PRODUCCIÓN DE POTENCIA APARENTE (kVA)	1540.59	1540.58	-0.00039%
FACTOR DE POTENCIA (%)	98.31	98.31	0.00006%
DEMANDA DE POTENCIA ACTIVA CONECTADA (kw)	1500.89	1500.89	-0.00008%
PÉRDIDAS TOTALES (kW)	13.60	13.59	-0.02723%
VARIACIÓN DE TENSIÓN PROMEDIO (%)	6.28	6.27	-0.08992%
VALOR PROMEDIO DE POTENCIA ACTIVA DE PASO POR LAS LÍNEAS (kW)	182.75	182.67	-0.03995%
VALOR PROMEDIO DE POTENCIA REACTIVA DE PASO POR LAS LÍNEAS (kVAR)	33.69	33.51	-0.53244%
VALOR PROMEDIO DE CORRIENTE DE PASO POR LAS LÍNEAS (A)	17.07	17.11	0.25712%

Tabla 5.1 Comparación de resultados obtenidos en el alimentador 0101.

La mayor diferencia se presenta en el valor promedio de potencia reactiva de paso por las líneas de distribución correspondiente al 0.53%, esto hace referencia a una diferencia de 0.18 kVAR. En cuanto a la producción de potencia en cabecera se observa una baja diferencia, siendo la potencia reactiva la de mayor diferencia con el 0.0048%.

A continuación se muestra una comparación de resultados entre el método de caídas de tensión frente al modelo propuesto. Este análisis comparativo se realiza con la tensión en cada nodo (figura 4.6), potencia activa de paso (figura 4.7), corriente (figura 4.8) y pérdidas (figura 4.9) en cada nodo.

Figura 4.6 Comparación de resultados de tensión en nodos del alimentador 0101.

Del análisis comparativo de resultados de la tensión en cada nodo, se observa una diferencia promedio porcentual de 0.08992% con respecto al método iterativo.

Figura 4.7 Comparación de resultados de potencia activa en nodos del alimentador 0101.

Del análisis de la comparación de resultados de la potencia activa de paso en cada nodo, se observa una diferencia promedio porcentual de 0.03995% con respecto al método iterativo.

Figura 4.8 Comparación de resultados de corriente en nodos del alimentador 0101.

En relación a la corriente de paso por cada nodo, se observa una diferencia promedio porcentual del 0.25712% con respecto al método iterativo.

Figura 4.9 Comparación de resultados de pérdidas de potencia en nodos del alimentador 0101.

Con respecto a las pérdidas de potencia activa en cada nodo, se observa una diferencia porcentual del 0.02723% con respecto al método iterativo.

5.2. Alimentador 0102.

Para el alimentador 0102, a nivel general, se determinaron las siguientes comparaciones entre los resultados de flujos de carga mediante el modelo matemático propuesto basado en un problema de optimización (resultado óptimo global), frente al método iterativo de Caídas de Tensión (resultado óptimo local).

	MÉTODO DE	MODELO MATEMÁTICO PROPUESTO 1625.50 0.58 1625.50 100.00 1610.14 15.36 6.30 144.81 -0.02	DIFERENCIA
PARÁMETROS DE COMPARACIÓN	CAÍDAS DE	MATEMÁTICO	ENTRE
	TENSIÓN	PROPUESTO	MÉTODOS
PRODUCCIÓN DE POTENCIA ACTIVA (kW)	1625.51	1625.50	-0.00036%
PRODUCCIÓN DE POTENCIA REACTIVA (kVAR)	0.58	0.58	-0.63744%
PRODUCCIÓN DE POTENCIA APARENTE (kVA)	1625.51	1625.50	-0.00037%
FACTOR DE POTENCIA (%)	100.00	100.00	0.00001%
DEMANDA DE POTENCIA ACTIVA CONECTADA (kW)	1610.14	1610.14	-0.00007%
PÉRDIDAS TOTALES (kW)	15.37	15.36	-0.03081%
VARIACIÓN DE TENSIÓN PROMEDIO (%)	6.31	6.30	-0.05621%
VALOR PROMEDIO DE POTENCIA ACTIVA DE PASO POR LAS LÍNEAS (kW)	144.87	144.81	-0.04403%
VALOR PROMEDIO DE POTENCIA REACTIVA DE PASO POR LAS LÍNEAS (KVAR)	-0.72	-0.90	19.86385%
VALOR PROMEDIO DE CORRIENTE DE PASO POR LAS LÍNEAS (A)	13.24	13.33	0.69410%

La mayor diferencia se da en el valor promedio de potencia reactiva de paso por las líneas de distribución correspondiente al 19.86%, este valor hace referencia una diferencia de 0.18 kVAR. En cuanto a la producción de potencia en cabecera se

observa una baja diferencia, siendo la potencia reactiva la de mayor diferencia con el 0.63744%.

A continuación se muestra una comparación de resultados entre el método de caídas de tensión frente al modelo propuesto. Este análisis comparativo se realiza con la tensión en cada nodo (figura 4.10), potencia activa de paso (figura 4.11), corriente (figura 4.12) y pérdidas (figura 4.13) en cada nodo.

Figura 4.10 Comparación de resultados de tensión en nodos del alimentador 0102.

Del análisis comparativo de resultados de la tensión en cada nodo, se observa una diferencia promedio porcentual de 0.05621% con respecto al método iterativo.

Figura 4.11 Comparación de resultados de potencia activa en nodos del alimentador 0102.

Del análisis de la comparación de resultados de la potencia activa de paso en cada nodo, se observa una diferencia promedio porcentual de 0.04403% con respecto al método iterativo.

Figura 4.12 Comparación de resultados de corriente en nodos del alimentador 0102.

En relación a la corriente de paso por cada nodo, se observa una diferencia promedio porcentual del 0.69410% con respecto al método iterativo.

Figura 4.13 Comparación de resultados de pérdidas de potencia en nodos del alimentador 0102.

Con respecto a las pérdidas de potencia activa en cada nodo, se observa una diferencia porcentual del 0.03081% con respecto al método iterativo.

5.3. Alimentador 0103.

Para el alimentador 0103, a nivel general, se determinaron las siguientes comparaciones entre los resultados de flujos de carga mediante el modelo matemático propuesto basado en un problema de optimización (resultado óptimo global), frente al método iterativo de Caídas de Tensión (resultado óptimo local).

		HODELO	DIFFORMOLA
AND TAXABLE REPORT OF THE REPORT OF THE PARTY OF THE PART	METODO DE	MODELO	DIFERENCIA
PARÁMETROS DE COMPARACIÓN	CAÍDAS DE	MATEMÁTICO	ENTRE
	TENSIÓN	PROPUESTO	MÉTODOS
PRODUCCIÓN DE POTENCIA ACTIVA (k₩)	1042.31	1042.31	-0.00003%
PRODUCCIÓN DE POTENCIA REACTIVA (kVAR)	-118.85	-118.86	0.00539%
PRODUCCIÓN DE POTENCIA APARENTE (kVA)	1049.06	1049.06	-0.00046%
FACTOR DE POTENCIA (%)	-99.36	-99.36	0.00043%
DEMANDA DE POTENCIA ACTIVA CONECTADA (kW)	1033.92	1033.92	0.00012%
PÉRDIDAS TOTALES (kW)	8.39	8.39	-0.01846%
VARIACIÓN DE TENSIÓN PROMEDIO (%)	6.35	6.35	-0.01411%
VALOR PROMEDIO DE POTENCIA ACTIVA DE PASO POR LAS LÍNEAS (kW)	154.59	154.53	-0.04277%
VALOR PROMEDIO DE POTENCIA REACTIVA DE PASO POR LAS LÍNEAS (kVAR)	-18.23	-18.29	0.37050%
VALOR PROMEDIO DE CORRIENTE DE PASO POR LAS LÍNEAS (A)	14.15	14.18	0.19325%

Tabla 5.3 Comparación de resultados obtenidos en el alimentador 0103.

La mayor diferencia se da en el valor promedio de potencia reactiva de paso por las líneas de distribución correspondiente al 0.37%, este valor se refiere a una diferencia de 0.07 kVAR. En cuanto a la producción de potencia en cabecera se observa una baja diferencia, siendo la potencia reactiva la de mayor diferencia con el 0.00539%.

A continuación se muestra una comparación de resultados entre el método de caídas de tensión frente al modelo propuesto. Este análisis comparativo se realiza con la tensión en cada nodo (figura 4.14), potencia activa de paso (figura 4.15), corriente (figura 4.16) y pérdidas (figura 4.17) en cada nodo.

Figura 4.14 Comparación de resultados de tensión en nodos del alimentador 0103.

Del análisis comparativo de resultados de la tensión en cada nodo, se observa una diferencia promedio porcentual de 0.01411% con respecto al método iterativo.

Figura 4.15 Comparación de resultados de potencia activa en nodos del alimentador 0103.

Del análisis de la comparación de resultados de la potencia activa de paso en cada nodo, se observa una diferencia promedio porcentual de 0.04277% con respecto al método iterativo.

Figura 4.16 Comparación de resultados de corriente en nodos del alimentador 0103.

En relación a la corriente de paso por cada nodo, se observa una diferencia promedio porcentual del 0.19325% con respecto al método iterativo.

Figura 4.17 Comparación de resultados de pérdidas de potencia en nodos del alimentador 0103.

Con respecto a las pérdidas de potencia activa en cada nodo, se observa una diferencia porcentual del 0.01846% con respecto al método iterativo.

5.4. Alimentador 0104.

Para el alimentador 0104, a nivel general, se determinaron las siguientes comparaciones entre los resultados de flujos de carga mediante el modelo matemático propuesto basado en un problema de optimización (resultado óptimo global), frente al método iterativo de Caídas de Tensión (resultado óptimo local).

	MÉTODO DE	MODELO MATEMÁTICO PROPUESTO 3 1874.13 5 399.8% 5 1916.3 1 97.8% 5 25.3% 5 6.3.9% 5 6.3.9% 5 6.3.9% 5 163.0% 1 34.1 2 15.1%	DIFERENCIA
PARÁMETROS DE COMPARACIÓN	CAÍDAS DE	MATEMÁTICO	ENTRE
· 그가 이가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가	TENSIÓN	PROPUESTO	MÉTODOS
PRODUCCIÓN DE POTENCIA ACTIVA (kW)	1874.13	1874.13	-0.00015%
PRODUCCIÓN DE POTENCIA REACTIVA (kVAR)	398.66	399.85	0.29744%
PRODUCCIÓN DE POTENCIA APARENTE (kVA)	1916.06	1916.31	0.01279%
FACTOR DE POTENCIA (%)	97.81	97.80	-0.01295%
DEMANDA DE POTENCIA ACTIVA CONECTADA (kW)	1848.78	1848.78	-0.00011%
PÉRDIDAS TOTALES (kW)	25.35	25.35	-0.00293%
VARIACIÓN DE TENSIÓN PROMEDIO (%)	6.35	6.34	-0.07764%
VALOR PROMEDIO DE POTENCIA ACTIVA DE PASO POR LAS LÍNEAS (kW)	163.05	163.01	-0.02643%
VALOR PROMEDIO DE POTENCIA REACTIVA DE PASO POR LAS LÍNEAS (KVAR)	34.11	34.11	-0.00543%
VALOR PROMEDIO DE CORRIENTE DE PASO POR LAS LÍNEAS (A)	15.12	15.18	0.40876%

Tabla 5.4 Comparación de resultados obtenidos en el alimentador 0104.

La mayor diferencia se da en el valor promedio de corriente de paso por las líneas de distribución correspondiente al 0.41%, este valor hace referencia una diferencia de 0.06 amperios. En cuanto a la producción de potencia en cabecera se observa una baja diferencia, siendo la potencia reactiva la de mayor diferencia con el 0.297%, esto es 1.19 kVAR.

A continuación se muestra una comparación de resultados entre el método de caídas de tensión frente al modelo propuesto. Este análisis comparativo se realiza con la tensión en cada nodo (figura 4.18), potencia activa de paso (figura 4.19), corriente (figura 4.20) y pérdidas (figura 4.21) en cada nodo.

Figura 4.18 Comparación de resultados de tensión en nodos del alimentador 0104.

Del análisis comparativo de resultados de la tensión en cada nodo, se observa una diferencia promedio porcentual de 0.07764% con respecto al método iterativo.

Del análisis de la comparación de resultados de la potencia activa de paso en cada nodo, se observa una diferencia promedio porcentual de 0.02643% con respecto al método iterativo.

Figura 4.20 Comparación de resultados de corriente en nodos del alimentador 0104.

En relación a la corriente de paso por cada nodo, se observa una diferencia promedio porcentual del 0.40876% con respecto al método iterativo.

Figura 4.21 Comparación de resultados de pérdidas de potencia en nodos del alimentador 0104.

Con respecto a las pérdidas de potencia activa en cada nodo, se observa una diferencia porcentual del 0.00293% con respecto al método iterativo.

5.5. Alimentador 0421.

Para el alimentador 0421, a nivel general, se determinaron las siguientes comparaciones entre los resultados de flujos de carga mediante el modelo matemático propuesto basado en un problema de optimización (resultado óptimo global), frente al método iterativo de Caídas de Tensión (resultado óptimo local).

	MÉTODO DE	MODELO	DIFERENCIA
PARÁMETROS DE COMPARACIÓN	CAÍDAS DE	MATEMÁTICO	ENTRE
	TENSIÓN	PROPUESTO	MÉTODOS
PRODUCCIÓN DE POTENCIA ACTIVA (kW)	5034.12	5030.99	-0.06218%
PRODUCCIÓN DE POTENCIA REACTIVA (kVAR)	1584.46	1588.82	0.27447%
PRODUCCIÓN DE POTENCIA APARENTE (kVA)	5277.58	5275.91	-0.03167%
FACTOR DE POTENCIA (%)	95.39	95.36	-0.03050%
DEMANDA DE POTENCIA ACTIVA CONECTADA (kW)	4994.82	4991.74	-0.06163%
PÉRDIDAS TOTALES (kW)	39.30	39.25	-0.13185%
VARIACIÓN DE TENSIÓN PROMEDIO (kV)	22.29	22.25	-0.18793%
VALOR PROMEDIO DE POTENCIA ACTIVA DE PASO POR LAS LÍNEAS (kW)	523.41	522.97	-0.08468%
VALOR PROMEDIO DE POTENCIA REACTIVA DE PASO POR LAS LÍNEAS (KVAR)	164.59	164.39	-0.12325%
VALOR PROMEDIO DE CORRIENTE DE PASO POR LAS LÍNEAS (A)	14.21	14.29	0.54822%

Tabla 5.5 Comparación de resultados obtenidos en el alimentador 0421.

La mayor diferencia se da en el valor promedio de corriente de paso por las líneas de distribución correspondiente al 0.55%, este valor hace referencia una diferencia de 0.08 amperios. En cuanto a la producción de potencia en cabecera se observa una baja diferencia, siendo la potencia reactiva la de mayor diferencia con el 0.27447%%, esto es 4.36 kVAR.

A continuación se muestra una comparación de resultados entre el método de caídas de tensión frente al modelo propuesto. Este análisis comparativo se realiza con la tensión en cada nodo (figura 4.22), potencia activa de paso (figura 4.23), corriente (figura 4.24) y pérdidas (figura 4.25) en cada nodo.

Figura 4.22 Comparación de resultados de tensión en nodos del alimentador 0421.

Del análisis comparativo de resultados de la tensión en cada nodo, se observa una diferencia promedio porcentual de 0.018793% con respecto al método iterativo.

Del análisis de la comparación de resultados de la potencia activa de paso en cada nodo, se observa una diferencia promedio porcentual de 0.08468% con respecto al método iterativo.

Figura 4.24 Comparación de resultados de corriente en nodos del alimentador 0421.

En relación a la corriente de paso por cada nodo, se observa una diferencia promedio porcentual del 0.54822% con respecto al método iterativo.

Figura 4.25 Comparación de resultados de pérdidas de potencia en nodos del alimentador 0421.

Con respecto a las pérdidas de potencia activa en cada nodo, se observa diferencia porcentual del 0.13185% con respecto al método iterativo.

Se observa que la diferencia porcentual en casi todos los casos es menor al 1% (con excepción de la potencia reactiva promedio del alimentador 0102 que tiene una diferencia porcentual del 19.86%), de la misma forma, observa que en todos los alimentadores evaluados, sus perfiles son similares en casi todos los nodos en comparación al método iterativo.

Con estos resultados se puede concluir que si bien las técnicas iterativas brindan resultados aceptables con soluciones óptimas locales, contar con un modelo que brinde una solución óptima global es de gran importancia para un correcto análisis de pérdidas, caídas de tensión y planificación del sistema.

5.6. Alimentador 0101 mal condicionado.

Para comprobar la efectividad del modelo matemático propuesto, se ejecutó un flujo de carga para un sistema mal condicionado basado en el alimentador 0101 en el que se incrementó drásticamente la carga.

Cabe mencionar que este sistema no se pudo resolver por ningún método iterativo utilizado dentro de la plataforma Cymdist, sin embargo, el modelo matemático propuesto sí entregó resultados, los mismos que se muestran a continuación.

Figura 4.26 Resultados de tensión en nodos del alimentador 0101 mal condicionado.

En relación al perfil de tensión se observa una alta caída de tensión debido a la

elevada carga del sistema mal condicionado, llegando a un valor de tensión mínima de 4.67kV.

Figura 4.27 Resultados de potencia activa en nodos del alimentador 0101 mal condicionado.

En referencia a la potencia activa de paso en cada nodo, se observa que la potencia de cabecera es de 23037.00 kW y su comportamiento aguas abajo es el esperado en función a la repartición de carga o capacidad instalada en cada punto de carga. Adicional, mencionar que el valor de potencia reactiva en cabecera del alimentador es de 13904.94 kVAR.

Figura 4.28 Resultados de corriente en nodos del alimentador 0101 mal condicionado.

Con relación a la corriente de paso por cada nodo, se observa que la corriente en cabecera del alimentador es de 2463.03 A y su comportamiento aguas abajo es el esperado en función a la repartición de carga o capacidad instalada en cada punto de carga y las pérdidas en cada línea.

Con respecto a las pérdidas de potencia activa en cada nodo, se observa la cantidad de potencia que se queda en cada tramo, dando un total de 4305.18 kW de pérdidas.

Con estos resultados se observa el comportamiento del sistema mal condicionado así como el correcto funcionamiento del modelo propuesto, recalcando que este sistema no se pudo resolver por ningún método iterativo que la herramienta Cymdist ofrece, demostrando la eficacia del modelo matemático propuesto basado en un problema de optimización.

CAPÍTULO 6

6. CONCLUSIONES Y FUTUROS TRABAJOS.

6.1. CONCLUSIONES.

- Del análisis de resultados de flujos de carga del caso base de IEEE de 4 barras modificado entre el modelo matemático propuesto frente a los métodos iterativos de la herramienta Cymdist y al método iterativo elaborado mediante el método Forward and Backward, se tienen las siguientes observaciones:
 - Todos los métodos convergen en un nivel de tolerancia bajo para los métodos iterativos.
 - En lo referente a corrientes en barra, la máxima diferencia es de 0.168% en todas las barras y corresponde al método iterativo Forward and Backward realizada en Excel.
 - Para las tensiones en barra, la máxima diferencia es de 0.166% en la barra 4 y se da con el método iterativo Forward and Backward.
 - Con relación a las pérdidas totales y por fase, la máxima diferencia se encuentra en el método iterativo de Gauss-Seidel ejecutado con la herramienta Cymdist, su valor es de 0.688%.
 - Con relación a la potencia activa en la subestación o cabecera de alimentador, se observa que la máxima diferencia se da con el método iterativo Forward and Backward realizada en Excel con un valor del 0.100%.
 - Con respecto a la potencia reactiva y aparente, se observa que la máxima diferencia se encuentra en el método iterativo Forward and Backward realizada en Excel, con valores del 0.483% y 0.166% respectivamente.
- Del análisis de flujos de carga en alimentadores reales se puede concluir que el mejor método para la solución de flujos de carga para redes balanceadas en sistemas de distribución que el software Cymdist entrega como algoritmos de solución es el método de Caídas de Tensión ya que entrega soluciones con un valor bajo de tolerancia en todos los casos evaluados.

- Cabe mencionar que existieron métodos iterativos que no convergieron o no entregaron una solución coherente de sus resultados en varios de los alimentadores evaluados.
- Del análisis de resultados de flujos de carga entre el modelo matemático propuesto frente al método iterativo de Caídas de Tensión de la herramienta Cymdist, realizados en alimentadores reales, se tienen las siguientes observaciones:
 - Con respecto al alimentador 0101:
 - La mayor diferencia se da en el valor promedio de potencia reactiva de paso por las líneas de distribución correspondiente al 0.53%, este valor se refiere a una diferencia de 0.18 kVAR.
 - En cuanto a la producción de potencia en cabecera se observa una baja diferencia, siendo la potencia reactiva la de mayor diferencia con el 0.0048%.
 - Del análisis comparativo de resultados de la tensión en cada nodo, se observa una diferencia promedio porcentual de 0.08992% con respecto al método iterativo.
 - Del análisis de la comparación de resultados de la potencia activa de paso en cada nodo, se observa una diferencia promedio porcentual de 0.03995% con respecto al método iterativo
 - En relación a la corriente de paso por cada nodo, se observa diferencia promedio porcentual del 0.25712% con respecto al método iterativo.
 - Con respecto a las pérdidas de potencia activa en cada nodo, se observa una diferencia porcentual del 0.02723% con respecto al método iterativo.
 - Con respecto al alimentador 0102:
 - La mayor diferencia se da en el valor promedio de potencia reactiva de paso por las líneas de distribución correspondiente al 19.86%, este valor hace referencia una diferencia de 0.18 kVAR.

- En cuanto a la producción de potencia en cabecera se observa una baja diferencia, siendo la potencia reactiva la de mayor diferencia con el 0.63744%.
- Del análisis comparativo de resultados de la tensión en cada nodo, se observa una diferencia promedio porcentual de 0.05621% con respecto al método iterativo.
- Del análisis de la comparación de resultados de la potencia activa de paso en cada nodo, se observa una diferencia promedio porcentual de 0.04403% con respecto al método iterativo.
- En relación a la corriente de paso por cada nodo, se observa una diferencia promedio porcentual del 0.69410% con respecto al método iterativo.
- Con respecto a las pérdidas de potencia activa en cada nodo, se observa una diferencia porcentual del 0.03081% con respecto al método iterativo
- Con respecto al alimentador 0103:
 - La mayor diferencia se da en el valor promedio de potencia reactiva de paso por las líneas de distribución correspondiente al 0.37%, este valor se refiere a una diferencia de 0.07 kVAR.
 - En cuanto a la producción de potencia en cabecera se observa una baja diferencia, siendo la potencia reactiva la de mayor diferencia con el 0.00539%.
 - Del análisis comparativo de resultados de la tensión en cada nodo, se observa una diferencia promedio porcentual de 0.01411% con respecto al método iterativo.
 - Del análisis de la comparación de resultados de la potencia activa de paso en cada nodo, se observa una diferencia promedio porcentual de 0.04277% con respecto al método iterativo.
 - En relación a la corriente de paso por cada nodo, se observa una diferencia promedio porcentual del 0.19325% con respecto

al método iterativo.

- Con respecto a las pérdidas de potencia activa en cada nodo, se observa una diferencia porcentual del 0.01846% con respecto al método iterativo.
- Con respecto al alimentador 0104:
 - La mayor diferencia se da en el valor promedio de corriente de paso por las líneas de distribución correspondiente al 0.41%, este valor hace referencia una diferencia de 0.06 amperios.
 - En cuanto a la producción de potencia en cabecera se observa una baja diferencia, siendo la potencia reactiva la de mayor diferencia con el 0.297%, esto es 1.19 kVAR.
 - Del análisis comparativo de resultados de la tensión en cada nodo, se observa una diferencia promedio porcentual de 0.07764% con respecto al método iterativo.
 - Del análisis de la comparación de resultados de la potencia activa de paso en cada nodo, se observa una diferencia promedio porcentual de 0.02643% con respecto al método iterativo.
 - En relación a la corriente de paso por cada nodo, se observa una diferencia promedio porcentual del 0.40876% con respecto al método iterativo.
 - Con respecto a las pérdidas de potencia activa en cada nodo, se observa una diferencia porcentual del 0.00293% con respecto al método iterativo.
- Con respecto al alimentador 0421:
 - La mayor diferencia se da en el valor promedio de corriente de paso por las líneas de distribución correspondiente al 0.55%, este valor hace referencia una diferencia de 0.08 amperios.
 - En cuanto a la producción de potencia en cabecera se observa una baja diferencia, siendo la potencia reactiva la de mayor diferencia con el 0.27447%%, esto es 4.36 kVAR.
 - Del análisis comparativo de resultados de la tensión en cada

nodo, se observa una diferencia promedio porcentual de 0.018793% con respecto al método iterativo.

- Del análisis de la comparación de resultados de la potencia activa de paso en cada nodo, se observa una diferencia promedio porcentual de 0.08468% con respecto al método iterativo.
- En relación a la corriente de paso por cada nodo, se observa una diferencia promedio porcentual del 0.54822% con respecto al método iterativo.
- Con respecto a las pérdidas de potencia activa en cada nodo, se observa una diferencia porcentual del 0.13185% con respecto al método iterativo.
- Con respecto al alimentador 0101 mal condicionado:
 - Para comprobar la efectividad del modelo matemático propuesto, se ejecutó un flujo de carga para un sistema mal condicionado basado en el alimentador 0101 en el que se incrementó drásticamente la carga.
 - Cabe mencionar que este sistema no se pudo resolver por ningún método iterativo utilizado dentro de la plataforma Cymdist, sin embargo, el modelo matemático propuesto sí entregó resultados.
 - En relación al perfil de tensión se observa una alta caída de tensión debido a la elevada carga del sistema mal condicionado, llegando a un valor de tensión mínima de 4.67kV.
 - En referencia a la potencia activa de paso en cada nodo, se observa que la potencia de cabecera es de 23037.00 kW y su comportamiento aguas abajo es el esperado en función a la repartición de carga o capacidad instalada en cada punto de carga. Adicional, mencionar que el valor de potencia reactiva en cabecera del alimentador es de 13904,94 kVAR.
 - Con relación a la corriente de paso por cada nodo, se observa que la corriente en cabecera del alimentador es de 2463.03 A y

su comportamiento aguas abajo es el esperado en función a la repartición de carga o capacidad instalada en cada punto de carga y las pérdidas en cada línea.

- Con respecto a las pérdidas de potencia activa en cada nodo, se observa la cantidad de potencia que se queda en cada tramo, dando un total de 4305.18 kW de pérdidas.
- Con estos resultados se observa el comportamiento del sistema mal condicionado así como el correcto funcionamiento del modelo propuesto, recalcando que este sistema no se pudo resolver por ningún método iterativo que la herramienta Cymdist ofrece, demostrando la eficacia del modelo matemático propuesto basado en un problema de optimización.
- Con estos resultados se puede concluir que si bien las técnicas iterativas brindan resultados aceptables con soluciones óptimas locales (en algunos casos no brindaron resultados por falta de convergencia), contar con un modelo que brinde una solución óptima global es de gran importancia para un correcto análisis de pérdidas, caídas de tensión y planificación del sistema.

6.2. FUTUROS TRABAJOS.

Como continuación del presente trabajo se pueden realizar los siguientes análisis:

- Análisis de flujos de carga en sistemas trifásicos desbalanceados a partir del modelo matemático propuesto.
- Flujo de carga a partir del modelo matemático propuesto considerando los distintos tipos de modelos de carga según su comportamiento (potencia constante, corriente constante, impedancia constante, modelo ZIP compuesto).
- Flujo de carga a partir del modelo matemático propuesto considerando el consumo real de cada carga.
- Ubicación óptima de banco de capacitores basada en el modelo matemático de optimización.
- Ubicación óptima de reguladores de tensión basada en el modelo matemático de optimización.
- Reconfiguración óptima de un alimentador basado en un modelo de optimización con el objetivo de minimizar pérdidas totales del sistema.

- [1] W. H. Kersting, Distribution System Modeling and Analysis, Third Edition ed., T. &. F. Group, Ed., Las Cruces, New Mexico: CRC Press, 2012.
- [2] S. J. Oliva Enriquez, Compatibilidad de métodos de cálculo de flujos AC y DC en sistemas de potencia., Santiago de Chile: Universidad de Chile, 2008.
- [3] E. R. Tenelema, Simulación de flujos de potencia en sistemas eléctricos de potencia usando mpetodos completos, desacoplados y linealizados., Quito: Universidad Politécnica Salesiana, 2019.
- [4] H. Arsham, «Modelos Deterministas: Optimización lineal,» 2015. [En línea]. Available: http://home.ubalt.edu/ntsbarsh/Business-stat/opre/SpanishD.htm. [Último acceso: Noviembre 2019].
- [5] «CYME INTERNATIONAL. 2018,» [En línea]. Available: http://www.cyme.com/es/software/cymdist/. [Último acceso: 10 Febrero 2019].
- [6] CYME, «Software para el análisis de redes eléctricas.,» 2014.
- [7] Instituto Ecuatoriano de Normalización INEN, Transformadores de distribución nuevos trifásicos. Valores de corriente sin carga, pérdidas y voltaje de cortocircuito., Segunda Revisión ed., Quito, 2004.
- [8] Instituo Ecuatoriano de Normalización INEN., Transformadores de distribución nuevos monofásicos. Valores de corriente sin carga, pérdidas y voltaje de cortocircuito., Segunda Revisión ed., Quito, 2004.
- [9] F. Hiller y L. G.J., Introducción a la investigación de Operaciones, Séprima ed., McGraw-Hill Interamericana, 2001.
- [10] GEO Tutoriales, «Gestión de Operaciones,» 13 01 2015. [En línea]. Available: https://www.gestiondeoperaciones.net/programacion_lineal/que-es-la-investigacion-deoperaciones/. [Último acceso: 21 Mayo 2020].
- [11] A. Ramos, P. Sánchez, J. . M. Ferrer, J. Barquín y P. Linares, Modelos Matemáticos de Optimización., Madrid, 2010.
- [12] R. Sharda y G. Rampal, Algebraic Modeling Language on PCs, OR/MS Today, 1995.

- [13] P. L. Luque, Lenguaje AMPL., Segunda ed., 2000.
- [14] R. Fouer, D. M. Gay y B. W. Kernighan, Design Principles And New Developments In The AMPL Modeling Language., 2003.
- [15] AMPL Onpimization, Inc., The AMPL Modeling Language An Aid To Formulating And Solving Optimization Problems., 204.
- [16] R. Cespedes G., «New method for the analysis of distribution networks,» IEEE Transactions on power delivery, vol. 5, nº 1, 1990.
- [17] M. E. Baran y F. F. Wu, «Network reconfiguration in distribution systems for loss reduction and load balancing,» *IEEE Transactions on power delivery*, vol. 4, nº 2, 1989.
- [18] F. Shahnia, A. Arefi y G. Ledwich, Electric Distribution Network Planning, Australia: Gerard Ledwich Editors, 2018.
- [19] M. Faviar y S. Low, «Branch flow model: Relaxations and convexification Part I.,» de *IEEE Translation Power System.*, 2013, pp. 2554-2564.
- [20] H. Seifi y M. S. Sepasian, Electric Power System Planning: Issues, Algorithms and Solutions, Berlín: Springer, 2011.
- [21] D. Dass, D. P. Kothari y A. Kalam, «Simple and efficient method for load flow solution of radial distribution networks,» *Electrical Power & Energy Systems.*, vol. 17, nº 5, pp. 1-12, 1995.
- [22] M. H. Haque, «Efficient load flow method for distribution systems with radial or mesh configuration,» *IEE Proceedings Genereration, Transmision and Distribution*, vol. 143, nº 1, pp. 1-6, 1996.
- [23] C. M. Quezada y J. A. Torres, Ubicación óptima de compensadores para alimentadores mediante el uso de métodos heurísticos y contrastados con CYMDIST., Cuenca: Universodad Politécnica Salesiana, 2018.
- [24] S. Bruno, S. Lamonaca, G. Rotondo, H. Stecchi y M. La Scala, «Unbalanced three-phase optimal power flow for smart grids,» *IEEE Transactionn on industrial electronics*, vol. 58, nº 10, pp. 1-10, 2011.
- [25] R. A. Jabr, R. Singh y B. C. Pal, «Minimum loss network reconfiguration using Mixed-Integer Convex Programming,» *IEEE Transaction on power systems,* vol. 27, nº 2, pp. 1-10, 2017.
- [26] K. Balamurugan y D. Srinivasa, «Review of Power flow studies o distribution network with distribuided generation,» *IEEE PEDS*, pp. 411-417, 2011.

- [27] L. Pravos García, Análisis de flujos de carga para el análisis de redes de distribución. Implementación del algoritmo "Forward and Backward", Madrid: Universidad Politécnica de Madrid, 2017.
- [28] IEEE Distribution System Analysis Subcommittee, «Distribution Test Feeders,» 1991. [En línea]. Available: https://site.ieee.org/pes-testfeeders/. [Último acceso: 03 01 2020].
- [29] R. H. Chumbi Quito y T. I. Verdugo Romero, Integración con CYMDIST de las redes de media tensión y subtransmisión del sistema de la CENTROSUR., Cuenca, 2013.
- [30] J. G. Cárdenas Cobos y B. D. Jaramillo León, Modelación y Simulación de las redes de baja tensión de la Empresa Eléctrica Regional CENTROSUR C.A., Cuenca, 2017.
- [31] J. E. Peñaloza Morán y J. G. Yumbla Romero, Reconfiguración Óptima del Sistema de Distribución con Generación Distribuida de la Empresa Eléctrica Regional CENTROSUR C.A., Cuenca, 2018.
- [32] R. Fourier, D. M. Gay y B. W. Kernighan, AMPL A Modeling Language for Mathematical Programming, Segunda Edición. ed., 2003.

ANEXOS

ANEXO 1. Pérdidas de potencia activa por las líneas – Alimentador 0101.

	LOSS NETWORK BY LINE					LOSS NETWORK BY LINE							
_	1	k	m	NAME	PLossKM[kW]	1	k	m	NAME	PLossKM[kW]			
	1	1	2	0500010501-MTS_S_2933	0.00073	46	42	43	MTS_S_2802-MTS_S_3028	0.00000			
	2	2	3	MTS_S_2933-MTS_S_2900	0.59300	47	44	167	MTS_L_3028-TRAF0_525	0.04895			
	3	3	4	MTS_S_2900-MTS_S_37613	0.01080	48	43	44	MTS_S_3028-MTS_L_3028	0.00000			
	4	4	5	MTS_S_37613-MTS_S_3025	0.00000	49	42	45	MTS_S_2802-MTS_S_124254	0.00003			
	5	5	6	MTS S 3025-MTS S 2840	0.00000	50	45	46	MIS_5_124254-MIS_5_3027	0.00001			
	6	6	7	MTS S 2840-MTS S 2841	0.00036	51	41	100	MIS_L_3027-IRAPU_6/5	0.00901			
	7	8	163	MTS L 2841-TRAFO 20109	0.03890	52	34	47	MTS S 37509_MTS S 2007	0.00001			
	8	7	8	MTS S 2841-MTS L 2841	0.00001	54	48	49	MTS S 2907-MTS S 2985	0.00003			
	9	4	9	MTS 5 37613-MTS 5 2906	0.00000	55	50	169	MTS I. 2985-TRAFO 5971	0.23296			
	10	9	10	MTS S 2906-MTS S 2741	0.00001	56	49	50	MTS S 2985-MTS L 2985	0.00002			
	11	10	11	MTS S 2741-MTS S 2934	0.00001	57	28	51	MTS S 22142-MTS S 26958	0.00000			
	12	12	164	MTS I 2742_TENEO 6579	0.15241	58	51	52	MTS S 26958-MTS S 2892	0.00058			
	12	11	104	MTS 5 2024 MTS 1 2742	0.10041	59	52	53	MTS S 2892-MTS S 21173	0.00009			
	13	11	12	MTS_5_2954-MTS_L_2/42	0.00001	60	53	54	MTS_S_21173-MTS_S_38788	0.00001			
	14	4	13	MI5_5_3/613-MI5_5_2932	0.00450	61	55	170	MTS_L_38788-TRAF0_28074	0.02346			
	15	13	14	MIS_5_2932-MIS_5_2937	0.51132	62	54	55	MTS_S_38788-MTS_L_38788	0.00000			
	16	14	15	MTS_S_2937-MTS_S_37617	0.01121	63	52	56	MTS_S_2892-MTS_S_3035	0.00000			
	17	15	16	MTS_S_37617-MTS_S_2939	0.00003	64	57	171	MTS_L_3035-TRAF0_2528	0.01955			
	18	16	17	MTS_S_2939-MTS_S_2938	0.00001	65	56	57	MTS_S_3035-MTS_L_3035	0.00000			
	19	18	165	MTS_L_2938-TRAF0_6570	0.17372	66	22	58	MTS_S_39092-MTS_S_22144	0.00257			
	20	17	18	MTS_S_2938-MTS_L_2938	0.00001	67	58	59	MTS_S_22144-MTS_S_22145	0.01064			
	21	15	19	MTS_S_37617-MTS_S_22133	0.00572	68	59	60	MTS_S_22145-MTS_S_21171	0.11293			
	22	19	20	MTS_S_22133-MTS_S_22132	0.07289	69	60	61	MTS_S_21171-MTS_S_54482	0.01039			
	23	20	21	MTS S 22132-MTS S 39091	0.41598	70	61	62	MTS_S_54482-MTS_S_54483	0.11676			
	24	21	22	MTS S 39091-MTS S 39092	0.00950	71	62	63	MIS_S_54483-MIS_S_38796	0.00201			
	25	22	23	MTS S 39092-MTS S 38786	0.00003	12	63	64	MIS_S_38/96-MIS_S_3/588	0.00448			
	26	23	24	MTS 5 38786-MTS 5 2903	0.00002	73	64	60	MIS_S_S/S00-MIS_S_2900	0.00000			
	27	25	166	MTS I. 2903-TRAFO 6582	0 18557	75	66	67	MTS S 38784_MTS S 37589	0.00000			
	28	24	25	MTS S 2003_MTS I 2003	0.00001	76	67	68	MTS S 37589-MTS S 2889	0.00000			
	20	22	25	MTS S 20002 MTS S 20701	0.00000	77	68	69	MTS 5 2889-MTS 5 38766	0.00014			
	20	24	20	MTS 5 39701 MTS 5 30791	0.00009	78	70	172	MTS L 38766-TRAFO 30123	0.01958			
	30	20	21	MIS_5_30/91-MIS_5_30/92	0.00008	79	69	70	MTS S 38766-MTS L 38766	0.00000			
	31	21	28	M15_5_38/92-M15_5_22142	0.00007	80	67	71	MTS S 37589-MTS S 2585	0.00000			
	32	28	29	MIS_5_22142-MIS_5_22143	0.00029	81	71	72	MTS_S_2585-MTS_S_2586	0.00040			
	33	29	30	MTS_S_22143-MTS_S_21815	0.00083	82	73	173	MTS_L_2586-TRAF0_19991	0.02937			
	34	30	31	MTS_S_21815-MTS_S_38778	0.00633	83	72	73	MTS_S_2586-MTS_L_2586	0.00000			
	35	31	32	MTS_S_38778-MTS_S_21813	0.00079	84	67	74	MTS_S_37589-MTS_S_130297	0.00000			
	36	32	33	MTS_S_21813-MTS_S_38772	0.00545	85	74	75	MTS_S_130297-MTS_S_26952	0.00000			
	37	33	34	MTS_S_38772-MTS_S_37598	0.00025	86	75	76	MTS_S_26952-MTS_L_26952	0.00000			
	38	34	35	MTS_S_37598-MTS_S_38793	0.00000	87	64	77	MTS_S_37588-MTS_S_4402	0.00144			
	39	35	36	MTS_5_38793-MTS_5_4420	0.00000	88	77	78	MTS_S_4402-MTS_S_4385	0.12922			
	40	36	37	MTS S 4420-MTS S 76910	0.00000	89	78	79	MTS_S_4385-MTS_S_37607	0.00245			
	41	37	38	MTS 5 76910-MTS 5 38776	0.00000	90	79	80	MTS_S_37607-MTS_S_4389	0.00065			
	42	38	39	MTS S 38776-MTS S 37659	0.00000	91	80	81	MTS_S_4389-MTS_S_38795	0.07841			
	43	34	40	MTS 5 37598-MTS 5 2986	0.00002	92	81	82	MTS_S_38795-MTS_S_37654	0.00123			
	11	40	41	MTS S 2086_MTS S 2007	0.00001	93	82	83	MTS_S_37654-MTS_S_2925	0.00005			
	44	40	40	MTC C 2077 MTC C 2000	0.00001	94	83	84	M15_5_2925-MT5_5_2923	0.00003			
1	45	41	42	m12_2_29//-M12_2_2802	0.00157	95	85	174	MIS_L_2923-TRAF0_6552	0.24521			

	-		LOSS NETWORK BY LINE		LOSS NETWORK BY LINE						
1	k	m	NAME	PLossKM[kW]	1	k	m	NAME	PLossKM[kW]		
96	84	85	MTS_S_2923-MTS_L_2923	0.00002	146	128	182	MTS_L_3029-TRAF0_2179	0.01764		
97	82	86	MTS_S_37654-MTS_S_4412	0.00002	147	127	128	MTS S 3029-MTS L 3029	0.00000		
98	86	87	MTS_S_4412-MTS_S_38794	0.00004	148	126	129	MTS S 85262-MTS S 93241	0.00000		
99	87	88	MTS_S_38794-MTS_S_2917	0.00001	149	129	130	MTS 5 93241-MTS L 37542	0.00000		
100	88	89	MTS_S_2917-MTS_S_133760	0.00001	150	126	131	MTS S 85262-MTS S 4375	0 00763		
101	89	90	MTS_S_133760-MTS_S_133459	0.00003	151	121	122	MTS S 4375_MTS S 4406	0.00153		
102	90	91	MTS_S_133459-MTS_S_133759	0.00009	151	101	102	MTS_S_4373-MTS_S_4400	0.00133		
103	91	92	MIS_S_133759-MIS_S_133758	0.00007	152	132	133	MI5_5_4406-MI5_5_38768	0.00234		
104	92	95	MTS S 133/62_MTS S 133/61	0.00003	153	133	134	MIS_5_38768-MIS_5_38771	0.00000		
106	94	95	MTS S 133461-MTS S 133463	0.00006	154	135	183	MTS_L_38771-TRAF0_4672	0.11315		
107	95	96	MTS S 133463-MTS S 133460	0.00000	155	134	135	MTS_S_38771-MTS_L_38771	0.00000		
108	97	175	MTS L 133460-TRAFO 34801	0.02944	156	133	136	MTS_S_38768-MTS_S_2890	0.00002		
109	96	97	MTS S 133460-MTS L 133460	0.00000	157	136	137	MTS_S_2890-MTS_S_3030	0.00010		
110	88	98	MTS S 2917-MTS L 51899	0.00032	158	138	184	MTS_L_3030-TRAF0_1003	0.01962		
111	99	98	MTS_S_51899-MTS_L_51899	0.00005	159	137	138	MTS S 3030-MTS L 3030	0.00000		
112	100	99	MTS_S_51900-MTS_S_51899	0.00036	160	132	139	MTS S 4406-MTS S 2805	0.00001		
113	100	101	MTS_S_51900-MTS_S_51901	0.00000	161	140	185	MTS L 2805-TRAFO 318	0.01765		
114	102	176	MTS_L_51901-TRAF0_30804	0.03926	162	139	140	MTS S 2805-MTS L 2805	0 00000		
115	101	102	MTS_S_51901-MTS_L_51901	0.00000	163	126	141	MTS S 85262_MTS S 85263	0.00000		
116	88	103	MTS_S_2917-MTS_S_26937	0.00000	164	141	140	MTC C OFOS MTC C OFOS	0.00000		
117	103	104	MTS_S_26937-MTS_S_3919	0.00047	104	141	144	MIS_5_05265-MIS_5_05264	0.00001		
118	105	177	MTS_L_3919-TRAFO_16644	0.02944	165	142	143	MIS_5_85264-MIS_5_85265	0.00002		
120	004	105	MTS S 2017_MTS S 2021	0.00001	166	143	144	MTS_S_85265-MTS_S_85266	0.00003		
120	107	178	MTS I 3031-TRAFO 18806	0.00233	167	144	145	MTS_S_85266-MTS_S_85267	0.00002		
122	106	107	MTS_S_3031-MTS_L_3031	0.00000	168	145	146	MTS_S_85267-MTS_S_85268	0.00008		
123	88	108	MTS S 2917-MTS S 26939	0.00000	169	146	147	MTS_S_85268-MTS_S_85269	0.00000		
124	108	109	MTS S 26939-MTS S 3032	0.00008	170	147	148	MTS_S_85269-MTS_S_85270	0.00000		
125	110	179	MTS L 3032-TRAFO 19999	0.01178	171	149	186	MTS_L_85270-TRAF0_29925	0.01960		
126	109	110	MTS_S_3032-MTS_L_3032	0.00000	172	148	149	MTS S 85270-MTS L 85270	0.00000		
127	82	111	MTS_S_37654-MTS_S_38461	0.00007	173	79	150	MTS S 37607-MTS S 2918	0.00001		
128	111	112	MTS_S_38461-MTS_S_4407	0.00587	174	150	151	MTS S 2918-MTS S 2718	0.00003		
129	112	113	MTS_S_4407-MTS_S_37657	0.00015	175	151	152	MTS S 2718-MTS S 2945	0.00000		
130	113	114	MTS_S_37657-MTS_S_2929	0.00005	176	153	187	MTS I. 2743-TRAFO 6553	0 22937		
131	114	115	MTS_S_2929-MTS_S_2928	0.00003	177	152	153	MTS S 2015_MTS T 2713	0.00002		
132	116	180	MTS_L_2928-TRAF0_6569	0.25017	170	152	153	MTG G 2045 MTG T 2045	0.00002		
133	115	112	MIS_5_2928-MIS_L_2928	0.00003	1/0	152	154	MI5_5_2945-MI5_L_2945	0.00000		
135	113	118	MTS S 37657_MTS S 2930	0.00000	179	64	155	MIS_S_37588-MIS_S_2915	10000.0		
136	118	119	MTS S 2930-MTS S 76913	0.00000	180	155	156	MTS_S_2915-MTS_S_2987	0.00003		
137	119	120	MTS S 76913-MTS S 76912	0.00001	181	157	188	MTS_L_2987-TRAF0_31271	0.24710		
138	120	121	MTS S 76912-MTS S 38785	0.00001	182	156	157	MTS_S_2987-MTS_L_2987	0.00002		
139	121	122	MTS S 38785-MTS S 3033	0.00003	183	61	158	MTS_S_54482-MTS_S_57330	0.00002		
140	123	181	MTS_L_3033-TRAF0_2440	0.01767	184	158	159	MTS_S_57330-MTS_S_57331	0.00000		
141	122	123	MTS_S_3033-MTS_L_3033	0.00000	185	160	189	MTS L 57331-TRAFO 29998	0.01220		
142	79	124	MTS_S_37607-MTS_S_2919	0.00004	186	159	160	MTS S 57331-MTS L 57331	0.00000		
143	124	125	MTS_S_2919-MTS_S_2920	0.00002	187	15	161	MTS S 37617-MTS S 2898	0.00000		
144	125	126	MTS_S_2920-MTS_S_85262	0.00002	188	161	162	MTS S 2898-MTS I. 2898	0.00000		
145	126	127	MTS_S_85262-MTS_S_3029	0.00007	100	TOT	102		0.00000		

		BUS SOLUTIO	NS	BUS SOLUTIONS						
BUS	NAME	V[PU]	V[kV]	BU:	S NAME	V[PU]	V[kV]			
1	0500010S01	1.002	3.64	49	MTS_S_2985	0.997	3.63			
2	MTS_S_2933	1.002	3.64	50	MTS_L_2985	0.997	3.63			
3	MTS S 2900	1.000	3.64	51	MTS_S_26958	0.998	3.63			
4	MTS S 37613	1.000	3.64	52	MTS_S_2892	0.998	3.63			
5	MTS S 3025	1.000	3.64	53	MTS_S_21173	0.998	3.63			
6	MTS S 2840	1.000	3.64	54	MTS_S_38788	0.998	3.63			
7	MTS S 2841	1.000	3.64	55	MTS_L_38788	0.998	3.63			
8	MTS L 2841	1.000	3.64	56	MTS_S_3035	0.998	3.63			
9	MTS S 2906	1.000	3.64	5/	MIS_L_3035	0.998	3.03			
10	MTS S 2741	1.000	3.64	50	MTS S 22144	0.998	3.03			
11	MTS 5 2934	1.000	3.64	59	MTS S 21171	0.998	3.03			
12	MTS L 2742	1.000	3.64	61	MTS S 54482	0.997	3 63			
13	MTS 5 2932	1.000	3.64	62	MTS S 54483	0.997	3 63			
14	MTS 5 2937	0.999	3.63	63	MTS 5 38796	0 997	3 63			
15	MTS S 37617	0 999	3 63	64	MTS S 37588	0.997	3.63			
16	MTS 5 2939	0.999	3 63	65	MTS S 2988	0.997	3.63			
17	MTS 5 2938	0.999	3 63	66	MTS S 38784	0.997	3.63			
19	MTS I 2039	0.999	3 63	67	MTS S 37589	0.997	3.63			
10	MTS C 22122	0.999	2 62	68	MTS S 2889	0.997	3.63			
20	MTS S 22133	0.999	2.62	69	MTS S 38766	0.997	3.63			
20	MTS S 20001	0.999	3.03	70	MTS L 38766	0.997	3.63			
21	MIS_5_39091	0.990	3.03	71	MTS S 2585	0.997	3.63			
22	MIS_5_39092	0.990	3.03	72	MTS_S_2586	0.997	3.63			
23	MIS_5_30/00	0.998	3.03	73	MTS_L_2586	0.997	3.63			
24	MIS_5_2903	0.998	3.63	74	MTS_S_130297	0.997	3.63			
25	MIS_L_2903	0.998	3.03	75	MTS_S_26952	0.997	3.63			
26	MIS_S_38791	0.998	3.63	76	MTS_L_26952	0.997	3.63			
21	MIS_S_38792	0.998	3.63	77	MTS_S_4402	0.997	3.63			
28	MTS_S_22142	0.998	3.63	78	MTS_S_4385	0.996	3.62			
29	MTS_S_22143	0.998	3.63	79	MTS_S_37607	0.996	3.62			
30	MTS_S_21815	0.998	3.63	80	MTS_S_4389	0.996	3.62			
31	MTS_S_38778	0.998	3.63	81	MIS_S_38795	0.996	3.62			
32	MTS_S_21813	0.998	3.63	82	MI5_5_3/654	0.996	3.62			
33	MTS_S_38772	0.997	3.63	0.0	MTS S 2022	0.996	3.02			
34	MTS_S_37598	0.997	3.63	85	MTS I 2023	0.996	3 62			
35	MTS_S_38793	0.997	3.63	86	MTS S 4412	0.996	3 62			
36	MTS_S_4420	0.997	3.63	87	MTS S 38794	0.996	3.62			
37	MTS_S_76910	0.997	3.63	88	MTS S 2917	0.996	3.62			
38	MTS_S_38776	0.997	3.63	89	MTS S 133760	0.996	3.62			
39	MTS_S_37659	0.997	3.63	90	MTS S 133459	0.996	3.62			
40	MTS_S_2986	0.997	3.63	91	MTS S 133759	0.996	3.62			
41	MTS_S_2977	0.997	3.63	92	MTS_S_133758	0.995	3.62			
42	MTS_S_2802	0.997	3.63	93	MTS_S_133462	0.995	3.62			
43	MTS_S_3028	0.997	3.63	94	MTS_S_133461	0.995	3.62			
44	MTS_L_3028	0.997	3.63	95	MTS_S_133463	0.995	3.62			
45	MTS_S_124254	0.997	3.63	96	MTS_S_133460	0.995	3.62			
46	MTS_S_3027	0.997	3.63	97	MTS_L_133460	0.995	3.62			
47	MTS_L_3027	0.997	3.63	98	MTS_L_51899	0.995	3.62			
48	MTS_S_2907	0.997	3.63	99	MTS_S_51899	0.995	3.62			

ANEXO 2. Tensión en nodos – Alimentador 0101.

		-BUS SOLUTION	S		BUS SOLUTIONS			
BUS	NAME	V[PU]	V[kV]	BUS NAME	V[PU]	V[kV]		
100	MTS_S_51900	0.995	3.62	151 MTS_S_2718	0.996	3.62		
101	MTS_S_51901	0.995	3.62	152 MTS S 2945	0.996	3.62		
102	MTS_L_51901	0.995	3.62	153 MTS T. 2743	0.996	3.62		
103	MIS_5_2093/	0.996	3.02	LEA MTS I 204E	0.006	2 62		
104	MTS I. 3919	0.995	3 62	154 MI5_L_2945	0.996	5.62		
106	MTS S 3031	0.995	3.62	155 MTS_S_2915	0.997	3.63		
107	MTS L 3031	0.995	3.62	156 MTS_S_2987	0.997	3.63		
108	MTS_S_26939	0.996	3.62	157 MTS_L_2987	0.997	3.63		
109	MTS_S_3032	0.995	3.62	158 MTS S 57330	0.997	3.63		
110	MTS_L_3032	0.995	3.62	159 MTS S 57331	0.997	3,63		
111	MTS_S_38461	0.996	3.62	160 MTS T 57221	0.997	2 62		
112	MTS_S_4407	0.995	3.62	160 MI5_L_5/551	0.997	5.05		
114	MTS S 2929	0.995	3.62	161 MTS_S_2898	0.999	3.63		
115	MTS S 2928	0.995	3.62	162 MTS_L_2898	0.999	3.63		
116	MTS L 2928	0.995	3.62	163 TRAF0_20109	0.994	3.62		
117	MTS_S_249	0.995	3.62	164 TRAFO 6578	0.992	3.61		
118	MTS_S_2930	0.995	3.62	165 TRAFO 6570	0.991	3,60		
119	MTS_S_76913	0.995	3.62	166 TRAFO 6592	0 999	3 60		
120	MTS_S_76912	0.995	3.62	100 INATO 0302	0.909	3.00		
121	MTS S 3033	0.995	3.62	16/ IRAF0_525	0.991	3.60		
123	MTS L 3033	0.995	3.62	168 TRAF0_875	0.991	3.60		
124	MTS S 2919	0.996	3.62	169 TRAF0_5971	0.989	3.60		
125	MTS_S_2920	0.996	3.62	170 TRAFO 28074	0.992	3.61		
126	MTS_S_85262	0.996	3.62	171 TRAFO 2528	0.992	3.61		
127	MTS_S_3029	0.996	3.62	172 TRAFO 30123	0 991	3 60		
128	MTS_L_3029	0.996	3.62	172 TEAFO 10001	0.001	2 60		
129	MTS_5_93241	0.996	3.62	175 IRAFO_19991	0.991	5.00		
131	MTS S 4375	0.996	3.62	174 TRAF0_6552	0.987	3.59		
132	MTS S 4406	0.996	3.62	175 TRAF0_34801	0.990	3.60		
133	MTS S 38768	0.996	3.62	176 TRAF0_30804	0.990	3.60		
134	MTS_S_38771	0.996	3.62	177 TRAFO 16644	0.990	3.60		
135	MTS_L_38771	0.996	3.62	178 TRAFO 18806	0.988	3.59		
136	MTS_S_2890	0.996	3.62	179 TEAFO 19999	0 990	3 60		
137	MTS_S_3030	0.996	3.62	100 TRAFO 19999	0.990	3.00		
130	MTS S 2805	0.996	3.62	180 IRAF0_6569	0.987	3.59		
140	MTS L 2805	0.996	3.62	181 TRAF0_2440	0.989	3.60		
141	MTS S 85263	0.996	3.62	182 TRAF0_2179	0.990	3.60		
142	MTS_S_85264	0.996	3.62	183 TRAFO_4672	0.988	3.59		
143	MTS_S_85265	0.996	3.62	184 TRAFO 1003	0.990	3.60		
144	MTS_S_85266	0.996	3.62	185 TRAFO 318	0,990	3,60		
145	MIS_S_85267	0.996	3.62	186 TRAFO 20025	0 990	3 60		
140	MTS S 85268	0.996	3.62	100 TRATO_25525	0.990	3.00		
148	MTS S 85270	0.996	3.62	187 TRAF0_6553	0.988	3.59		
149	MTS L 85270	0.996	3.62	188 TRAF0_31271	0.988	3.59		
150	MTS_S_2918	0.996	3.62	189 TRAF0_29998	0.992	3.61		

ANEXO 3. Potencia de paso activa y reactiva – Alimentador 0101.

				TRANSFORMER C	APACITY :	SOLUTION		43	34	40	MTS_S_37598-MTS_S_2986	29.27	5.20
								44	40	41	MTS_S_2986-MTS_S_2977	29.27	5.20
BUS	5	MAM	E	Pss[kW]	Qss[k]	VAr] S	[kVA]	45	41	42	MTS_S_2977-MTS_S_2802	29.26	5.20
1	050	0010	S01	1514.48	282	.37 15	40.58	46	42	43	MTS_S_2802-MTS_S_3028	12.08	2.15
								47	44	167	MTS_L_3028-TRAF0_525	12.03	1.95
			-ACTI	VE AND REACTI	VE POWER	FLOW SOLUTI	ONS	48	43	44	MTS_S_3028-MTS_L_3028	12.08	2.15
								49	42	45	MTS_S_2802-MTS_S_124254	17.18	3.06
1	k	m		NAME		Pkm[kW]	Qkm[kVAr]	50	45	46	MTS_S_124254-MTS_S_3027	17.18	3.06
1	1	2	0500	010S01-MTS_S_	2933	504.83	94.12	51	47	168	MTS_L_3027-TRAF0_875	17.11	2.78
2	2	3	MTS_	S_2933-MTS_S_	2900	504.23	93.66	52	46	47	MTS_S_3027-MTS_L_3027	17.18	3.06
3	3	4	MTS_	S_2900-MTS_S_	37613	504.22	93.65	53	34	48	MTS_S_37598-MTS_S_2907	46.28	8.60
4	4	5	MTS_	S_37613-MTS_S	_3025	10.74	1.89	54	48	49	MTS_S_2907-MTS_S_2985	46.28	8.60
5	5	6	MTS_	S_3025-MTS_S_	2840	10.74	1.89	55	50	169	MTS_L_2985-TRAF0_5971	46.05	7.67
6	6	7	MTS_	S_2840-MTS_S_	2841	10.74	1.89	56	49	50	MTS_S_2985-MTS_L_2985	46.28	8.60
7	8	163	MTS_	L_2841-TRAFO_	20109	10.70	1.74	57	28	51	MTS S 22142-MTS S 26958	11.81	2.08
8	7	8	MTS_	S_2841-MTS_L_	2841	10.74	1.89	58	51	52	MTS_S_26958-MTS_S_2892	11.81	2.08
9	4	9	MTS_	S_37613-MTS_S	2906	29.76	5.59	59	52	53	MTS_S_2892-MTS_S_21173	6.44	1.14
10	9	10	MTS_	S_2906-MTS_S_	2741	29.76	5.59	60	53	54	MTS S 21173-MTS S 38788	6.44	1.14
11	10	11	MTS_	S_2741-MTS_S_	2934	29.76	5.59	61	55	170	MTS_L_38788-TRAF0_28074	6.42	1.04
12	12	164	MTS_	L_2742-TRAFO_	6578	29.61	4.98	62	54	55	MTS S 38788-MTS L 38788	6.44	1.14
13	11	12	MTS_	S_2934-MTS_L_	2742	29.76	5.59	63	52	56	MTS S 2892-MTS S 3035	5.37	0.95
14	4	13	MTS	S_37613-MTS_S	2932	463.72	86.16	64	57	171	MTS L 3035-TRAFO 2528	5.35	0.87
15	13	14	MTS	5_2932-MTS_S	2937	463.21	85.76	65	56	57	MTS S 3035-MTS L 3035	5.37	0.95
16	14	15	MTS	5_2937-MTS_S	37617	463.20	85.75	66	22	58	MTS S 39092-MTS S 22144	304.89	56.29
17	15	16	MTS	5_37617-MTS_S	2939	34.67	6.44	67	58	59	MTS S 22144-MTS S 22145	304.88	56.28
18	16	17	MTS	S 2939-MTS S	2938	34.67	6.44	68	59	60	MTS S 22145-MTS S 21171	304.76	56.20
19	18	165	MTS	L_2938-TRAFO	6570	34.49	5.74	69	60	61	MTS S 21171-MTS S 54482	304.75	56.19
20	17	18	MTS	5 2938-MTS L	2938	34.67	6.44	70	61	62	MTS S 54482-MTS S 54483	300.61	55.40
21	15	19	MTS	5_37617-MTS_S	22133	428.52	79.31	71	62	63	MTS S 54483-MTS S 38796	300.61	55.39
22	19	20	MTS	5 22133-MTS S	22132	428.45	79.25	72	63	64	MTS S 38796-MTS S 37588	300.61	55.39
23	20	21	MTS	S 22132-MTS S	39091	428.04	78.93	73	64	65	MTS S 37588-MTS S 2988	13.42	2.37
24	21	22	MTS	5 39091-MTS S	39092	428.03	78.92	74	65	66	MTS S 2988-MTS S 38784	13.42	2.37
25	22	23	MTS	5_39092-MTS_S	38786	35.77	6.73	75	66	67	MTS S 38784-MTS S 37589	13.42	2.37
26	23	24	MTS	5_38786-MTS_S	2903	35.77	6.73	76	67	68	MTS S 37589-MTS S 2889	5.37	0.95
27	25	166	MTS	L 2903-TRAFO	6582	35.58	5.99	77	68	69	MTS S 2889-MTS S 38766	5.37	0.95
28	24	25	MTS	5 2903-MTS L	2903	35.77	6.73	78	70	172	MTS L 38766-TRAFO 30123	5.35	0.87
29	22	26	MTS	S 39092-MTS S	38791	87.37	15.90	79	69	70	MTS S 38766-MTS L 38766	5.37	0.95
30	26	27	MTS	S 38791-MTS S	38792	87.37	15.90	80	67	71	MTS S 37589-MTS S 2585	8.05	1.42
31	27	28	MTS	S 38792-MTS S	22142	87.37	15.90	81	71	72	MTS S 2585-MTS S 2586	8.05	1.42
32	28	29	MTS	5 22142-MTS S	22143	75.56	13.82	82	73	173	MTS L 2586-TRAFO 19991	8.02	1.30
33	29	30	MTS	5 22143-MTS S	21815	75.56	13.82	83	72	73	MTS S 2586-MTS L 2586	8.05	1.42
34	30	31	MTS	S 21815-MTS S	38778	75.55	13.81	84	67	74	MTS S 37589-MTS S 130297	0.00	0.00
35	31	32	MTS	5 38778-MTS S	21813	75.55	13.81	85	74	75	MTS S 130297-MTS S 26952	0.00	0.00
36	32	33	MTS	S 21813-MTS S	38772	75.55	13.81	86	75	76	MTS S 26952-MTS L 26952	0.00	0.00
37	33	34	MTS	5 38772-MTS S	37598	75.55	13.81	87	64	77	MTS S 37588-MTS S 4402	239.57	44.07
38	34	35	MTS	S 37598-MTS S	38793	0.00	0.00	88	77	78	MTS S 4402-MTS S 4385	239.44	43.97
39	35	36	MTS	5 38793-MTS S	4420	0.00	0.00	89	78	79	MTS S 4385-MTS S 37607	239.44	43.97
40	36	37	MTS	5 4420-MTS S	76910	0.00	0.00	90	79	80	MTS S 37607-MTS S 4389	148.99	27.51
41	37	38	MTS	S 76910-MTS S	38776	0.00	0.00	91	80	81	MTS 5 4389-MTS 5 38795	148.91	27.45
42	38	39	MTS	S 38776-MTS S	37659	0.00	0.00	92	81	82	MTS S 38795-MTS S 37654	148.91	27.45

1	ĸ	W	NAME	Pkm[kW]	Qkm[kVAr]	1	ĸ	W	NAME		Pkm[kW]	Qkm[kVAr]
			-ACTIVE AND REACTIVE POWER	FLOW SOLUTIO					ACTIVE AND REACT	LIVE POWER	FLOW SOLUTIO	мз
93	82	83	MTS_S_37654-MTS_S_2925	47.37	8.89	14	43 12	4 125	MTS S 2919-MTS	5 2920	44.58	7.96
94	83	84	MTS_S_2925-MTS_S_2923	47.37	8.89	14	44 12	5 126	MTS S 2920-MTS	5 85262	44.58	7.96
95	85	174	MTS_L_2923-TRAF0_6552	47.13	7.91	14	45 12	6 127	MTS S 85262-MTS	5 3029	4 83	0.85
96	84	85	MTS_S_2923-MTS_L_2923	47.37	8.89	1/	16 12	8 182	MTS I 3029-TRAF	0 2179	4.81	0.78
97	82	86	MTS_S_37654-MTS_S_4412	48.86	8.69	1	17 12	7 1 2 0	MTS S 2020 MTS	2000	4.01	0.70
98	86	87	MTS_S_4412-MTS_S_38794	48.86	8.69	14	4/ 12	/ 120	MI5_5_5029-MI5_	L_3029	4.05	0.05
99	87	88	MTS_S_38794-MTS_S_2917	48.86	8.69	14	48 12	6 129	MIS_5_85262-MIS	5_93241	0.00	0.00
100	88	89	MTS_S_2917-MTS_S_133760	8.05	1.42	14	49 12	9 130	MTS_S_93241-MTS	_L_37542	0.00	0.00
101	89	90	MTS_S_133760-MTS_S_133459	8.05	1.42	15	50 12	6 131	MTS_S_85262-MTS	_S_4375	34.38	6.16
102	90	91	MTS_S_133459-MTS_S_133759	8.05	1.42	15	51 13	1 132	MTS_S_4375-MTS_	5_4406	34.37	6.16
103	91	92	MTS_S_133759-MTS_S_133758	8.05	1.42	15	52 13	2 133	MTS_S_4406-MTS_	5_38768	29.54	5.30
104	92	93	MTS_S_133758-MTS_S_133462	8.05	1.42	15	53 13	3 134	MTS_S_38768-MTS	S_38771	24.17	4.36
105	5 93	94	MTS_S_133462-MTS_S_133461	8.05	1.42	15	54 13	5 183	MTS L 38771-TRA	FO 4672	24.06	3.90
100	5 94	95	MTS_S_133461-MTS_S_133463	8.05	1.42	15	55 13	4 135	MTS S 38771-MTS	L 38771	24.17	4.36
107	95	96	MTS_S_133463-MTS_S_133460	8.05	1.42	15	56 13	3 136	MTS 5 38768-MTS	S 2890	5.37	0.95
108	97	175	MTS_L_133460-TRAF0_34801	8.02	1.30	15	57 13	6 137	MTS 5 2890-MTS	5 3030	5.37	0.95
109	96	97	MTS_S_133460-MTS_L_133460	8.05	1.42	1	58 13	8 184	MTS L 3030-TRAF	0 1003	5.35	0.87
110	88	98	MTS_S_2917-MTS_L_51899	10.73	1.89	1.	50 13	7 139	MTS S 3030-MTS	1 3030	5.37	0.05
111	. 99	98	MTS_S_51899-MTS_L_51899	10.73	1.89	14	50 12	2 120	MTC C AAOC MTC	C 2005	4 02	0.95
112	2 100	99	MTS_S_51900-MTS_S_51899	10.73	1.89	10	00 13.	2 139	MIS_5_4406-MIS_	5_2005	4.03	0.05
113	3 100	101	MTS_S_51900-MTS_S_51901	10.73	1.89	14	61 14	0 185	MIS_L_2805-IRAF	0_318	4.81	0.78
114	102	176	MTS_L_51901-TRAF0_30804	10.70	1.74	10	62 13	9 140	MTS_S_2805-MTS_	L_2805	4.83	0.85
115	5 101	102	MTS_S_51901-MTS_L_51901	10.73	1.89	16	63 12	6 141	MTS_S_85262-MTS	_S_85263	5.37	0.95
110	5 88	103	MTS_S_2917-MTS_S_26937	8.05	1.42	16	64 14	1 142	MTS_S_85263-MTS	S_85264	5.37	0.95
117	103	104	MTS_S_26937-MTS_S_3919	8.05	1.42	16	65 14:	2 143	MTS_S_85264-MTS	S_85265	5.37	0.95
118	105	177	MTS_L_3919-TRAF0_16644	8.02	1.30	16	66 14	3 144	MTS_S_85265-MTS	S_85266	5.37	0.95
119	104	105	MTS_S_3919-MTS_L_3919	8.05	1.42	16	67 14	4 145	MTS_S_85266-MTS	S 85267	5.37	0.95
120	88	106	MTS_S_2917-MTS_S_3031	18.80	3.39	16	68 14	5 146	MTS S 85267-MTS	S 85268	5.37	0.95
121	107	178	MTS_L_3031-TRAF0_18806	18.71	3.04	16	69 14	6 147	MTS S 85268-MTS	S 85269	5.37	0.95
122	2 106	107	MTS_S_3031-MTS_L_3031	18.80	3.39	17	70 14	7 148	MTS S 85269-MTS	S 85270	5.37	0.95
123	8 88	108	MTS_S_2917-MTS_S_26939	3.22	0.57	17	71 14	9 186	MTS L 85270-TRA	FO 29925	5.35	0.87
124	108	109	MTS_S_26939-MTS_S_3032	3.22	0.57	15	72 14	B 149	MTS S 85270-MTS	T. 85270	5 37	0.95
125	5 110	179	MTS_L_3032-TRAF0_19999	3.21	0.52	1.	72 70	150	MTC C 27607 MTC	C 2010	45 07	0.55
126	5 109	110	MTS_S_3032-MTS_L_3032	3.22	0.57	1	74 15	150	MTC C 2010 MTC	5 2510	45.07	0.50
127	82	111	MTS_S_37654-MTS_S_38461	52.68	9.87	1	/4 15	1 151	MI5_5_2910-MI5_	5_2/10	43.07	0.50
128	111	112	MTS_S_38461-MTS_S_4407	52.67	9.87	1	/5 15.	1 152	MIS_S_2/18-MIS_	5_2945	45.87	8.50
129	112	113	MTS_S_4407-MTS_S_37657	52.67	9.87	1	76 15	3 187	MTS_L_2743-TRAF	0_6553	45.64	7.58
130) 113	114	MTS_S_37657-MTS_S_2929	47.84	9.01	17	77 15:	2 153	MTS_S_2945-MTS_	L_2743	45.87	8.50
131	. 114	115	MTS_S_2929-MTS_S_2928	47.84	9.01	17	78 15	2 154	MTS_S_2945-MTS_	L_2945	0.00	0.00
132	2 116	180	MTS_L_2928-TRAF0_6569	47.59	8.01	17	79 64	155	MTS_S_37588-MTS	S_2915	47.61	8.95
133	3 115	116	MTS_S_2928-MTS_L_2928	47.84	9.01	18	80 15	5 156	MTS S 2915-MTS	5 2987	47.61	8.95
134	117	113	MTS_S_249-MTS_S_37657	-0.00	-0.00	18	81 15	7 188	MTS L 2987-TRAF	0 31271	47.37	7.96
135	5 113	118	MTS_S_37657-MTS_S_2930	4.83	0.85	18	82 15	6 157	MTS S 2987-MTS	L 2987	47.61	8.95
136	5 118	119	MTS_S_2930-MTS_S_76913	4.83	0.85	18	83 61	158	MTS 5 54482-MTS	5 57330	4.02	0.70
137	119	120	MTS_S_76913-MTS_S_76912	4.83	0.85	18	84 15	8 159	MTS 5 57330-MTS	5 57331	4.02	0.70
138	120	121	MTS_S_76912-MTS_S_38785	4.83	0.85	10	85 16	1 190	MTS I. 57331_TDA	FO 29999	4 01	0.65
139	121	122	MTS_S_38785-MTS_S_3033	4.83	0.85	10	DE 10	1 1 40	MTS S 57331-1KA	T 57001	4.01	0.03
140	123	181	MTS_L_3033-TRAF0_2440	4.81	0.78	10	10 10	161	MTC C 27617 MTC	L 3/331	4.02	0.70
141	122	123	MTS_S_3033-MTS_L_3033	4.83	0.85	18	5/ 15	101	MIS_5_3/61/-MIS	5 2898	0.00	0.00
142	2 79	124	MTS_S_37607-MTS_S_2919	44.58	7.96	18	88 16.	1 162	MIS_S_2898-MTS_	L_2898	0.00	0.00

ANEXO 4. Corriente por las líneas – Alimentador 0101.

Terr Terr <th< th=""><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th></th<>						-				
1 k n NAME Lim [A] 50 45 64 55 2202-HTS_S_1224244 4.83 1 1 2 050010501-HTS_S_2303 140.96 51 47 164 HTS_S_23247-HTS_S_2007 1.00 3 3 HTS_S_2528-HTS_S_2005 3.15 54 44 MTS_S_0256-HTS_S_2065 13.00 5 5 MTS_S_2280-HTS_S_2840 3.12 55 50 MTS_S_2865-HTS_S_2865 13.00 6 6 7 HTS_S_2840-HTS_S_2841 3.00 56 64 50 MTS_S_2865-HTS_S_2852 3.30 7 8 HTS_S_2840-HTS_S_2741 8.40 60 53 MTS_S_2865-HTS_S_2852 3.30 9 9 10 HTS_S_2841-HTS_S_2834 8.41 61 55 155 35 155 35 155 35 153 147 152 2074 1.80 12 12 146 155 374 6.43 63 52 155				CURRENT MAGNITUDE BY	LINES SOLUTIONS	48	43	44	MTS_S_3028-MTS_L_3028	3.50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						49	42	45	MTS_S_2802-MTS_S_124254	4.83
1 1 2 0.500.00501-HTS_0_2933 140.96 51 47 168 MTS_0_3077-HTS_0775 4.81 3 3 4 HTS_0_523-HTS_0775 4.87 3.00 4.87 4 5 MTS_0_523-HTS_0775 3.15 54 44 44 MTS_0_523-HTS_0775 4.87 4 5 MTS_0_5200-HTS_02840 3.12 55 50 169 MTS_0_2865-HTS_0285 11.00 6 6 7 HTS_02840-HTS_02841 3.00 56 48 50 HTS_0285-HTS_0285 3.36 7 8 HTS_02841-HTS_02806 6.50 55 52 3.5 MTS_02865-HTS_02867 3.30 9 9 HTS_02804-HTS_028074 8.40 60 53 44 HTS_02807-HTS_028074 1.60 12 16 HTS_02804-HTS_028074 8.41 61 55 MTS_02808-HTS_028074 1.60 12 16 HTS_02807-HTS_02807 1.28.64 65 65 MTS_02808-HTS_02805 4.00 14 16 HTS_02808-HTS_02808 9.78 65	1	k	m	NAME	Ikm[A]	50	45	46	MTS_S_124254-MTS_S_3027	4.87
2 3 MTS_2233-MTS_5.2800 140.96 52 46 4 MTS_5.200-TTS_5.2007 13.00 4 4 MTS_5.200-TTS_5.2800 3.15 54 44 44 MTS_5.290-TTS_5.2907 13.00 5 5 6 MTS_5.2025-MTS_5.2840 3.12 55 50 169 MTS_5.2980-MTS_5.2985 13.00 6 6 7 MTS_5.2040-MTS_5.2841 3.00 56 50 50 MTS_5.2980-MTS_5.2985 3.30 7 8 MTS_5.2304-MTS_5.2941 3.00 56 55 52 53 MTS_5.2980-MTS_5.29263 3.30 0 9 MTS_5.2304-MTS_5.2911 8.40 60 53 54 MTS_5.21173-MTS_5.2918 1.82 11 10 MTS_5.29274-MTS_5.2934 8.41 61 55 170 MTS_5.2087-MTS_5.2074 1.60 12 14 MTS_5.2937-MTS_5.2173 12.96 64 57 170 MTS_5.2087-MTS_5.2074 1.60 12 14 MTS	1	1	2	0500010S01-MTS_S_2933	140.99	51	47	168	MTS_L_3027-TRAF0_875	4.81
3 3 4 MTS_S200-MTS_S20713 140.96 5 33 4 MTS_S207-MTS_2007 13.00 5 5 6 MTS_S207-MTS_2004 3.12 55 54 44 MTS_207-MTS_2007-MTS_2005 13.00 6 6 7 MTS_2040-MTS_2040 3.12 55 50 169 MTS_2080-MTS_2085 3.10 7 8 MTS_2040-MTS_2040 3.00 57 25 S1 MTS_2080-MTS_2085 3.13 10 9 10 MTS_2040-MTS_2040 8.00 55 52 S1 S12082-MTS_2082 3.03 10 9 10 MTS_2040-MTS_2040 8.10 62 54 51 S170 MTS_2017-MTS_2087 1.00 12 12 14 MTS_2040-MTS_2087 8.33 64 51 MTS_2087-MTS_2087 1.00 13 14 MTS_2040-MTS_2087 8.33 64 51 MTS_2087-MTS_2087 1.00 14 13 MTS_2087-MTS_2087 </td <td>2</td> <td>2</td> <td>3</td> <td>MTS_S_2933-MTS_S_2900</td> <td>140.96</td> <td>52</td> <td>46</td> <td>47</td> <td>MTS_S_3027-MTS_L_3027</td> <td>4.87</td>	2	2	3	MTS_S_2933-MTS_S_2900	140.96	52	46	47	MTS_S_3027-MTS_L_3027	4.87
4 5 MTS_S_200-MTS_S_2005 3.15 54 46 44 MTS_S_200-MTS_S_2005 13.00 6 6 MTS_S_200-MTS_S_2001 3.00 55 169 MTS_S_200-MTS_S_2005 13.02 7 8 163 MTS_S_200-MTS_S_2001 3.00 56 49 50 MTS_S_200-MTS_S_2005 3.01 7 8 163 MTS_S_200-MTS_S_2006 8.50 59 52 53 MTS_S_200-MTS_S_2001 1.62 11 10 MTS_S_200-MTS_S_2006 8.50 59 52 53 MTS_S_200-MTS_S_2000 1.62 11 10 MTS_S_200-MTS_S_2006 8.32 62 54 MTS_S_000-MTS_S_2000 1.62 11 11 MTS_S_200-MTS_S_2000 1.62 1.64 1.64 1.62 1.61 1.62 13 11 MTS_S_200-MTS_S_2000 1.60 1.62 1.65 MTS_S_2000-MTS_S_2000 1.60 14 13 MTS_S_200-MTS_S_2000 1.60 1.60 1.60	3	3	4	MTS_S_2900-MTS_S_37613	140.96	53	34	48	MTS_S_37598-MTS_S_2907	13.00
5 5 6 HTS2040 3.12 55 50 166 HTS2040 12.98 6 6 7 HTS2040 3.00 57 28 51 52 HTS2041 3.00 57 28 51 HTS2040 1.80 1.80 11 10 HTS2040 HTS2040 8.13 63 52 56 HTS2040 1.80	4	4	5	MTS_S_37613-MTS_S_3025	3.15	54	48	49	MTS_S_2907-MTS_S_2985	13.00
6 6 7 MIS_2240-MTS_22841 3.00 56 49 50 MTS_52268-MTS_52858 3.102 7 8 MTS_52841-MTS_22841 3.04 58 51 52 51 MTS_52685 3.45 8 MTS_52064-MTS_52741 8.00 59 52 53 MTS_52064-MTS_521173 1.80 10 9 IO MTS_52064-MTS_52741 8.40 60 55 45 S5 21173-MTS_527878 1.82 11 10 MTS_52064-MTS_52741 8.41 61 55 MTS_52084-MTS_52055 4.00 12 164 MTS_52084-MTS_52332 129.65 64 57 MTS_53085-MTS_52035 4.00 14 4 13 MTS_52084-MTS_52337 129.64 65 57 MTS_53035-MTS_52113 5.44 15 13 14 MTS_52084-MTS_52839 9.79 66 60 61 MTS_5214-MTS_52444 8.44 17 18 MTS_52038-MTS_523376 4.32 22<	5	5	6	MTS_S_3025-MTS_S_2840	3.12	55	50	169	MTS_L_2985-TRAF0_5971	12.98
7 8 163 NTS_L2841-TRAP_20109 3.00 57 28 51 MTS_S_22464-MTS_S_2665 3.45 8 7 8 NTS_S_23141-MTS_S_2306 8.50 59 52 53 MTS_S_21173-MTS_S_23078 1.60 10 9 10 MTS_S_2174-MTS_S_23784 8.41 61 55 54 MTS_S_23178-MTS_S_3788 1.62 11 11 MTS_S_23761-MTS_S_2393 8.32 62 54 MTS_S_2380-MTS_S_3035 4.00 12 124 HTS_S_23761-MTS_S_2717 129.65 64 55 57 MTS_S_2306-MTS_S_2035 2.40 14 13 MTS_S_23761-MTS_S_2717 129.64 65 56 57 MTS_S_23124-MTS_S_2111 85.44 16 14 MTS_S_2393-MTS_S_2393 9.70 67 85 9 MTS_S_2124-MTS_S_2111 85.44 17 155 MTS_S_2393-MTS_S_2393 9.70 61 62 MTS_S_2144-MTS_S_2144 84.31 17 15 MTS_S_2393-MTS_S_2393 9.79 70 61 62 MTS_S_2144-MTS_S_23786 84.32 <	6	6	7	MTS_S_2840-MTS_S_2841	3.00	56	49	50	MTS_S_2985-MTS_L_2985	13.02
6 7 6 MTS_S_2641-MTS_L2841 3.04 56 51 52 MTS_S_2668-MTS_S_2852 3.30 9 4 9 MTS_S_2761-MTS_S_2741 8.40 60 53 MTS_S_2868-MTS_S_2876 1.62 11 10 11 MTS_S_2741-MTS_S_2874 8.40 61 55 170 MTS_S_3768-MTS_2876 1.62 12 12 14 MTS_S_2741-MTS_S_2834 8.41 61 55 170 MTS_S_3768-MTS_28376 1.60 13 11 12 MTS_S_2747-MTS_22837 129.64 66 56 77 171 MTS_S_2028-MTS_22144 65.44 17 15 16 HTS_S_2171-MTS_S_2137 129.64 66 25 59 MTS_S_2202-MTS_S_2144 65.44 17 15 16 HTS_S_239-MTS_S_2393 9.70 66 60 61 MTS_S_23764 8.431 16 17 MTS_S_2396-MTS_S_230901 119.94 71 62 64 MTS_S_33784 3.94 <	7	8	163	MTS_L_2841-TRAF0_20109	3.00	57	28	51	MTS_S_22142-MTS_S_26958	3.45
9 4 9 MTS_S_2006-MTS_S_2711 8.40 60 53 54 MTS_S_2004-MTS_S_21173 1.60 10 9 10 MTS_S_2004-MTS_S_21173 1.60 60 53 54 MTS_S_21173-MTS_S_37878 1.62 11 10 11 MTS_S_204-MTS_S_2744 8.41 61 55 170 MTS_S_2082-MTS_S_37878 2.09 13 11 ZuTS_S_2344-MTS_S_2352 129.65 64 57 171 MTS_S_2082-MTS_S_21376 4.00 14 4 13 MTS_S_2082-MTS_S_21371 129.64 65 56 57 MTS_S_2082-MTS_S_2144 65.44 16 14 15 MTS_S_2080-MTS_S_2171 129.64 66 59 60 175_S_2144-MTS_S_21171 65.44 16 16 17 MTS_S_2080-MTS_S_2144 65.44 64 51 171 155.5483 84.31 19 18 165 MTS_S_2080-MTS_S_2083 9.79 70 61 62 3175_S_4483-MTS_S_28768	8	7	8	MTS_S_2841-MTS_L_2841	3.04	58	51	52	MTS_S_26958-MTS_S_2892	3.30
10 9 10 MTS_S_2906-MTS_S_2741 8.40 60 53 54 MTS_S_38788 1.82 11 10 11 MTS_S_2741-MTS_S_2934 8.41 61 55 170 MTS_S_38788-MTS_L_38788 1.80 12 12 124 MTS_S_2871-MTS_S_2837 129.65 64 57 171 MTS_S_3035-MTS_L_3035 4.00 14 13 MTS_S_2830-MTS_S_2837 129.64 65 65 57 MTS_S_22144-MTS_S_2115 55.44 15 16 14 MTS_S_2830-MTS_S_2393 9.73 67 58 59 MTS_S_22144-MTS_S_21171 55.44 16 17 MTS_S_2830-MTS_S_2038 9.79 70 66 60 117_S_S_2144-MTS_S_2818 64.31 11 18 MTS_S_2830-MTS_S_2132 119.94 71 62 64 MTS_S_3758-MTS_S_38788 84.31 12 15 19 MTS_S_21214-MTS_S_39091 119.94 72 63 64 MTS_S_3758-MTS_S_38789 3.84 21 12 MTS_S_38091-MTS_S_39092 119.94 74 65	9	4	9	MTS_S_37613-MTS_S_2906	8.50	59	52	53	MTS_S_2892-MTS_S_21173	1.80
11 10 11 MTS_5_2141-MTS_5_2834 8.41 61 55 170 MTS_5_28788-TRATO_20074 1.60 12 12 164 MTS_5_2762-MARD_6578 8.32 62 54 55 MTS_5_28788-TRATO_2528 1.00 14 4 13 MTS_5_2932-MTS_5_2932 129.65 64 57 171 MTS_5_29307-MTS_5_2033 2.40 16 14 15 MTS_5_2937-MTS_5_2337 129.64 65 56 57 MTS_5_2103-MTS_5_2111 85.44 16 14 15 MTS_5_2937-MTS_5_2338 9.78 67 85 50 MTS_5_21171-MTS_5_2111 85.44 17 18 MTS_5_2938-MTS_1_2338 9.78 66 61 MTS_5_21171-MTS_5_24482 85.44 20 17 8 MTS_5_21233 119.94 71 62 64 MTS_5_81842-MTS_5_81896 84.31 21 15 19 MTS_5_21233 119.94 73 64 65 MTS_5_81842-MTS_5_81896 84.31 22 19 0 MTS_5_21243-MTS_5_93092 119.94 73 <td>10</td> <td>9</td> <td>10</td> <td>MTS_S_2906-MTS_S_2741</td> <td>8.40</td> <td>60</td> <td>53</td> <td>54</td> <td>MTS_S_21173-MTS_S_38788</td> <td>1.82</td>	10	9	10	MTS_S_2906-MTS_S_2741	8.40	60	53	54	MTS_S_21173-MTS_S_38788	1.82
12 12 164 MTS 5_2742-TRAPO 6578 8.32 62 54 55 MTS 5_2893-MTS 1_2742 8.43 63 52 56 MTS 5_2893-MTS 5_2837 129.64 64 57 171 MTS 5_27613-MTS 5_2837 129.64 65 65 65 64 57 171 MTS 5_2037-MTS 5_2837 129.64 66 62 58 MTS 5_30032-MTS 1_2035 2.40 16 14 15 MTS 5_2037-MTS 5_2339 9.73 67 58 59 MTS 5_21244-MTS 5_21244 65.44 19 16 MTS 5_2393-MTS 1_2938 9.79 70 69 60 61 MTS 5_54482-MTS 5_54482 84.31 21 15 MTS 5_237617-MTS 5_22133 119.94 71 62 64 MTS 5_53764 3.64 21 15 MTS 5_237674-MTS 5_2309 119.94 71 63 64 MTS 5_53764 3.64 64 155 54483 64.31 21 15 MTS 5_3092-MTS 5_2803 10.05 75 66 67 MTS 5_37784 3.64 64 155 566 115	11	10	11	MTS_S_2741-MTS_S_2934	8.41	61	55	170	MTS_L_38788-TRAF0_28074	1.80
11 11 12 MTS 5_2394-MTS L_2742 8.43 63 52 56 MTS 5_23035 4.00 14 4 13 MTS 5_2392-MTS 5_2332 129.65 64 57 171 MTS 5_2303-MTS 5_2035 2.40 16 14 15 MTS 5_2397-MTS 5_37617 129.64 65 65 75 MTS 5_2393-MTS 5_2117 85.44 17 15 16 17 MTS 5_2393-MTS 5_2338 9.70 67 65 96 MTS 5_21171 85.44 19 18 165 MTS 1_2393-MTS 5_2133 119.94 70 61 62 MTS 5_2145-MTS 5_21171 85.44 21 15 19 MTS 5_2393-MTS 5_2123 119.94 71 62 64 MTS 5_3878-MTS 5_3788 84.31 21 15 19 MTS 5_23909-MTS 5_30902 119.94 72 63 64 MTS 5_9378-MTS 5_3786 84.31 23 20 MTS 5_30902-MTS 5_30796 10.05 75 66 MTS 5_9378-MTS 5_2898 3.83 24 21 24 MTS 5_30796-MTS 5_30791 10.12 <td>12</td> <td>12</td> <td>164</td> <td>MTS_L_2742-TRAF0_6578</td> <td>8.32</td> <td>62</td> <td>54</td> <td>55</td> <td>MTS_S_38788-MTS_L_38788</td> <td>2.09</td>	12	12	164	MTS_L_2742-TRAF0_6578	8.32	62	54	55	MTS_S_38788-MTS_L_38788	2.09
14 4 13 MTS_5_37613-MTS_5_2932 129.65 64 57 171 MTS_5_3035-MTR_5_3035 2.40 15 13 14 MTS_5_2937-MTS_5_2937 129.64 65 56 57 MTS_5_3035-MTS_5_2148 5.44 17 15 16 MTS_5_37617-MTS_5_2398 9.73 67 58 59 MTS_5_22145-MTS_5_2148 85.44 18 16 17 MTS_5_2938-MTS_6_2038 9.78 68 59 60 MTS_5_2144-MTS_5_54482 85.44 20 17 18 MTS_5_2233-MTS_5_2123 119.94 71 62 64 MTS_5_3786-MTS_5_3786 84.31 21 19 0 MTS_5_2133-MTS_5_23176 10.05 76 66 MTS_5_3786+MTS_5_3786 84.31 22 23 MTS_5_3091-MTS_5_3786 10.05 76 67 68 MTS_5_3786+MTS_5_3786 3.68 24 21 24 MTS_5_30902-MTS_5_3786 10.05 76 76 68 MTS_5_2188-MTS_5_38764 <	13	11	12	MTS_S_2934-MTS_L_2742	8.43	63	52	56	MTS_S_2892-MTS_S_3035	4.00
15 13 14 MTS 5_2932-MTS 5_2937 129.64 65 56 57 MTS 5_3035-MTS 5_2035 2.40 16 14 15 MTS 5_2937-MTS 5_2936 9.73 66 59 MTS 5_22144 85.44 17 15 16 MTS 5_2939-MTS 5_2938 9.73 68 59 MTS 5_22145 85.44 18 16 17 MTS 5_2938-MTS 1_2938 9.70 68 69 60 HTS 5_24482 85.44 20 T1 B MTS 5_2938-MTS 1_2938 9.70 70 61 C1 MTS 5_54482 84.31 21 15 19 MTS 5_2383-MTS 1_2938 9.79 70 61 65 MTS 5_38764 84.31 22 19 20 MTS 5_23839-MTS 5_2033 119.94 71 62 64 MTS 5_38764 3.94 25 22 23 MTS 5_39091 119.94 74 65 66 MTS 5_38764 3.94 25 22 MTS	14	4	13	MTS_S_37613-MTS_S_2932	129.65	64	57	171	MTS_L_3035-TRAF0_2528	1.50
16 14 15 MTS_S_237-MTS_S_37617 129.64 66 22 58 MTS_S_30902-MTS_S_2114 85.44 17 15 16 MTS_S_37617-MTS_S_2939 9.73 67 58 59 MTS_S_2144-MTS_S_21215 85.44 19 18 165 MTS_S_2393-MTS_S_21238 9.70 69 60 61 MTS_S_21171 MTS_S_4422-MTS_S_54482 85.44 20 17 18 MTS_S_22133-MTS_S_22132 119.94 71 62 63 MTS_S_3786-MTS_S_3786 84.32 21 15 0 MTS_S_22132-MTS_S_32091 119.94 71 62 64 MTS_S_23876-MTS_S_3786 84.31 23 20 21 MTS_S_3092-MTS_S_32092 119.94 73 64 65 MTS_S_23876-MTS_S_38764 3.94 25 22 MTS_S_3092-MTS_S_32093 10.06 76 67 68 MTS_S_3876-MTS_S_38764 3.94 25 22 MTS_S_3092-MTS_S_38791 24.49 70 67 76	15	13	14	MTS_S_2932-MTS_S_2937	129.64	65	56	57	MTS_S_3035-MTS_L_3035	2.40
17 15 16 MTS_5_2939-MTS_5_2939 9.73 67 58 59 MTS_5_22144-MTS_5_21171 85.44 18 16 17 MTS_5_2939-MTS_5_2938 9.76 68 59 60 MTS_5_21171 85.44 19 16 65 MTS_5_2145-MTS_5_21171 85.44 20 17 18 MTS_5_2393-TRATO_6570 9.70 61 62 MTS_5_54483-MTS_5_38796 84.32 21 15 19 MTS_5_2132-MTS_5_39091 119.94 72 63 64 MTS_5_38786-MTS_5_38786 84.31 23 21 MTS_5_3092-MTS_5_3092 119.94 72 63 64 MTS_5_37586-MTS_5_38784 3.94 25 22 MTS_5_93092-MTS_5_30786 10.05 75 66 67 MTS_5_38786-MTS_5_2889 2.25 27 25 166 MTS_5_23092-MTS_5_30786 10.03 77 68 69 MTS_5_2889-MTS_5_38766 1.50 28 24 25 MTS_5_38792-MTS_5_2103 1.12 78 70 172 MTS_5_2889-MTS_5_2886 2.26	16	14	15	MTS_S_2937-MTS_S_37617	129.64	66	22	58	MTS_S_39092-MTS_S_22144	85.44
18 16 17 MTS_S_2393-MTS_S_2393 9.78 68 59 60 MTS_S_21171 85.44 19 18 165 MTS_S_2393-MTS_L_2938 9.79 90 61 62 MTS_S_54482 85.44 20 17 18 MTS_S_238-MTS_L_2938 9.79 90 61 62 MTS_S_54482-MTS_S_3488 84.31 21 15 19 MTS_S_22133-MTS_S_22132 119.94 71 62 63 MTS_S_3876- 84.32 22 19 20 MTS_S_39091-MTS_S_3092 119.94 72 63 64 MTS_S_288-MTS_S_2968 3.83 24 21 Z MTS_S_39092-MTS_S_3092 10.05 75 66 67 MTS_S_288-MTS_S_2889 2.25 27 25 166 MTS_S_12903-MTS_L_2903 10.12 78 69 70 MTS_S_2889-MTS_S_2889 2.25 27 25 166 MTS_S_3879-MTS_S_2879 24.49 70 172 MTS_S_3759-MTS_S_2855 2.43	17	15	16	MTS_S_37617-MTS_S_2939	9.73	67	58	59	MTS_S_22144-MTS_S_22145	85.44
19 18 165 MTS_L_2938-TRAFO_6570 9.70 69 60 61 MTS_S_21171-MTS_S_4482 85.44 20 17 18 MTS_S_2338-MTS_L_2938 9.79 70 61 62 MTS_S_54483 84.31 21 19 MTS_S_2133-MTS_S_22133 119.94 71 62 64 MTS_S_3796 84.32 23 20 21 MTS_S_2133-MTS_5_22132 119.94 72 64 65 MTS_S_3796 84.32 24 21 22 MTS_S_39091 119.94 73 64 65 MTS_S_3788-MTS_S_3878 8.83 24 21 22 MTS_S_38786-MTS_S_2803 10.05 75 66 67 MTS_S_3789-MTS_S_2889 2.25 27 25 166 MTS_S_38786-MTS_S_2803 10.12 78 70 17 MTS_S_38764-MTS_S_38791 24.49 80 71 MTS_S_38766-MTS_S_28792 2.45 26 MTS_S_38792-MTS_S_28792 2.449 80 71 MTS_S_37589-MTS_S_2586 2.43 31 27 28 MTS_S_38792-MTS_S_38792 <td>18</td> <td>16</td> <td>17</td> <td>MTS_S_2939-MTS_S_2938</td> <td>9.78</td> <td>68</td> <td>59</td> <td>60</td> <td>MTS_S_22145-MTS_S_21171</td> <td>85.44</td>	18	16	17	MTS_S_2939-MTS_S_2938	9.78	68	59	60	MTS_S_22145-MTS_S_21171	85.44
20 17 18 MTS_S_2938-MTS_L_2938 9.79 70 61 62 MTS_S_54482-MTS_5_54483 84.31 21 15 19 MTS_S_21133-MTS_S_22133 119.94 71 62 63 MTS_S_54483-MTS_S_38796 84.32 22 19 20 MTS_S_2133-MTS_S_23091 119.94 72 63 64 MTS_S_38796-MTS_S_2889 84.31 24 21 22 MTS_S_39091-MTS_S_38092 119.94 74 65 66 MTS_S_37589-MTS_S_2889 3.83 24 21 22 MTS_S_39092-MTS_S_38786 10.05 75 66 67 RESTS_37589-MTS_S_2889 2.25 23 24 MTS_S_380786-MTS_S_2903 10.02 76 67 RESTS_37589-MTS_S_38766 1.50 24 25 MTS_S_380791-MTS_S_38792 24.49 79 67 70 MTS_S_37589-MTS_S_2889 2.26 31 27 RTS_S_380792-MTS_S_2143 21.17 82 73 173 <mts_s_2886-mts_s_2886< td=""> 2.26</mts_s_2886-mts_s_2886<>	19	18	165	MTS_L_2938-TRAF0_6570	9.70	69	60	61	MTS_S_21171-MTS_S_54482	85.44
21 15 19 MTS_5_37617-MTS_5_22133 119.94 71 62 63 MTS_5_38796-MTS_5_38796 84.32 22 19 20 MTS_5_22132-MTS_5_39091 119.94 73 64 65 MTS_5_37588 84.31 23 20 21 MTS_5_3091-MTS_5_39091 119.94 73 64 65 MTS_5_37588-MTS_5_2988 3.83 24 21 22 MTS_5_3092-MTS_5_30991 119.94 74 65 66 MTS_5_37589-MTS_5_37589 3.88 26 23 24 MTS_5_3876-MTS_5_2903 10.00 76 67 68 MTS_5_38766 1.50 27 25 166 MTS_5_38791-MTS_5_38792 24.49 79 69 70 MTS_5_3876-MTS_5_2866 2.26 28 29 MTS_5_38791-MTS_5_38792 24.49 80 67 71 MTS_5_3858-MTS_5_2866 2.26 29 MTS_5_2143-MTS_5_12133 21.17 83 72 73 MTS_5_2858-MTS_5_130297 3.07 31 27 28 MTS_5_38792-MTS_5_21213 21.17 87	20	17	18	MTS_S_2938-MTS_L_2938	9.79	70	61	62	MTS_S_54482-MTS_S_54483	84.31
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	15	19	MTS_S_37617-MTS_S_22133	119.94	71	62	63	MTS S 54483-MTS S 38796	84.32
23 20 21 MTS_s_22132-MTS_s_39091 119.94 73 64 65 MTS_s_37588-MTS_S_38784 3.94 24 21 22 MTS_S_30902-MTS_S_38786 10.05 75 66 67 68 MTS_S_37589-MTS_S_38784 3.94 25 22 23 MTS_S_30902-MTS_S_2903 10.06 76 66 67 MTS_S_38786-MTS_S_2889 2.25 27 25 166 MTS_S_2903-MTS_L_2903 10.12 78 70 172 MTS_S_38766 1.50 28 24 25 MTS_S_38791 24.49 79 69 70 MTS_S_3766-MTS_S_3876 1.98 30 26 27 MTS_S_38792 24.49 80 67 71 MTS_S_3786-MTS_S_2856 2.26 31 27 28 MTS_S_2142-MTS_S_21412 21.17 83 72 73 MTS_S_2586-MTS_S_2866 2.26 32 28 9 MTS_S_2143-MTS_S_38778 21.17 83 72 73 MTS_S_1286-MTS_S_130297 3.07 35 36 MTS_S_21813-MTS_S_38772	22	19	20	MTS_S_22133-MTS_S_22132	119.94	72	63	64	MTS_S_38796-MTS_S_37588	84.31
24 21 22 MTS_5_39091-MTS_5_39092 119.94 74 65 66 MTS_5_2908-MTS_5_30784 3.94 25 22 23 MTS_5_30786-MTS_5_30786 10.05 75 66 67 MTS_5_37589-MTS_5_2889 2.25 27 25 166 MTS_5_2903-MTS_L 2903 10.01 76 67 68 MTS_5_38784-MTS_5_38766 1.50 28 24 25 MTS_5_2903-MTS_L 2903 10.12 78 70 172 MTS_5_38766-MTS_1_38766 1.50 29 22 26 MTS_5_38791 24.49 80 67 71 MTS_5_38766-MTS_5_2855 2.43 31 27 28 MTS_5_38792-MTS_5_2142 24.50 81 71 72 MTS_5_2586 2.26 32 28 29 MTS_5_2143-MTS_5_2143 21.17 82 73 MTS_5_2586-MTS_5_2586 2.26 33 29 30 MTS_5_21813-MTS_5_21813 21.17 87 74 MTS_5_2189-MTS_5_10297 3.07 35 13 2 MTS_5_38778 21.17 <td>23</td> <td>20</td> <td>21</td> <td>MTS S 22132-MTS S 39091</td> <td>119.94</td> <td>73</td> <td>64</td> <td>65</td> <td>MTS S 37588-MTS S 2988</td> <td>3.83</td>	23	20	21	MTS S 22132-MTS S 39091	119.94	73	64	65	MTS S 37588-MTS S 2988	3.83
25 22 23 MTS_S_3092-MTS_S_30786 10.05 75 66 67 MTS_S_3784-MTS_S_37589 3.88 26 23 24 MTS_S_38786-MTS_S_2903 10.08 76 67 68 MTS_S_37589-MTS_S_2889 2.25 27 25 166 MTS_S_2903-MTS_S_2033 10.01 77 66 67 68 MTS_S_37569-MTS_S_2889 2.25 27 25 166 MTS_S_2903-MTS_S_2033 10.12 78 70 172 MTS_S_38766 1.50 28 24 25 MTS_S_3092-MTS_S_30792 24.49 70 67 71 MTS_S_3789-MTS_S_2585 2.43 31 27 28 MTS_S_28792-MTS_S_2142 24.50 81 71 72 MTS_S_2586-MTS_S_2586 2.26 32 29 MTS_S_21413-MTS_S_21815 21.17 82 73 173 <mts_s_2586-mts_s_2586< td=""> 2.34 34 30 31 MTS_S_38776 21.17 84 74 MTS_S_130297 3.07</mts_s_2586-mts_s_2586<>	24	21	22	MTS S 39091-MTS S 39092	119.94	74	65	66	MTS S 2988-MTS S 38784	3.94
26 23 24 MTS_S_38786-MTS_S_2903 10.08 76 67 68 MTS_S_37589-MTS_S_2889 2.25 27 25 166 MTS_L_2903-MTS_L_2903 10.12 78 70 172 MTS_S_38766-MTS_S_38766 1.50 28 24 25 MTS_S_30902-MTS_S_38791 24.49 79 69 70 MTS_S_38766-MTS_S_288766 1.90 30 26 27 MTS_S_38791-MTS_S_2142 24.49 80 67 71 MTS_S_38766-MTS_S_2585 2.43 31 27 28 MTS_S_2179-MTS_S_2142 24.50 81 71 72 MTS_S_2586-MTS_S_2585 2.43 31 27 28 MTS_S_2181-MTS_S_21815 21.17 82 73 MTS_S_2586-MTS_L_2586 2.26 33 29 30 MTS_S_2181-MTS_S_38772 21.17 84 67 74 MTS_S_37589-MTS_S_2180297 3.07 35 31 32 MTS_S_38778-MTS_S_38772 21.17 84 67 76 MTS_S_	25	22	23	MTS_S_39092-MTS_S_38786	10.05	75	66	67	MTS_S_38784-MTS_S_37589	3.88
27 25 166 MTS_L_2903-TRAFO_6582 10.03 77 68 69 MTS_S_2889-MTS_S_38766 1.50 28 24 25 MTS_S_2903-MTS_L_2903 10.12 78 70 172 MTS_L_38766-TRAFO_30123 1.50 29 22 26 MTS_S_38791-MTS_S_38792 24.49 79 69 70 MTS_S_3766-MTS_L_38766 1.98 30 26 27 MTS_S_38791-MTS_S_28792 24.49 80 67 71 MTS_S_37589-MTS_S_2585 2.43 31 27 28 MTS_S_2142-MTS_S_2143 21.17 82 73 MTS_S_2586-MTS_S_2586 2.26 32 28 9 MTS_S_21815-MTS_S_21815 21.17 83 67 74 MTS_S_37589-MTS_S_130297 3.07 35 31 32 MTS_S_38778-MTS_S_21813 21.17 84 67 74 MTS_S_27589-MTS_S_26952 0.42 36 32 33 MTS_S_38778-MTS_S_21813 21.17 85 74 75 MTS_S_37589-MTS_S_4402 67.19 37 33 4 MTS_S_38772-MTS_S_375	26	23	24	MTS_S_38786-MTS_S_2903	10.08	76	67	68	MTS_S_37589-MTS_S_2889	2.25
28 24 25 MTS_S_2903-MTS_L_2903 10.12 78 70 172 MTS_L_38766-TRAFG_30123 1.50 29 22 26 MTS_S_38791-MTS_S_38791 24.49 79 69 70 MTS_S_38766-MTS_L_38766 1.98 30 26 27 MTS_S_38791-MTS_S_28792 24.49 80 67 71 MTS_S_38766-MTS_L_38766 1.98 31 27 28 MTS_S_38792-MTS_S_2142 24.50 81 71 72 MTS_S_2586-MTS_S_2586 2.26 32 28 29 MTS_S_2141-MTS_S_21815 21.17 82 73 173 MTS_S_130297 3.07 33 105_S_21815-MTS_S_21815 21.17 83 72 73 MTS_S_130297-MTS_S_130297 3.07 35 31 MTS_S_1878-MTS_S_21813 21.17 85 74 75 MTS_S_26952-MTS_L_26952 0.42 36 32 33 MTS_S_21817-MTS_S_38772 21.17 86 75 76 MTS_S_24402-MTS_S_4402 67.19 37 33 4 MTS_S_38793-MTS_S_38793 0.86 88<	27	25	166	MTS_L_2903-TRAF0_6582	10.03	77	68	69	MTS_S_2889-MTS_S_38766	1.50
29 22 26 MTS_5_30902-MTS_5_38791 24.49 79 69 70 MTS_5_38766-MTS_L_38766 1.98 30 26 27 MTS_5_38791-MTS_5_38792 24.49 80 67 71 MTS_5_37589-MTS_5_2585 2.43 31 27 28 MTS_5_38792-MTS_5_2142 24.50 81 71 72 MTS_5_2586 2.26 32 28 29 MTS_5_2143-MTS_5_21815 21.17 83 72 73 MTS_5_2586-MTS_5_130297 3.07 35 31 32 MTS_5_21815-MTS_5_38778 21.17 84 67 74 MTS_5_3759-MTS_5_130297 3.07 35 31 32 MTS_5_38778-MTS_5_21813 21.17 85 74 75 MTS_5_130297-MTS_5_1402 67.19 36 32 33 MTS_5_38772 21.17 86 75 76 MTS_5_37588-MTS_5_4402 67.19 37 33 44 MTS_5_38793-MTS_5_37598 21.17 87 64 77 MTS_5_4402-MTS_5_4402 67.19 39 35 36 MTS_5_38793-MTS_5_442	28	24	25	MTS_S_2903-MTS_L_2903	10.12	78	70	172	MTS_L_38766-TRAF0_30123	1.50
30 26 27 MTS_S_38791-MTS_S_38792 24.49 80 67 71 MTS_S_37589-MTS_S_2585 2.43 31 27 28 MTS_S_38792-MTS_S_22142 24.50 81 71 72 MTS_S_2585 2.26 32 28 29 MTS_S_2142-MTS_S_2143 21.17 82 73 173 MTS_S_2586-MTS_L_2586 2.26 33 29 30 MTS_S_21815-MTS_S_21815 21.17 83 72 73 MTS_S_37589-MTS_S_130297 3.07 35 31 32 MTS_S_38778-MTS_S_21813 21.17 84 67 74 MTS_S_130297-MTS_S_130297 3.07 35 31 32 MTS_S_38778-MTS_S_1813 21.17 85 74 75 MTS_S_130297-MTS_S_16952 0.42 36 32 33 MTS_S_38772-MTS_S_37596 21.17 86 75 76 MTS_S_4402 67.19 39 35 MTS_S_38799-MTS_S_38793 0.86 88 77 78 MTS_S_4402-MTS_S_4385 67.19 39 35 MTS_S_57690-MTS_S_38793 0.86 <t< td=""><td>29</td><td>22</td><td>26</td><td>MTS_S_39092-MTS_S_38791</td><td>24.49</td><td>79</td><td>69</td><td>70</td><td>MTS_S_38766-MTS_L_38766</td><td>1.98</td></t<>	29	22	26	MTS_S_39092-MTS_S_38791	24.49	79	69	70	MTS_S_38766-MTS_L_38766	1.98
31 27 28 MTS_S_38792-MTS_S_22142 24.50 81 71 72 MTS_S_2586 2.26 32 28 29 MTS_S_22142-MTS_S_22143 21.17 82 73 173 MTS_S_2586-MTS_L_2586 2.26 33 29 30 MTS_S_22143-MTS_S_21815 21.17 83 72 73 MTS_S_2586-MTS_L_2586 2.34 34 30 31 MTS_S_21815-MTS_S_38778 21.17 84 67 74 MTS_S_130297 3.07 35 31 32 MTS_S_38778-MTS_S_21813 21.17 84 67 74 MTS_S_130297-MTS_S_26952 0.42 36 32 33 MTS_S_38772-MTS_S_38772 21.17 85 74 75 MTS_S_130297-MTS_S_4402 67.19 38 34 35 MTS_S_38772-MTS_S_38798 21.17 87 64 77 MTS_S_4402-MTS_S_4802 67.19 39 35 36 MTS_S_38793-MTS_S_4420 1.32 89 78 79 MTS_S_37598-MTS_S_4389 41.82 41 37 38 MTS_S_1610-MTS_S_3877	30	26	27	MTS S 38791-MTS S 38792	24.49	80	67	71	MTS S 37589-MTS S 2585	2.43
32 28 29 MTS_S_22142-MTS_S_22143 21.17 82 73 173 MTS_L_2586-TRAFO_19991 2.26 33 29 30 MTS_S_22181-MTS_S_21815 21.17 83 72 73 MTS_S_2586-MTS_L_2586 2.34 34 30 31 MTS_S_21815-MTS_S_38778 21.17 84 67 74 MTS_S_37589-MTS_S_130297 3.07 35 31 32 MTS_S_38778-MTS_S_21813 21.17 84 67 74 MTS_S_26952-MTS_S_26952 0.42 36 32 33 MTS_S_38772-MTS_S_38772 21.17 86 75 76 MTS_S_37588-MTS_S_4402 67.19 38 34 35 MTS_S_38793-MTS_S_38793 0.86 88 77 78 MTS_S_4402-MTS_S_4885 67.19 39 35 36 MTS_S_38793-MTS_S_4420 1.32 89 78 79 MTS_S_37595 41.82 41 37 38 MTS_S_1610-MTS_S_38776 0.41 91 80 81 MTS_S_38795-MTS_S_38795 41.82 42 38 39 MTS_S_3759	31	27	28	MTS S 38792-MTS S 22142	24.50	81	71	72	MTS S 2585-MTS S 2586	2.26
33 29 30 MTS_S_22143-MTS_S_21815 21.17 83 72 73 MTS_S_2566-MTS_L_2586 2.34 34 30 31 MTS_S_21815-MTS_S_38778 21.17 84 67 74 MTS_S_37589-MTS_S_130297 3.07 35 31 32 MTS_S_38778-MTS_S_21813 21.17 85 74 75 MTS_S_26952 0.42 36 32 33 MTS_S_38772 21.17 86 75 76 MTS_S_26952-MTS_L_26952 0.11 37 33 34 MTS_S_38772-MTS_S_37598 21.17 87 64 77 MTS_S_37588-MTS_S_4402 67.19 38 34 35 MTS_S_38793-MTS_S_38793 0.86 88 77 78 MTS_S_4402-MTS_S_4885 67.19 39 35 36 MTS_S_38793-MTS_S_4420 1.32 89 78 79 MTS_S_37607-MTS_S_4389 41.82 41 37 38 MTS_S_1610-MTS_S_38776 0.41 91 80 81 MTS_S_37595-MTS_S_37654 41.82 42 38 9 MTS_S_37598-MTS_S_37598<	32	28	29	MTS S 22142-MTS S 22143	21.17	82	73	173	MTS L 2586-TRAFO 19991	2.26
34 30 31 MTS_S_21815-MTS_S_38778 21.17 84 67 74 MTS_S_37589-MTS_S_130297 3.07 35 31 32 MTS_S_38778-MTS_S_21813 21.17 85 74 75 MTS_S_130297-MTS_S_26952 0.42 36 32 33 MTS_S_21813-MTS_S_38772 21.17 86 75 76 MTS_S_26952-MTS_L_26952 0.11 37 33 34 MTS_S_38772-MTS_S_37598 21.17 87 64 77 MTS_S_37588-MTS_S_4402 67.19 38 34 35 MTS_S_38793-MTS_S_38793 0.86 88 77 78 MTS_S_4402-MTS_S_4385 67.19 39 35 36 MTS_S_38793-MTS_S_4420 1.32 89 78 79 MTS_S_4385-MTS_S_37607 67.19 40 36 37 MTS_S_38776 0.41 91 80 81 MTS_S_38795-MTS_S_38795 41.82 41 37 38 MTS_S_37598-MTS_S_37598 0.45 92 81 82 MTS_S_38764 41.82 43 34 40 MTS_S_37598-MTS_S_2	33	29	30	MTS_S_22143-MTS_S_21815	21.17	83	72	73	MTS S 2586-MTS L 2586	2.34
35 31 32 MTS_S_38778-MTS_S_21813 21.17 85 74 75 MTS_S_130297-MTS_S_26952 0.42 36 32 33 MTS_S_21813-MTS_S_38772 21.17 86 75 76 MTS_S_26952-MTS_L_26952 0.11 37 33 34 MTS_S_38772-MTS_S_37598 21.17 87 64 77 MTS_S_37588-MTS_S_4402 67.19 38 34 35 MTS_S_38793-MTS_S_38793 0.86 88 77 78 MTS_S_4385-MTS_S_37607 67.19 39 35 36 MTS_S_38793-MTS_S_4420 1.32 89 78 79 MTS_S_37607-MTS_S_4389 41.82 41 37 38 MTS_S_16910-MTS_S_38776 0.41 91 80 81 MTS_S_38795-MTS_S_38795 41.82 42 38 39 MTS_S_37598-MTS_S_2986 8.23 93 82 83 MTS_S_37598-MTS_S_2986 8.23 93 82 83 MTS_S_2925-MTS_S_2925 13.34 44 40 41 MTS_S_28077-MTS_S_2802 8.19 95 85 174 MTS_S_2925-MTS_S_29	34	30	31	MTS_S_21815-MTS_S_38778	21.17	84	67	74	MTS_S_37589-MTS_S_130297	3.07
36 32 33 MTS_S_21813-MTS_S_38772 21.17 86 75 76 MTS_S_26952-MTS_L_26952 0.11 37 33 34 MTS_S_38772-MTS_S_37598 21.17 87 64 77 MTS_S_37588-MTS_S_4402 67.19 38 34 35 MTS_S_37598-MTS_S_38793 0.86 88 77 78 MTS_S_4402-MTS_S_4385 67.19 39 35 36 MTS_S_38793-MTS_S_4420 1.32 89 78 79 MTS_S_4385-MTS_S_37607 67.19 40 36 37 MTS_S_4420-MTS_S_76910 0.11 90 79 80 MTS_S_37607-MTS_S_4389 41.82 41 37 38 MTS_S_38776 0.41 91 80 81 MTS_S_38795-MTS_S_38795 41.82 42 38 39 MTS_S_37598-MTS_S_37659 0.45 92 81 82 MTS_S_38754-41.82 43 34 40 MTS_S_37598-MTS_S_2986 8.23 93 82 83 MTS_S_37598-MTS_S_2925 13.34 44 40 41 MTS_S_2986-MTS_S_2977 8.2	35	31	32	MTS_S_38778-MTS_S_21813	21.17	85	74	75	MTS S 130297-MTS S 26952	0.42
37 33 34 MTS_S_38772-MTS_S_37598 21.17 87 64 77 MTS_S_37588-MTS_S_4402 67.19 38 34 35 MTS_S_37598-MTS_S_38793 0.86 88 77 78 MTS_S_4402-MTS_S_4385 67.19 39 35 36 MTS_S_38793-MTS_S_4420 1.32 89 78 79 MTS_S_4385-MTS_S_4389 41.82 40 36 37 MTS_S_76910-MTS_S_76910 0.11 90 79 80 MTS_S_37607-MTS_S_4389 41.82 41 37 38 MTS_S_38776-MTS_S_38776 0.41 91 80 81 MTS_S_38795-MTS_S_38795 41.82 42 38 39 MTS_S_37598-MTS_S_37659 0.45 92 81 82 MTS_S_37595-MTS_S_37654 41.82 43 34 40 MTS_S_37598-MTS_S_2986 8.23 93 82 83 MTS_S_37654-MTS_S_2925 13.34 44 40 41 MTS_S_2986-MTS_S_2977 8.26 94 83 84 MTS_S_2925-MTS_S_2923 13.34 45 41 42 MTS_S	36	32	33	MTS S 21813-MTS S 38772	21.17	86	75	76	MTS S 26952-MTS L 26952	0.11
38 34 35 MTS_S_37598-MTS_S_38793 0.86 88 77 78 MTS_S_4420-MTS_S_4385 67.19 39 35 36 MTS_S_38793-MTS_S_4420 1.32 89 78 79 MTS_S_4385-MTS_S_37607 67.19 40 36 37 MTS_S_4420-MTS_S_76910 0.11 90 79 80 MTS_S_37607-MTS_S_4389 41.82 41 37 38 MTS_S_76910-MTS_S_38776 0.41 91 80 81 MTS_S_38795-MTS_S_38795 41.82 42 38 39 MTS_S_37598-MTS_S_37659 0.45 92 81 82 MTS_S_37595-MTS_S_37654 41.82 43 34 40 MTS_S_27598-MTS_S_2986 8.23 93 82 83 MTS_S_37654-MTS_S_2925 13.34 44 40 41 MTS_S_2986-MTS_S_2977 8.26 94 83 44 MTS_S_2925-MTS_S_2923 13.34 45 41 42 MTS_S_2802-MTS_S_3028 3.50 96 84 85 MTS_S_2923-MTS_L_2923 13.38 46 42 43 MTS_S_202	31	33	34	MTS S 38772-MTS S 37598	21.17	87	64	77	MTS S 37588-MTS S 4402	67.19
39 35 36 MTS_S_38793-MTS_S_4420 1.32 89 78 79 MTS_S_4385-MTS_S_37607 67.19 40 36 37 MTS_S_4420-MTS_S_76910 0.11 90 79 80 MTS_S_37607-MTS_S_4389 41.82 41 37 38 MTS_S_76910-MTS_S_38776 0.41 91 80 81 MTS_S_4389-MTS_S_38795 41.82 42 38 39 MTS_S_38776-MTS_S_37659 0.45 92 81 82 MTS_S_37595-MTS_S_37654 41.82 43 34 40 MTS_S_37598-MTS_S_2986 8.23 93 82 83 MTS_S_37654-MTS_S_2925 13.34 44 40 41 MTS_S_2986-MTS_S_2977 8.26 94 83 84 MTS_S_2925-MTS_S_2923 13.34 45 41 42 MTS_S_2802-MTS_S_2802 8.19 95 85 174 MTS_S_2923-MTS_L_2923 13.31 46 42 43 MTS_S_2802-MTS_S_3028 3.50 96 84 85 MTS_S_2923-MTS_L_2923 13.38 47 44 167 MTS_L_3028	38	34	35	MTS S 37598-MTS S 38793	0.86	88	77	78	MTS S 4402-MTS S 4385	67.19
40 36 37 MTS_S_4420-MTS_S_76910 0.11 90 79 80 MTS_S_37607-MTS_S_4389 41.82 41 37 38 MTS_S_76910-MTS_S_38776 0.41 91 80 81 MTS_S_4389-MTS_S_38795 41.82 42 38 39 MTS_S_38776-MTS_S_37659 0.45 92 81 82 MTS_S_37595-MTS_S_37654 41.82 43 34 40 MTS_S_37598-MTS_S_2986 8.23 93 82 83 MTS_S_37654-MTS_S_2925 13.34 44 40 41 MTS_S_2986-MTS_S_2977 8.26 94 83 84 MTS_S_2925-MTS_S_2923 13.34 45 41 42 MTS_S_2802 8.19 95 85 174 MTS_S_2923-MTS_L_2923 13.31 46 42 43 MTS_S_2028-MTS_S_3028 3.50 96 84 85 MTS_S_2923-MTS_L_2923 13.38 47 44 167 MTS_L_3028-TRAF0_525 3.38 97 82 86 MTS_S_37654-MTS_S_4412 13.75	39	35	36	MTS S 38793-MTS S 4420	1.32	89	78	79	MTS S 4385-MTS S 37607	67.19
41 37 38 MTS_S_76910-MTS_S_38776 0.41 91 80 81 MTS_S_4389-MTS_S_38795 41.82 42 38 39 MTS_S_38776-MTS_S_37659 0.45 92 81 82 MTS_S_38795-MTS_S_37654 41.82 43 34 40 MTS_S_37598-MTS_S_2986 8.23 93 82 83 MTS_S_37654-MTS_S_2925 13.34 44 40 41 MTS_S_2986-MTS_S_2977 8.26 94 83 84 MTS_S_2925-MTS_S_2923 13.34 45 41 42 MTS_S_2977-MTS_S_2802 8.19 95 85 174 MTS_L_2923-TRAFO_6552 13.31 46 42 43 MTS_S_2802-MTS_S_3028 3.50 96 84 85 MTS_S_2923-MTS_L_2923 13.38 47 44 167 MTS_L_3028-TRAFO_525 3.38 97 82 86 MTS_S_37654-MTS_S_4412 13.75	40	36	37	MTS S 4420-MTS S 76910	0.11	90	79	80	MTS S 37607-MTS S 4389	41.82
42 38 39 MTS_S_38776-MTS_S_37659 0.45 92 81 82 MTS_S_38795-MTS_S_37654 41.82 43 34 40 MTS_S_37598-MTS_S_2986 8.23 93 82 83 MTS_S_37654-MTS_S_2925 13.34 44 40 41 MTS_S_2986-MTS_S_2977 8.26 94 83 84 MTS_S_2925-MTS_S_2923 13.34 45 41 42 MTS_S_2977-MTS_S_2802 8.19 95 85 174 MTS_L_2923-TRAFO_6552 13.31 46 42 43 MTS_S_2802-MTS_S_3028 3.50 96 84 85 MTS_S_2923-MTS_L_2923 13.38 47 44 167 MTS_L_3028-TRAFO_525 3.38 97 82 86 MTS_S_37654-MTS_S_4412 13.75	41	37	38	MTS S 76910-MTS S 38776	0.41	91	80	81	MTS S 4389-MTS S 38795	41.82
43 34 40 MTS_S_37598-MTS_S_2986 8.23 93 82 83 MTS_S_37654-MTS_S_2925 13.34 44 40 41 MTS_S_2986-MTS_S_2977 8.26 94 83 84 MTS_S_2925-MTS_S_2923 13.34 45 41 42 MTS_S_2977-MTS_S_2802 8.19 95 85 174 MTS_L_2923-TRAFO_6552 13.31 46 42 43 MTS_S_2802-MTS_S_3028 3.50 96 84 85 MTS_S_2923-MTS_L_2923 13.38 47 44 167 MTS_L_3028-TRAFO_525 3.38 97 82 86 MTS_S_37654-MTS_S_4412 13.75	42	38	39	MTS S 38776-MTS S 37659	0.45	92	81	82	MTS S 38795-MTS S 37654	41.82
44 40 41 MTS_S_2986-MTS_S_2977 8.26 94 83 84 MTS_S_2925-MTS_S_2923 13.34 45 41 42 MTS_S_2977-MTS_S_2802 8.19 95 85 174 MTS_L_2923-TRAFO_6552 13.31 46 42 43 MTS_S_2802-MTS_S_3028 3.50 96 84 85 MTS_S_2923-MTS_L_2923 13.38 47 44 167 MTS_L_3028-TRAF0_525 3.38 97 82 86 MTS_S_37654-MTS_S_4412 13.75	43	34	40	MTS S 37598-MTS S 2986	8.23	93	82	83	MTS S 37654-MTS S 2925	13.34
45 41 42 MTS_S_2977-MTS_S_2802 8.19 95 85 174 MTS_L_2923-TRAFO_6552 13.31 46 42 43 MTS_S_2802-MTS_S_3028 3.50 96 84 85 MTS_S_2923-MTS_L_2923 13.38 47 44 167 MTS_L_3028-TRAFO_525 3.38 97 82 86 MTS_S_37654-MTS_S_4412 13.75	44	40	41	MTS S 2986-MTS S 2977	8.26	94	83	84	MTS S 2925-MTS S 2923	13.34
46 42 43 MTS_S_2802-MTS_S_3028 3.50 96 84 85 MTS_S_2923-MTS_L_2923 13.38 47 44 167 MTS_L_3028-TRAF0_525 3.38 97 82 86 MTS_S_37654-MTS_S_4412 13.75	45	41	42	MTS S 2977-MTS S 2802	8.19	95	85	174	MTS L 2923-TRAFO 6552	13.31
47 44 167 MTS_L_3028-TRAF0_525 3.38 97 82 86 MTS_S_37654-MTS_S_4412 13.75	46	42	43	MTS S 2802-MTS S 3028	3.50	96	84	85	MTS S 2923-MTS L 2923	13.38
	47	44	167	MTS_L_3028-TRAF0_525	3.38	97	82	86	MTS S 37654-MTS S 4412	13.75

CURRENT MAGNITUDE BY LINES SOLUTIONS					CURRENT MAGNITUDE BY LINES SOLUTIONS				
1 1	c m	NAME	Ikm[A]	1	k	m	NAME	Ikm[A]	
98 8	86 87	MTS_S_4412-MTS_S_38794	13.73	148	126	129	MTS_S_85262-MTS_S_93241	0.09	
99 8	87 88	MTS_S_38794-MTS_S_2917	13.83	149	129	130	MTS S 93241-MTS L 37542	0.55	
100 8	88 89	MTS_S_2917-MTS_S_133760	2.29	150	126	131	MTS S 85262-MTS S 4375	9.64	
101 8	9 90	MTS_S_133760-MTS_S_133459	2.27	151	131	132	MTS S 4375-MTS S 4406	9 64	
102 9	10 91	MTS_S_133459-MTS_S_133759	2.26	101	1 1 2 2	102	MTC C 4405 MTC C 20750	0.04	
103 9	91 92	MI5_5_133/59-MI5_5_133/58	2.20	154	132	100	MI5_5_4406-MI5_5_30768	0.29	
104 9	12 93	MI5_5_133/58-MI5_5_133462	2.21	153	3 133	134	MTS_S_38768-MTS_S_38771	7.30	
105 9	A 05	MTS S 133462-MIS S 133461	2.29	154	135	183	MTS_L_38771-TRAF0_4672	6.78	
107 9	5 96	MTS S 133463-MTS S 133460	2.20	155	5 134	135	MTS_S_38771-MTS_L_38771	6.95	
108 9	7 17	5 MTS I. 133460-TRAFO 34801	2.26	156	133	136	MTS S 38768-MTS S 2890	1.51	
109 9	6 97	MTS S 133460-MTS L 133460	2.37	157	136	137	MTS S 2890-MTS S 3030	1.51	
110 8	8 98	MTS S 2917-MTS L 51899	3.01	159	120	194	MTS I 3030_TEAFO 1003	1 50	
111 9	99 98	MTS 5 51899-MTS L 51899	3.02	150	100	104	MTS_S_3030_MTS_L_3030	1.50	
112 1	00 99	MTS_S_51900-MTS_S_51899	3.01	15:	131	138	MI2_2_3030-MI2_L_3030	1.77	
113 1	100 101	1 MTS_S_51900-MTS_S_51901	3.16	160	132	139	MTS_S_4406-MTS_S_2805	1.37	
114 1	02 17	6 MTS_L_51901-TRAF0_30804	3.01	161	. 140	185	MTS_L_2805-TRAF0_318	1.35	
115 1	101 102	2 MTS_S_51901-MTS_L_51901	3.16	162	2 139	140	MTS_S_2805-MTS_L_2805	1.91	
116 8	88 103	3 MTS_S_2917-MTS_S_26937	2.35	163	126	141	MTS S 85262-MTS S 85263	1.56	
117 1	103 104	4 MTS_S_26937-MTS_S_3919	2.26	164	141	142	MTS S 85263-MTS S 85264	1.52	
118 1	105 17	7 MTS_L_3919-TRAF0_16644	2.26	165	1/2	1/3	MTS S 85264_MTS S 85265	1 51	
119 1	104 105	5 MTS_S_3919-MTS_L_3919	2.28	10.	144	140	MTG_C_05264-MTS_C_05265	1.51	
120 8	8 100	6 MTS_S_2917-MTS_S_3031	5.28	100	143	144	MI5_5_65265-MI5_5_65266	1.51	
121 1	06 107	7 MTS S 2021 MTS I 2021	5.20	16	144	145	MTS_S_85266-MTS_S_85267	1.51	
122 1	100 10	MTS S 2017_MTS S 26030	1.56	168	145	146	MTS_S_85267-MTS_S_85268	1.51	
124 1	08 109	9 MTS S 26939-MTS S 3032	0.90	169	146	147	MTS_S_85268-MTS_S_85269	1.58	
125 1	10 179	9 MTS L 3032-TRAFO 19999	0.90	170	147	148	MTS S 85269-MTS S 85270	1.61	
126 1	09 110	0 MTS S 3032-MTS L 3032	1.79	171	149	186	MTS L 85270-TRAFO 29925	1.50	
127 8	2 111	1 MTS S 37654-MTS S 38461	14.81	17:	148	149	MTS S 85270-MTS L 85270	1.61	
128 1	11 112	2 MTS_S_38461-MTS_S_4407	14.80	173	70	150	MTS S 27607 MTS S 2010	12.00	
129 1	12 113	3 MTS_S_4407-MTS_S_37657	14.81	17.	150	150	MTS_S_3/00/-MTS_S_2510	13.00	
130 1	13 114	4 MTS_S_37657-MTS_S_2929	13.47	174	150	151	MI5_5_2918-MI5_5_2/18	12.90	
131 1	14 115	5 MTS_S_2929-MTS_S_2928	13.47	175	5 151	152	MTS_S_2718-MTS_S_2945	13.16	
132 1	16 180	0 MTS_L_2928-TRAF0_6569	13.45	176	5 153	187	MTS_L_2743-TRAF0_6553	12.87	
133 1	15 110	6 MTS_S_2928-MTS_L_2928	13.47	177	152	153	MTS_S_2945-MTS_L_2743	12.92	
134 1	17 113	3 MTS_S_249-MTS_S_37657	1.10	178	152	154	MTS S 2945-MTS L 2945	1.90	
135 1	10 110	5 MI5_5_3/65/-MI5_5_2930	1.81	179	64	155	MTS S 37588-MTS S 2915	13.44	
130 1	10 11	MTS S 76012_MTS S 76012	1.70	180	155	156	MTS S 2015-MTS S 2087	13 39	
138 1	20 121	MTS S 76912-MTS S 38785	1.37	101	157	100	MTS I 2007 TDIE0 21271	12.26	
139 1	21 123	2 MTS S 38785-MTS S 3033	1.36	181	15/	100	MTS_L_290/-IRATU_312/1	13.30	
140 1	23 181	1 MTS L 3033-TRAFO 2440	1.35	182	156	157	MIS_S_2987-MIS_L_2987	13.41	
141 1	22 123	3 MTS S 3033-MTS L 3033	1.91	183	61	158	MTS_S_54482-MTS_S_57330	1.13	
142 7	9 124	4 MTS_S_37607-MTS_S_2919	12.52	184	158	159	MTS_S_57330-MTS_S_57331	1.54	
143 1	24 125	5 MTS_S_2919-MTS_S_2920	12.54	185	160	189	MTS_L_57331-TRAF0 29998	1.13	
144 1	25 12	6 MTS_S_2920-MTS_S_85262	12.53	186	159	160	MTS S 57331-MTS L 57331	1.54	
145 1	26 127	7 MTS_S_85262-MTS_S_3029	1.36	187	15	161	MTS S 37617-MTS S 2898	1.60	
146 1	28 182	2 MTS_L_3029-TRAF0_2179	1.35	100	161	162	MTS S 2808_MTS T 2808	1 72	
147 1	27 128	8 MTS_S_3029-MTS_L_3029	1.91	100	101	102		1.13	

ANEXO 5. Pérdidas de potencia activa por las líneas – Alimentador 0102.

	LOSS NETWORK BY LINE				LOSS NETWORK BY LINE					
	1	k	m	NAME	PLossKM[kW]	1	k	m	NAME	PLossKM[kW]
	1	1	2	0500010S02-MTS S 2470	0.00073	46	41	42	MTS_S_2390-MTS_S_2389	0.00000
	2	2	3	MTS S 2470-MTS S 2624	1.34304	47	43	171	MTS_L_2389-TRAF0_2021	0.03433
	3	3	4	MTS S 2624-MTS S 37619	0.01148	48	42	43	MTS_S_2389-MTS_L_2389	0.00000
	4	4	5	MTS S 37619-MTS S 3128	0.00003	49	41	44	MTS_S_2390-MTS_S_2426	0.00000
	5	5	6	MTS S 3128-MTS S 3776	0.00002	50	44	45	MTS_S_2426-MTS_S_2385	0.00022
	6	6	7	MTS S 3776-MTS S 3777	0.00000	51	46	172	MTS_L_2385-TRAF0_21017	0.08457
	7	8	166	MTS I 3777-TRAFO 6564	0 18775	52	45	46	MTS_S_2385-MTS_L_2385	0.00000
	0	7	0	MTS S 3777_MTS I 3777	0.00001	53	36	47	MTS_S_24372-MTS_S_105774	0.00001
	0	4	0	MTS S 37610 MTS S 2500	0.00001	54	47	48	MTS_S_105774-MTS_S_24374	0.00000
	9	4	9	MI5_5_3/619-MI5_5_2506	0.00000	55	49	173	MTS_L_24374-TRAF0_28185	0.01545
	10	9	10	MIS_S_2508-MIS_S_2509	0.00000	50	48	49	MI5_5_243/4-MI5_L_243/4	0.00000
	11	10	11	MIS_S_2509-MIS_L_2509	0.00000	50	50	51	MTS S 20007_MTS S 20000	0.00072
	12	4	12	MTS_S_37619-MTS_S_2418	0.00593	59	51	52	MTS S 29808-MTS S 2410	0.00003
	13	12	13	MTS_S_2418-MTS_S_2629	0.56928	60	53	174	MTS L 2410-TRAFO 1136	0.09593
	14	13	14	MTS_S_2629-MTS_S_37514	0.01211	61	52	53	MTS 5 2410-MTS 1, 2410	0.00000
	15	14	15	MTS_S_37514-MTS_S_2886	0.00000	62	51	54	MTS S 29808-MTS S 2409	0.00000
	16	15	16	MTS_S_2886-MTS_L_26952	0.00000	63	55	175	MTS L 2409-TRAFO 1135	0.02574
	17	14	17	MTS_S_37514-MTS_S_2626	0.00007	64	54	55	MTS S 2409-MTS L 2409	0.00000
	18	17	18	MTS S 2626-MTS S 2416	0.00003	65	51	56	MTS S 29808-MTS L 3774	0.00000
	19	19	167	MTS L 2416-TRAFO 20151	0.18803	66	33	57	MTS_S_3871-MTS_S_26955	0.01136
	20	18	19	MTS S 2416-MTS L 2416	0.00002	67	57	58	MTS_S_26955-MTS_S_37667	0.00008
	21	14	20	MTS S 37514-MTS S 2417	0.00557	68	58	59	MTS_S_37667-MTS_S_3874	0.00003
	22	20	21	MTS S 2417-MTS S 3117	0 61814	69	59	60	MTS_S_3874-MTS_S_3873	0.00010
	23	21	22	MTS S 3117_MTS S 37664	0.00098	70	60	61	MTS_S_3873-MTS_S_3131	0.00003
	24	22	22	MTC C 27664 MTC C 2167	0.00370	71	62	176	MTS_L_3131-TRAF0_16637	0.08788
	24	22	20	MIS_S_5/664-MIS_S_515/	0.00278	72	61	62	MTS_S_3131-MTS_L_3131	0.00000
	25	23	24	MI5_5_315/-MI5_5_3121	0.28763	73	60	63	MTS_S_3873-MTS_S_3133	0.00046
	26	24	25	MTS_S_3121-MTS_S_2406	0.00573	74	64	177	MTS_L_3133-TRAF0_17327	0.08788
	27	25	26	MTS_S_2406-MTS_S_3126	0.11018	75	63	64	MTS_S_3133-MTS_L_3133	0.00000
	28	26	27	MTS_S_3126-MTS_S_37640	0.00182	76	58	65	MTS_S_37667-MTS_S_29818	0.00000
	29	27	28	MTS_S_37640-MTS_S_3123	0.00007	77	65	66	MIS_S_29818-MIS_S_37601	0.00002
	30	28	29	MTS_S_3123-MTS_S_3156	0.00003	78	00	6/	MIS_5_37601-MIS_5_2383	0.00000
	31	30	168	MTS_L_3156-TRAF0_20348	0.19218	19	60	179	MIS_5_2303-MIS_5_2402	0.00001
	32	29	30	MTS_S_3156-MTS_L_3156	0.00003	81	69	69	MTS S 2402-IRATO 209	0.00000
	33	27	31	MTS S 37640-MTS S 3127	0.00010	82	67	70	MTS 5 2383-MTS 5 2399	0.00000
	34	31	32	MTS S 3127-MTS S 3158	0.00021	83	71	179	MTS L 2399-TRAFO 7798	0.01717
	35	32	33	MTS S 3158-MTS S 3871	0.00013	84	70	71	MTS S 2399-MTS L 2399	0.00000
	36	33	34	MTS S 3871-MTS S 3135	0.00000	85	58	72	MTS S 37667-MTS S 27893	0.00000
	37	35	169	MTS I. 3135-TRAFO 3793	0.01030	86	72	73	MTS S 27893-MTS S 27892	0.00001
	39	34	35	MTS S 3135_MTS I 3135	0.00000	87	73	74	MTS S 27892-MTS S 16694	0.00008
	30	33	36	MTS S 2071_MTS S 24272	0.00000	88	75	180	MTS_L_16694-TRAF0_26290	0.02575
	35	25	27	MTC C 24272 MTC C 24372	0.00030	89	74	75	MTS_S_16694-MTS_L_16694	0.00000
	40	30	31	MIS_S_24372-MIS_S_2427	0.00123	90	73	76	MTS_S_27892-MTS_S_2401	0.00002
	41	31	38	M15_5_2427-MTS_5_2387	0.00000	91	77	181	MTS_L_2401-TRAF0_21002	0.02575
	42	39	170	MTS_L_2387-TRAF0_4228	0.02575	92	76	77	MTS_S_2401-MTS_L_2401	0.00000
	43	38	39	MTS_S_2387-MTS_L_2387	0.00000	93	27	78	MTS_S_37640-MTS_S_2850	0.00000
1	44	37	40	MTS_S_2427-MTS_S_2386	0.00000	94	78	79	MTS_S_2850-MTS_L_2850	0.00000
	45	40	41	MTS S 2386-MTS S 2390	0.00091	95	25	80	MTS_S_2406-MTS_S_3242	0.00001

LOSS NETWORK BY LINE					LOSS NETWORK BY LINE				
l k m NAME PLossKM[kW]				PLossKM[kW]	1 k m NAME PLossKM[kW]				
96	80	81	MTS_S_3242-MTS_S_3243	0.00046	146 121 122 MTS_S_3142-MTS_L_3142 0.00000				
97	81	82	MTS_S_3243-MTS_S_37603	0.00002	147 93 123 MTS_S_37509-MTS_S_2379 0.00000				
98	82	83	MTS_S_37603-MTS_L_106047	0.00000	148 123 124 MTS_S_2379-MTS_S_2434 0.00029				
99	82	84	MTS_S_37603-MTS_L_37603	0.00000	149 124 125 MTS_S_2434-MTS_S_2382 0.00000				
100	82	85	MTS_S_37603-MTS_S_70846	0.00002	150 125 126 MTS_S_2382-MTS_S_3959 0.00000				
101	85	86	MTS_S_70846-MTS_S_3139	0.00001	151 127 191 MTS_L_3959-TRAF0_20141 0.02572				
102	87	182	MTS_L_3139-TRAF0_2136	0.08775	152 126 127 MTS_S_3959-MTS_L_3959 0.00000				
103	86	87	MTS_S_3139-MTS_L_3139	0.00001	153 125 128 MTS_S_2382-MTS_S_2433 0.00002				
104	25	88	MTS_S_2406-MTS_S_3118	0.00001	154 128 129 MTS_S_2433-MTS_S_2380 0.00000				
105	88	89	MTS_S_3118-MTS_S_3105	0.00001	155 129 130 MTS_S_2380-MTS_S_3147 0.00000				
106	90	183	MTS_L_3105-TRAF0_5973	0.14382	156 131 192 MTS_L_3147-TRAF0_34139 0.02572				
107	89	90	MTS_S_3105-MTS_L_3105	0.00001	157 130 131 MTS_S_3147-MTS_L_3147 0.00000				
108	25	91	MTS_S_2406-MTS_S_3122	0.00011	158 129 132 MTS_S_2380-MTS_S_3145 0.00007				
109	91	92	MTS_S_3122-MTS_S_3103	0.00009	159 133 193 MTS_L_3145-TRAF0_1982 0.02572				
110	92	93	MTS_S_3103-MTS_S_37509	0.00005	160 132 133 MTS_S_3145-MTS_L_3145 0.00000				
111	93	94	MTS_S_37509-MTS_S_2622	0.00000	161 22 134 MTS_S_37664-MTS_S_3114 0.00000				
112	94	95	MTS_S_2622-MTS_S_2623	0.00018	162 134 135 MTS_S_3114-MTS_S_3784 0.00001				
113	95	96	MTS_S_2623-MTS_S_2415	0.00001	163 135 136 MTS_S_3784-MTS_S_3785 0.00001				
114	96	97	MTS_S_2415-MTS_S_3136	0.00000	164 137 194 MTS_L_3785-TRAFO_6548 0.13170				
115	98	184	MTS_L_3136-TRAF0_3784	0.00857	165 136 137 MTS_S_3785-MTS_L_3785 0.00001				
116	97	98	MTS_S_3136-MTS_L_3136	0.00000	166 22 138 MTS_S_37664-MTS_S_2511 0.00016				
117	96	99	MTS_S_2415-MTS_S_3775	0.00000	167 138 139 MTS_S_2511-MTS_S_2510 0.00011				
118	99	100	MTS_S_3775-MTS_S_19	0.00000	168 139 140 MTS_S_2510-MTS_S_3155 0.00205				
119	95	101	MTS_S_2623-MTS_S_2424	0.00010	169 140 141 MTS_S_3155-MTS_S_2378 0.00000				
120	102	185	MTS_L_2424-TRAF0_8529	0.06099	170 141 142 MIS_S_2378-MIS_S_18637 0.00352				
121	101	102	MTS_S_2424-MTS_L_2424	0.00000	1/1 142 143 MIS_5_1863/-MIS_5_19246 0.00004				
122	93	103	MTS_S_37509-MTS_S_2407	0.00000	172 143 144 MI5_5_19246-MI5_5_2436 0.00000				
123	103	104	MTS_S_2407-MTS_S_3138	0.00032	173 145 195 MIS_L_2436-IKAF0_3751 0.02054				
124	105	186	MTS_L_3138-TRAF0_2669	0.08775	174 144 145 MIS_5_2436-MIS_L_2436 0.00000				
125	104	105	MTS_S_3138-MTS_L_3138	0.00000	175 144 146 MI5_5_2436-MI5_5_3477 0.00000				
126	93	106	MTS_S_37509-MTS_S_2405	0.00000	170 140 147 MIS_5_3477-MIS_5_3476 0.00134				
127	100	107	MIS_5_2405-MIS_5_132830	0.00003	178 147 148 MTS S 3478-MTS I 3478 0.00004				
128	107	108	MIS_5_132830-MIS_5_3137	0.00000	179 142 149 MTS S 18637_MTS S 3149 0 00000				
129	109	100	MIS_L_313/-IRAFU_4/35	0.01/14	180 150 197 MTS I 3149-TRAFO 4032 0.06090				
121	02	110	MTS S 37500 MTS S 3404	0.00000	181 149 150 MTS S 3149-MTS I 3149 0.00000				
131	110	111	MTS S 2404 MTS S 2404	0.00047	182 140 151 MTS S 3155-MTS S 2706 0.00000				
132	111	112	MTS S 2435_MTS S 3143	0.00047	183 151 152 MTS S 2706-MTS S 2707 0.00028				
133	112	112	MTS S 2142 MTS S 2422	0.00012	184 152 153 MTS S 2707-MTS S 3013 0.00000				
125	112	114	MTS S 2422_MTS S 2152	0.00013	185 153 154 MTS S 3013-MTS S 2414 0.00000				
135	114	115	MTS S 3152_MTS S 3140	0.00001	186 155 198 MTS L 2414-TRAFO 3395 0.01284				
137	116	199	MTS I 3140_TEAFO 1995	0.01029	187 154 155 MTS S 2414-MTS L 2414 0.00000				
139	115	116	MTS S 3140-MTS I 3140	0.00000	188 153 156 MTS S 3013-MTS S 2419 0.00006				
130	113	117	MTS S 2422-MTS S 3141	0.00000	189 156 157 MTS S 2419-MTS S 3134 0.00000				
140	118	189	MTS I. 3141-TRAFO 1802	0.02057	190 157 158 MTS S 3134-MTS S 3106 0.00000				
141	117	118	MTS S 3141-MTS L 3141	0.00000	191 159 199 MTS L 3106-TRAFO 3753 0.02567				
142	113	119	MTS 5 2422-MT5 5 4373	0.00000	192 158 159 MTS S 3106-MTS L 3106 0.00000				
143	119	120	MTS S 4373-MTS L 4373	0.00000	193 156 160 MTS S 2419-MTS S 3107 0.00000				
144	111	121	MTS S 2435-MTS S 3142	0.00000	194 161 200 MTS L 3107-TRAFO 20112 0.01540				
145	122	190	MTS L 3142-TRAFO 3789	0.04289	195 160 161 MTS_S_3107-MTS_L_3107 0.00000				
1.0									

LOSS NETWORK BY LINE								
1	k	m	NAME	PLossKM[kW]				
196	5 153	162 M	TS_S_3013-MTS_S_3109	0.00000				
197	163	201 M	TS_L_3109-TRAF0_2556	0.05709				
198	162	163 M	TS_S_3109-MTS_L_3109	0.00000				
199	140	164 M	TS_S_3155-MTS_S_3148	0.00000				
200	165	202 M	TS_L_3148-TRAF0_26474	0.04757				
201	164	165 M	TS_S_3148-MTS_L_3148	0.00000				

		BUS SOLUTIO	NS	BUS SOLUTIONS				
BUS	NAME	V[PU]	V[kV]	BUS	5 NAME	V[PU]	V[kV]	
1	0500010502	1.007	3.66	49	MTS_L_24374	1.000	3.64	
2	MTS_S_2470	1.007	3.66	50	MTS_S_29807	1.000	3.64	
3	MTS_S_2624	1.005	3.65	51	MTS_S_29808	1.000	3.64	
4	MTS S 37619	1.005	3.65	52	MTS_S_2410	1.000	3.64	
5	MTS S 3128	1.005	3.65	53	MTS_L_2410	1.000	3.64	
6	MTS S 3776	1.005	3.65	54	MTS_S_2409	1.000	3.64	
7	MTS S 3777	1.005	3.65	55	MTS_L_2409	1.000	3.64	
8	MTS L 3777	1.005	3.65	56	MTS_L_3774	1.000	3.64	
9	MTS S 2508	1.005	3.65	57	MTS_S_26955	1.000	3.64	
10	MTS S 2509	1.005	3.65	58	MIS_S_37667	1.000	3.64	
11	MTS L 2509	1.005	3.65	59	MTS C 2072	1.000	3.64	
12	MTS S 2418	1,005	3.65	60	MTS S 2121	1.000	3.64	
13	MTS 5 2629	1.003	3.65	62	MTS I 2121	1.000	3.64	
14	MTS S 37514	1 003	3 65	63	MTS S 2122	1.000	3.64	
15	MTS 5 2886	1 003	3 65	64	MTS L 3133	1.000	3 64	
16	MTS I 26952	1.003	3 65	65	MTS 5 29818	1.000	3.64	
17	MTS S 2626	1.003	3.65	66	MTS S 37601	1.000	3.64	
10	MTS S 2416	1.003	2 65	67	MTS S 2383	1,000	3.64	
10	MTS I 2416	1.003	3.05	68	MTS 5 2402	1.000	3.64	
20	MTS S 2410	1.003	3.05	69	MTS L 2402	1.000	3.64	
20	MI5_5_2417	1.003	3.05	70	MTS S 2399	1.000	3.64	
21	MI5_5_3117	1.002	3.64	71	MTS L 2399	1.000	3.64	
22	MI5_5_3/664	1.002	3.64	72	MTS_S_27893	1.000	3.64	
23	MIS_S_3157	1.002	3.64	73	MTS_S_27892	1.000	3.64	
24	MTS_S_3121	1.001	3.64	74	MTS_S_16694	1.000	3.64	
25	MTS_S_2406	1.001	3.64	75	MTS_L_16694	1.000	3.64	
26	MTS_S_3126	1.000	3.64	76	MTS_S_2401	1.000	3.64	
27	MTS_S_37640	1.000	3.64	77	MTS_L_2401	1.000	3.64	
28	MTS_S_3123	1.000	3.64	78	MTS_S_2850	1.000	3.64	
29	MTS_S_3156	1.000	3.64	79	MTS_L_2850	1.000	3.64	
30	MTS_L_3156	1.000	3.64	80	MTS_S_3242	1.001	3.64	
31	MTS_S_3127	1.000	3.64	81	MTS_S_3243	1.001	3.64	
32	MTS_S_3158	1.000	3.64	82	MTS_S_37603	1.001	3.64	
33	MTS_S_3871	1.000	3.64	83	MIS_L_10604/	1.001	3.64	
34	MTS_S_3135	1.000	3.64	04	MTS S 70846	1.001	3.64	
35	MTS_L_3135	1.000	3.64	86	MTS S 3139	1.001	3 64	
36	MTS_S_24372	1.000	3.64	87	MTS L 3139	1.001	3.64	
37	MTS_S_2427	1.000	3.64	88	MTS S 3118	1.001	3.64	
38	MTS_S_2387	1.000	3.64	89	MTS S 3105	1,001	3.64	
39	MTS_L_2387	1.000	3.64	90	MTS L 3105	1.001	3.64	
40	MTS_S_2386	1.000	3.64	91	MTS S 3122	1.001	3.64	
41	MTS_S_2390	1.000	3.64	92	MTS S 3103	1.001	3.64	
42	MTS_S_2389	1.000	3.64	93	MTS_S_37509	1.001	3.64	
43	MTS_L_2389	1.000	3.64	94	MTS_S_2622	1.001	3.64	
44	MTS_S_2426	1.000	3.64	95	MTS_S_2623	1.001	3.64	
45	MTS_S_2385	1.000	3.64	96	MTS_S_2415	1.001	3.64	
46	MTS_L_2385	1.000	3.64	97	MTS_S_3136	1.001	3.64	
47	MTS_S_105774	1.000	3.64	98	MTS_L_3136	1.001	3.64	
48	MTS_S_24374	1.000	3.64	99	MTS_S_3775	1.001	3.64	

ANEXO 6. Tensión en nodos – Alimentador 0102.

	-BUS SOLUTIONS			-BUS SOLUTION	IS
BUS NAME	V[PU]	V[kV]	BUS NAME	V[PU]	V[kV]
100 MTS_S_19	1.001	3.64	151 MTS_S_2706	1.002	3.64
101 MTS_S_2424	1.001	3.64	152 MTS S 2707	1.002	3.64
102 MTS L 2424	1.001	3.64	153 MTS S 3013	1.002	3.64
103 MTS S 2407	1.001	3.64	154 MTS S 2414	1.002	3.64
104 MTS S 3138	1.001	3.64	155 MTS L 2414	1.002	3.64
105 MTS L 3138	1.001	3.64	156 MTS S 2419	1.002	3.64
106 MTS S 2405	1.001	3.64	157 MTS S 3134	1.002	3.64
107 MTS S 132830	1.001	3.64	158 MTS S 3106	1.002	3.64
108 MTS S 3137	1.001	3.64	159 MTS L 3106	1.002	3.64
109 MTS L 3137	1.001	3.64	160 MTS S 3107	1.002	3.64
110 MTS S 2404	1.001	3.64	161 MTS L 3107	1.002	3.64
111 MTS S 2435	1.001	3.64	162 MTS S 3109	1.002	3.64
112 MTS S 3143	1.001	3.64	163 MTS L 3109	1.002	3.64
113 MTS S 2422	1.001	3.64	164 MTS S 3148	1.002	3.64
114 MTS S 3152	1.001	3.64	165 MTS L 3148	1.002	3.64
115 MTS S 3140	1.001	3.64	166 TRAFO 6564	1.000	3.64
116 MTS L 3140	1.001	3.64	167 TRAFO 20151	1.000	3.64
117 MTS S 3141	1.001	3.64	168 TRAFO 20348	0.997	3.63
118 MTS L 3141	1.001	3.64	169 TRAFO 3793	0.997	3.63
119 MTS S 4373	1.001	3.64	170 TRAFO 4228	0.997	3.63
120 MTS L 4373	1.001	3.64	171 TRAFO 2021	0.997	3.63
121 MTS S 3142	1.001	3.64	172 TRAFO 21017	0.996	3.62
122 MTS L 3142	1.001	3.64	173 TRAFO 28185	0.997	3.63
123 MTS S 2379	1.001	3.64	174 TRAFO 1136	0.996	3.62
124 MTS S 2434	1.001	3.64	175 TRAFO 1135	0.997	3.63
125 MTS S 2382	1.001	3.64	176 TRAFO 16637	0.996	3.62
126 MTS S 3959	1.001	3.64	177 TRAFO 17327	0.996	3.62
127 MTS L 3959	1.001	3.64	178 TRAF0_289	0.997	3.63
128 MTS_S_2433	1.001	3.64	179 TRAF0_7798	0.997	3.63
129 MTS S 2380	1.001	3.64	180 TRAF0_26290	0.997	3.63
130 MTS_S_3147	1.001	3.64	181 TRAF0_21002	0.997	3.63
131 MTS_L_3147	1.001	3.64	182 TRAF0_2136	0.997	3.63
132 MTS_S_3145	1.001	3.64	183 TRAF0_5973	0.997	3.63
133 MTS_L_3145	1.001	3.64	184 TRAF0_3784	0.998	3.63
134 MTS_S_3114	1.002	3.64	185 TRAF0_8529	0.998	3.63
135 MTS_S_3784	1.002	3.64	186 TRAF0_2669	0.997	3.63
136 MTS_S_3785	1.002	3.64	187 TRAF0_4735	0.998	3.63
137 MTS_L_3785	1.002	3.64	188 TRAF0_1995	0.998	3.63
138 MTS_S_2511	1.002	3.64	189 TRAF0_1802	0.998	3.63
139 MTS_S_2510	1.002	3.64	190 TRAF0_3789	0.998	3.63
140 MTS_S_3155	1.002	3.64	191 TRAF0_20141	0.998	3.63
141 MTS_S_2378	1.002	3.64	192 TRAF0_34139	0.998	3.63
142 MTS_S_18637	1.002	3.64	193 TRAF0_1982	0.998	3.63
143 MTS_S_19246	1.002	3.64	194 TRAF0_6548	0.997	3.63
144 MTS_S_2436	1.002	3.64	195 TRAF0_3751	0.999	3.63
145 MTS_L_2436	1.002	3.64	196 TRAFO_18848	0.997	3.63
146 MTS_S_3477	1.002	3.64	197 TRAF0_4032	0.998	3.63
147 MTS_S_3478	1.002	3.64	198 TRAFO_3395	0.999	3.63
148 MTS_L_3478	1.002	3.64	199 TRAF0_3753	0.999	3.63
149 MTS_S_3149	1.002	3.64	200 TRAF0_20112	0.999	3.63
150 MTS_L_3149	1.002	3.64	201 TRAF0_2556	0.999	3.63

ANEXO 7. Potencia de paso activa y reactiva – Alimentador 0102.

	100000	111111111111	TRANSFORMED CT	DACTTY SOLUTI	ON		12	20	20	MTC C 2207 MTC T 2207	7 60	0.12
			IRANSFORMER CA	APACITI SOLUTI			43	20	39	MI5_5_2307-MI5_L_2307	7.00	-0.12
DIT		NAME	Dee (1411	One [IdDay]	C (147A)		44	37	40	MI5_5_2427-MI5_5_2306	29.90	-0.40
1	050	NAME	PSS[KW]	USS[KVAF]	D[KVA]		40	40	41	MIS_5_2300_MIS_5_2390	29.97	-0.40
1	050	001050	541.05	0.19	541.03		40	41	42	MIS_5_2390-MIS_5_2309	10.24	-0.16
			CTUE NO DELCTI	E DOUED FLOU	COLUTIONS		47	43	171	MIS_L_2389-IRAF0_2021	10.21	-0.30
		A	CIIVE AND REACIIN	E POWER FLOW	SOLUTIONS		48	42	43	MI5_5_2389-MI5_L_2389	10.24	-0.16
		2	NIME		- (1.71)	01-01-01	49	41	44	MIS_5_2390-MIS_5_2426	19.73	-0.24
1	K	m	NAME	P)	cm [kcw]	Qkm[kVAr]	50	44	45	MIS_5_2426-MIS_5_2385	19.73	-0.24
1	1	2 0	500010502-MIS_S_2	470 54	1.83	0.19	51	46	172	2 MTS_L_2385-TRAF0_21017	19.65	-0.58
2	2	3 M	IIS_S_2470-MIS_S_2	2624 54	10.49	-1.15	52	45	46	MIS_S_2385-MIS_L_2385	19.73	-0.24
3	3	4 M	ITS_S_2624-MTS_S_3	37619 54	10.48	-1.16	53	36	47	MTS_S_24372-MTS_S_105774	4.61	-0.07
4	4	5 M	ITS_S_37619-MTS_S_	3128 4	12.56	0.02	54	47	48	MTS_5_105774-MTS_5_24374	4.61	-0.07
5	5	6 M	ITS_S_3128-MTS_S_3	3776	12.56	0.02	55	49	17:	3 MTS_L_24374-TRAFO_28185	4.59	-0.14
6	6	/ M	ITS_S_3776-MIS_S_3	3777	12.56	0.02	56	48	49	MTS_S_24374-MTS_L_24374	4.61	-0.07
7	8	166 M	ITS_L_3777-TRAFO_6	564 4	12.37	-0.73	57	33	50	MTS_S_3871-MTS_S_29807	29.11	-0.06
8	7	8 M	ITS_S_3777-MTS_L_3	3777 4	2.56	0.02	58	50	51	MTS_S_29807-MTS_S_29808	29.11	-0.06
9	4	9 M	ITS_S_37619-MTS_S	2508	0.00	0.00	59	51	52	MTS_S_29808-MTS_S_2410	21.42	0.07
10	9	10 M	ITS_S_2508-MTS_S_2	2509	0.00	0.00	60	53	174	4 MTS_L_2410-TRAF0_1136	21.33	-0.32
11	10	11 M	TS_S_2509-MTS_L_2	2509	0.00	0.00	61	52	53	MTS_S_2410-MTS_L_2410	21.42	0.07
12	4	12 M	TS_S_37619-MTS_S	_2418 49	97.91	-1.19	62	51	54	MTS_S_29808-MTS_S_2409	7.68	-0.12
13	12	13 M	TS_S_2418-MTS_S_2	49 49	97.34	-1.76	63	55	17:	5 MTS_L_2409-TRAF0_1135	7.66	-0.23
14	13	14 M	TS_S_2629-MTS_S_3	87514 49	97.33	-1.77	64	54	55	MTS_S_2409-MTS_L_2409	7.68	-0.12
15	14	15 M	TS_S_37514-MTS_S_	2886	0.00	0.00	65	51	56	MTS_S_29808-MTS_L_3774	0.00	0.00
16	15	16 M	TS_S_2886-MTS_L_2	26952	0.00	0.00	66	33	57	MTS_S_3871-MTS_S_26955	64.56	-0.87
17	14	17 M	ITS_S_37514-MTS_S_	2626 5	52.89	-0.05	67	57	58	MTS_S_26955-MTS_S_37667	64.56	-0.87
18	17	18 M	TS_S_2626-MTS_S_2	2416 5	52.89	-0.05	68	58	59	MTS_S_37667-MTS_S_3874	41.00	-0.50
19	19	167 M	TS_L_2416-TRAFO_2	20151 5	52.71	-0.99	69	59	60	MTS_S_3874-MTS_S_3873	41.00	-0.50
20	18	19 M	TS_S_2416-MTS_L_2	2416 5	52.89	-0.05	70	60	61	MTS_S_3873-MTS_S_3131	20.50	-0.25
21	14	20 M	TS_S_37514-MTS_S	2417 44	14.43	-1.73	71	62	176	5 MTS_L_3131-TRAF0_16637	20.41	-0.60
22	20	21 M	TS_S_2417-MTS_S_3	3117 44	13.81	-2.34	72	61	62	MTS_S_3131-MTS_L_3131	20.50	-0.25
23	21	22 M	TS_S_3117-MTS_S_3	37664 44	13.80	-2.35	73	60	63	MTS_S_3873-MTS_S_3133	20.50	-0.25
24	22	23 M	TS_S_37664-MTS_S_	3157 33	33.76	-2.50	74	64	177	7 MTS_L_3133-TRAF0_17327	20.41	-0.60
25	23	24 M	TS_S_3157-MTS_S_3	3121 33	33.47	-2.79	75	63	64	MTS_S_3133-MTS_L_3133	20.50	-0.25
26	24	25 M	TS_S_3121-MTS_S_2	406 33	33.47	-2.79	76	58	65	MTS_S_37667-MTS_S_29818	8.19	-0.13
27	25	26 M	TS_S_2406-MTS_S_3	3126 19	92.34	-1.46	77	65	66	MTS_S_29818-MTS_S_37601	8.19	-0.13
28	26	27 M	TS_S_3126-MTS_S_3	37640 19	92.34	-1.47	78	66	67	MTS_S_37601-MTS_S_2383	8.19	-0.13
29	27	28 M	TS_S_37640-MTS_S_	3123 5	53.32	0.11	79	67	68	MTS_S_2383-MTS_S_2402	3.07	-0.05
30	28	29 M	TS_S_3123-MTS_S_3	8156 5	53.32	0.11	80	69	178	MTS_L_2402-TRAF0_289	3.06	-0.09
31	30	168 M	TS_L_3156-TRAFO_2	20348 5	53.13	-0.86	81	68	69	MTS 5 2402-MTS L 2402	3.07	-0.05
32	29	30 M	TS_S_3156-MTS_L_3	8156 5	53.32	0.11	82	67	70	MTS 5 2383-MTS 5 2399	5.12	-0.08
33	27	31 M	TS_S_37640-MTS_S	3127 13	39.02	-1.57	83	71	179	9 MTS L 2399-TRAFO 7798	5.10	-0.15
34	31	32 M	TS S 3127-MTS S 3	8158 13	89.02	-1.57	84	70	71	MTS S 2399-MTS L 2399	5.12	-0.08
35	32	33 M	TS S 3158-MTS S 3	8871 13	89.02	-1.57	85	58	72	MTS S 37667-MTS S 27893	15.36	-0.24
36	33	34 M	TS S 3871-MTS S 3	8135	3.07	-0.05	86	72	73	MTS S 27893-MTS S 27892	15.36	-0.24
37	35	169 M	TS L 3135-TRAFO 3	3793	3.06	-0.09	87	73	74	MTS S 27892-MTS S 16694	7.68	-0.12
38	34	35 M	TS S 3135-MTS L 3	8135	3.07	-0.05	88	75	180	MTS L 16694-TRAFO 26290	7.66	-0.23
39	33	36 M	TS S 3871-MTS S 2	4372 4	2.27	-0.60	89	74	75	MTS S 16694-MTS L 16694	7.68	-0.12
40	36	37 M	TS S 24372-MTS S	2427 3	87.66	-0.52	90	73	76	MTS S 27892-MTS S 2401	7.68	-0.12
41	37	38 M	TS S 2427-MTS S 2	2387	7.68	-0.12	91	77	181	MTS L 2401-TRAFO 21002	7.66	-0.23
42	39	170 M	TS_L_2387-TRAFO	228	7.66	-0.23	92	76	77	MTS S 2401-MTS L 2401	7.68	-0.12

			-ACTIVE AND REACTIVE POWER	FLOW SOLUTIO	ONS				-ACTIVE AND REACTIVE POWE	R FLOW SOLUTI	ONS
1	k	m	NAME	Pkm[kW]	Qkm[kVAr]	1	k	m	NAME	Pkm[kW]	Qkm[kVAr]
93	27	78	MTS_S_37640-MTS_S_2850	0.00	0.00	143	119	120	MTS_S_4373-MTS_L_4373	0.00	0.00
94	78	79	MTS_S_2850-MTS_L_2850	0.00	0.00	144	111	121	MTS_S_2435-MTS_S_3142	11.53	-0.17
95	25	80	MTS_S_2406-MTS_S_3242	20.50	-0.25	145	122	190	MTS_L_3142-TRAF0_3789	11.48	-0.34
96	80	81	MTS_S_3242-MTS_S_3243	20.50	-0.25	146	121	122	MTS_S_3142-MTS_L_3142	11.53	-0.17
97	81	82	MTS_S_3243-MTS_S_37603	20.50	-0.25	147	93	123	MTS_S_37509-MTS_S_2379	23.05	-0.37
98	82	83	MTS_S_37603-MTS_L_106047	0.00	0.00	148	123	124	MTS_S_2379-MTS_S_2434	23.05	-0.37
99	82	84	MTS_S_37603-MTS_L_37603	0.00	0.00	149	124	125	MTS_S_2434-MTS_S_2382	23.05	-0.37
100	82	85	MTS_S_37603-MTS_S_70846	20.50	-0.25	150	125	126	MTS_S_2382-MTS_S_3959	7.68	-0.12
101	85	86	MTS_S_70846-MTS_S_3139	20.50	-0.25	151	127	191	MTS_L_3959-TRAF0_20141	7.66	-0.23
102	87	182	MTS_L_3139-TRAF0_2136	20.41	-0.60	152	126	127	MTS_S_3959-MTS_L_3959	7.68	-0.12
103	86	87	MTS_S_3139-MTS_L_3139	20.50	-0.25	153	125	128	MTS_S_2382-MTS_S_2433	15.36	-0.24
104	25	88	MTS_S_2406-MTS_S_3118	32.15	0.10	154	128	129	MTS_S_2433-MTS_S_2380	15.36	-0.24
105	88	89	MTS_S_3118-MTS_S_3105	32.15	0.10	155	129	130	MTS_S_2380-MTS_S_3147	7.68	-0.12
106	90	183	MTS_L_3105-TRAF0_5973	32.00	-0.47	156	131	192	MTS_L_3147-TRAF0_34139	7.66	-0.23
107	89	90	MTS_S_3105-MTS_L_3105	32.15	0.10	157	130	131	MTS_S_3147-MTS_L_3147	7.68	-0.12
108	25	91	MTS_S_2406-MTS_S_3122	88.37	-1.29	158	129	132	MTS_S_2380-MTS_S_3145	7.68	-0.12
109	91	92	MTS_S_3122-MTS_S_3103	88.37	-1.29	159	133	193	MTS_L_3145-TRAF0_1982	7.66	-0.23
110	92	93	MTS_S_3103-MTS_S_37509	88.37	-1.29	160	132	133	MTS_S_3145-MTS_L_3145	7.68	-0.12
111	93	94	MTS_S_37509-MTS_S_2622	18.95	-0.28	161	22	134	MTS_S_37664-MTS_S_3114	28.10	0.53
112	94	95	MTS_S_2622-MTS_S_2623	18.95	-0.28	162	134	135	MTS_S_3114-MTS_S_3784	28.10	0.53
113	95	96	MTS_S_2623-MTS_S_2415	2.56	-0.04	163	135	136	MTS_S_3784-MTS_S_3785	28.10	0.53
114	96	97	MTS_S_2415-MTS_S_3136	2.56	-0.04	164	137	194	MTS_L_3785-TRAF0_6548	27.97	0.01
115	98	184	MTS_L_3136-TRAF0_3784	2.55	-0.08	165	136	137	MTS_S_3785-MTS_L_3785	28.10	0.53
116	97	98	MTS_S_3136-MTS_L_3136	2.56	-0.04	166	22	138	MTS_S_37664-MTS_S_2511	81.94	-0.39
117	96	99	MTS_S_2415-MTS_S_3775	0.00	0.00	167	138	139	MTS_S_2511-MTS_S_2510	81.94	-0.39
118	99	100	MTS_S_3775-MTS_S_19	0.00	0.00	168	139	140	MTS_S_2510-MTS_S_3155	81.93	-0.39
119	95	101	MTS_S_2623-MTS_S_2424	16.39	-0.24	169	140	141	MTS_S_3155-MTS_S_2378	37.62	0.27
120	102	185	MTS_L_2424-TRAF0_8529	16.33	-0.48	170	141	142	MTS_S_2378-MTS_S_18637	37.62	0.27
121	101	102	MTS_S_2424-MTS_L_2424	16.39	-0.24	171	142	143	MTS_S_18637-MTS_S_19246	21.23	0.51
122	93	103	MTS_S_37509-MTS_S_2407	20.50	-0.25	172	143	144	MTS_S_19246-MTS_S_2436	21.23	0.51
123	103	104	MTS_S_2407-MTS_S_3138	20.50	-0.25	173	145	195	MTS_L_2436-TRAF0_3751	6.13	-0.18
124	105	186	MTS_L_3138-TRAF0_2669	20.41	-0.60	174	144	145	MTS_S_2436-MTS_L_2436	6.15	-0.10
125	104	105	MTS_S_3138-MTS_L_3138	20.50	-0.25	175	144	146	MTS_S_2436-MTS_S_3477	15.08	0.60
126	93	106	MTS_S_37509-MTS_S_2405	5.12	-0.08	176	146	147	MTS_S_3477-MTS_S_3478	15.08	0.60
127	106	107	MTS_S_2405-MTS_S_132830	5.12	-0.08	177	148	196	MTS_L_3478-TRAF0_18848	15.01	0.34
128	107	108	MTS_S_132830-MTS_S_3137	5.12	-0.08	178	147	148	MTS_S_3478-MTS_L_3478	15.08	0.60
129	109	187	MTS_L_3137-TRAF0_4735	5.10	-0.15	179	142	149	MTS_S_18637-MTS_S_3149	16.39	-0.24
130	108	109	MIS_S_3137-MIS_L_3137	5.12	-0.08	180	150	197	MTS_L_3149-TRAF0_4032	16.33	-0.48
131	93	110	MIS_S_37509-MIS_S_2404	20.75	-0.31	181	149	150	MTS_S_3149-MTS_L_3149	16.39	-0.24
132	110	111	MI5_5_2404-MI5_5_2435	20.74	-0.31	182	140	151	MTS_S_3155-MTS_S_2706	31.50	-0.48
133	111	112	MI5_5_2435-MI5_5_3143	9.22	-0.15	183	151	152	MTS_S_2706-MTS_S_2707	31.50	-0.48
134	112	113	MI5_5_3143-MI5_5_2422	9.22	-0.15	184	152	153	MTS_S_2707-MTS_S_3013	31.50	-0.48
135	113	115	MTS S 3152_MTS S 3152	3.07	-0.05	185	153	154	MIS_S_3013-MIS_S_2414	3.84	-0.06
100	114	100	MTS 1 2140_TD TO 1005	3.07	-0.05	186	155	198	MI5_L_2414-TRAF0_3395	3.83	-0.11
100	115	116	MTS S 3140-IKALO 1995	3.00	-0.09	187	154	155	MIS_S_2414-MIS_L_2414	3.84	-0.06
100	112	117	MTS S 2/22_MTS S 31/1	6.15	-0.05	188	153	156	MIS_S_3013-MIS_S_2419	12.29	-0.20
140	110	100	MTS I 31/1_TDXE0 1000	6 12	-0.10	189	156	157	MIS_S_2419-MIS_S_3134	7.68	-0.12
140	117	110	MTS S 3141-IKAPU 1002	6 15	-0.10	190	157	158	MIS_S_3134-MIS_S_3106	7.68	-0.12
141	112	110	MTS S 2/22_MTS S /272	0.15	-0.10	191	159	199	MIS_L_3106-TRAF0_3753	7.66	-0.23
142	113	113	mi5_5_2422-mi5_5_4575	0.00	0.00	192	128	159	MIS_S_3106-MIS_L_3106	7.68	-0.12

			-ACTIVE AND REACTIVE POWER	FLOW SOLUTIO	ONS
1	k	m	NAME	Pkm [kW]	Qkm[kVAr]
193	156	160	MTS_S_2419-MTS_S_3107	4.61	-0.07
194	161	200	MTS_L_3107-TRAF0_20112	4.59	-0.14
195	160	161	MTS S 3107-MTS L 3107	4.61	-0.07
196	153	162	MTS S 3013-MTS S 3109	15.37	-0.22
197	163	201	MTS L 3109-TRAFO 2556	15.31	-0.45
198	162	163	MTS S 3109-MTS L 3109	15.37	-0.22
199	140	164	MTS S 3155-MTS S 3148	12.81	-0.19
200	165	202	MTS L 3148-TRAFO 26474	12.76	-0.38
201	164	165	MTS S 3148-MTS L 3148	12.81	-0.19

			CURRENT MAGNITUDE B	LINES SOLUTIONS				CURRENT MAGNITUDE BY	LINES SOLUTIONS
1	k	m	NAME	Ikm[A]	1	k	m	NAME	Ikm[A]
1	1	2	0500010S02-MTS_S_2470	147.96	48	42	43	MTS_S_2389-MTS_L_2389	3.40
2	2	3	MTS_S_2470-MTS_S_2624	147.92	49	41	44	MTS_S_2390-MTS_S_2426	6.58
3	3	4	MTS_S_2624-MTS_S_37619	147.92	50	44	45	MTS_S_2426-MTS_S_2385	5.43
4	4	5	MTS_S_37619-MTS_S_3128	11.67	51	46	172	MTS_L_2385-TRAF0_21017	5.42
5	5	6	MTS_S_3128-MTS_S_3776	11.69	52	45	46	MTS_S_2385-MTS_L_2385	5.70
6	6	7	MTS_S_3776-MTS_S_3777	11.83	53	36	47	MTS_S_24372-MTS_S_105774	1.28
7	8	166	MTS_L_3777-TRAF0_6564	11.65	54	47	48	MTS_S_105774-MTS_S_24374	1.82
8	7	8	MTS S 3777-MTS L 3777	11.74	55	49	173	MTS_L_24374-TRAF0_28185	1.27
9	4	9	MTS S 37619-MTS S 2508	1.86	56	48	49	MTS_S_24374-MTS_L_24374	1.74
10	9	10	MTS S 2508-MTS S 2509	1.48	57	33	50	MTS_S_3871-MTS_S_29807	8.08
11	10	11	MTS S 2509-MTS L 2509	0.12	58	50	51	MIS_S_29807-MIS_S_29808	8.00
12	4	12	MTS S 37619-MTS S 2418	136.28	59	52	174	MTS I 2410_TEXEO 1136	5.91
13	12	13	MTS 5 2418-MTS 5 2629	136.27	61	52	53	MTS S 2410-MTS L 2410	6.05
14	13	14	MTS S 2629-MTS S 37514	136.27	62	51	54	MTS S 29808-MTS S 2409	4.73
15	14	15	MTS S 37514-MTS S 2886	2.06	63	55	175	MTS L 2409-TRAFO 1135	2.11
16	15	16	MTS S 2886-MTS L 26952	1.46	64	54	55	MTS S 2409-MTS L 2409	3.68
17	14	17	MTS S 37514-MTS S 2626	14.51	65	51	56	MTS S 29808-MTS L 3774	5.44
18	17	18	MTS S 2626-MTS S 2416	14.52	66	33	57	MTS S 3871-MTS S 26955	17.75
19	19	167	MTS L 2416-TRAFO 20151	14.49	67	57	58	MTS S 26955-MTS S 37667	17.76
20	18	19	MTS S 2416-MTS L 2416	14.53	68	58	59	MTS_S_37667-MTS_S_3874	11.29
21	14	20	MTS S 37514-MTS S 2417	121.78	69	59	60	MTS_S_3874-MTS_S_3873	11.28
22	20	21	MTS 5 2417-MTS 5 3117	121.78	70	60	61	MTS_S_3873-MTS_S_3131	5.65
23	21	22	MTS S 3117-MTS S 37664	121.78	71	62	176	MTS_L_3131-TRAF0_16637	5.63
24	22	23	MTS S 37664-MTS S 3157	91.59	72	61	62	MTS_S_3131-MTS_L_3131	5.93
25	23	24	MTS 5 3157-MTS 5 3121	91.59	73	60	63	MTS_S_3873-MTS_S_3133	5.64
26	24	25	MTS S 3121-MTS S 2406	91.59	74	64	177	MTS_L_3133-TRAF0_17327	5.64
27	25	26	MTS 5 2406-MTS 5 3126	52.86	75	63	64	MTS_S_3133-MTS_L_3133	5.85
28	26	27	MTS S 3126-MTS S 37640	52.86	76	58	65	MTS_S_37667-MTS_S_29818	2.36
29	27	28	MTS 5 37640-MTS 5 3123	14.67	77	65	60	MIS_S_29818-MIS_S_37601	2.21
30	28	29	MTS S 3123-MTS S 3156	14.68	70	60	60	MTS S 2202_MTS S 2402	0.40
31	30	168	MTS L 3156-TRAFO 20348	14.65	80	69	179	MTS I 2402_TEAFO 280	0.84
32	29	30	MTS S 3156-MTS L 3156	14.68	81	68	69	MTS S 2402-MTS L 2402	2 51
33	27	31	MTS S 37640-MTS S 3127	38.23	82	67	70	MTS S 2383-MTS S 2399	2.07
34	31	32	MTS S 3127-MTS S 3158	38.22	83	71	179	MTS I. 2399-TRAFO 7798	1.41
35	32	33	MTS S 3158-MTS S 3871	38.23	84	70	71	MTS S 2399-MTS L 2399	2.55
36	33	34	MTS S 3871-MTS S 3135	0.89	85	58	72	MTS S 37667-MTS S 27893	4.30
37	35	169	MTS I. 3135-TRAFO 3793	0.84	86	72	73	MTS S 27893-MTS S 27892	4.28
38	34	35	MTS S 3135-MTS I. 3135	2 42	87	73	74	MTS S 27892-MTS S 16694	2.11
39	33	36	MTS S 3871-MTS S 24372	11 62	88	75	180	MTS_L_16694-TRAF0_26290	2.11
40	36	37	MTS 5 24372-MTS 5 2427	10.35	89	74	75	MTS_S_16694-MTS_L_16694	2.23
41	37	38	MTS S 2427-MTS S 2387	5.58	90	73	76	MTS_S_27892-MTS_S_2401	2.12
42	39	170	MTS L 2387-TRAFO 4228	2.11	91	77	181	MTS_L_2401-TRAF0_21002	2.11
43	38	39	MTS S 2387-MTS L 2387	3.12	92	76	77	MTS_S_2401-MTS_L_2401	2.43
44	37	40	MTS S 2427-MTS S 2386	8 52	93	27	78	MTS_S_37640-MTS_S_2850	1.15
45	40	41	MTS 5 2386-MTS 5 2390	8 24	94	78	79	MTS_S_2850-MTS_L_2850	2.24
46	41	42	MTS 5 2390-MTS 5 2390	5 70	95	25	80	MTS_S_2406-MTS_S_3242	5.68
47	43	171	MTS I. 2389-TRAFO 2021	2 82	96	80	81	M15_5_3242-MT5_5_3243	5.63
4/	10	1/1	1115_1_2009-1RATU_2021	2.02	97	81	82	M15_5_3243-MI5_5_37603	5.66

ANEXO 8. Corriente por las líneas – Alimentador 0102.

			CURRENT MAGNITUDE BY I	LINES SOLUTIONS				CURRENT MAGNITUDE BY 1	LINES SOLUTIONS
1	k	m	NAME	Ikm[A]	1	k	m	NAME	Ikm[A]
98	82	83	MTS_S_37603-MTS_L_106047	1.10	148	123	124	MTS_S_2379-MTS_S_2434	6.33
99	82	84	MTS_S_37603-MTS_L_37603	1.15	149	124	125	MTS_S_2434-MTS_S_2382	7.09
100	82	85	MTS_S_37603-MTS_S_70846	5.66	150	125	126	MTS_S_2382-MTS_S_3959	4.37
101	85	86	MTS_S_70846-MTS_S_3139	5.69	151	127	191	MTS_L_3959-TRAF0_20141	2.11
102	87	182	MTS_L_3139-TRAF0_2136	5.63	152	126	127	MTS_S_3959-MTS_L_3959	3.87
103	86	87	MTS_S_3139-MTS_L_3139	5.70	153	125	128	MTS_S_2382-MTS_S_2433	4.24
104	25	88	MTS_S_2406-MTS_S_3118	8.92	154	128	129	MTS_S_2433-MTS_S_2380	5.30
105	88	89	MTS_S_3118-MTS_S_3105	8.92	155	129	130	MTS_S_2380-MTS_S_3147	5.74
106	90	183	MTS_L_3105-TRAF0_5973	8.83	156	131	192	MTS_L_3147-TRAF0_34139	2.11
107	89	90	MTS_S_3105-MTS_L_3105	8.91	157	130	131	MTS_S_3147-MTS_L_3147	4.00
108	25	91	MTS_S_2406-MTS_S_3122	24.29	158	129	132	MTS_S_2380-MTS_S_3145	2.11
109	91	92	MTS_S_3122-MTS_S_3103	24.29	159	133	193	MTS_L_3145-TRAF0_1982	2.11
110	92	93	MTS_S_3103-MTS_S_37509	24.31	160	132	133	MTS_S_3145-MTS_L_3145	2.75
111	93	94	MTS_S_37509-MTS_S_2622	5.36	161	22	134	MTS_S_37664-MTS_S_3114	7.92
112	94	95	MTS_S_2622-MTS_S_2623	5.21	162	134	135	MTS_S_3114-MTS_S_3784	7.79
113	95	96	MTS_S_2623-MTS_S_2415	0.72	163	135	136	MTS_S_3784-MTS_S_3785	7.79
114	96	97	MTS_S_2415-MTS_S_3136	5.26	164	137	194	MTS_L_3785-TRAF0_6548	7.71
115	98	184	MTS_L_3136-TRAF0_3784	0.70	165	136	137	MTS_S_3785-MTS_L_3785	7.79
116	97	98	MTS_S_3136-MTS_L_3136	3.92	166	22	138	MTS_S_37664-MTS_S_2511	22.49
117	96	99	MTS_S_2415-MTS_S_3775	3.37	167	138	139	MTS_S_2511-MTS_S_2510	22.50
118	99	100	MTS_S_3775-MTS_S_19	0.19	168	139	140	MTS_S_2510-MTS_S_3155	22.48
119	95	101	MTS_S_2623-MTS_S_2424	4.51	169	140	141	MTS_S_3155-MTS_S_2378	10.53
120	102	185	MTS_L_2424-TRAF0_8529	4.50	170	141	142	MTS_S_2378-MTS_S_18637	10.32
121	101	102	MTS_S_2424-MTS_L_2424	5.10	171	142	143	MTS_S_18637-MTS_S_19246	5.84
122	93	103	MTS_S_37509-MTS_S_2407	5.91	172	143	144	MTS_S_19246-MTS_S_2436	5.97
123	103	104	MTS_S_2407-MTS_S_3138	5.63	173	145	195	MTS_L_2436-TRAF0_3751	1.69
124	105	186	MTS_L_3138-TRAF0_2669	5.63	174	144	145	MTS_S_2436-MTS_L_2436	4.82
125	104	105	MTS_S_3138-MTS_L_3138	5.83	175	144	146	MTS_S_2436-MTS_S_3477	4.35
126	93	106	MTS_S_37509-MTS_S_2405	2.54	176	146	147	MTS_S_3477-MTS_S_3478	4.14
127	106	107	MTS_S_2405-MTS_S_132830	1.41	177	148	196	MTS_L_3478-TRAF0_18848	4.14
128	107	108	MTS_S_132830-MTS_S_3137	1.47	178	147	148	MTS_S_3478-MTS_L_3478	4.16
129	109	187	MTS_L_3137-TRAF0_4735	1.41	179	142	149	MTS_S_18637-MTS_S_3149	5.91
130	108	109	MTS_S_3137-MTS_L_3137	4.05	180	150	197	MTS_L_3149-TRAF0_4032	4.50
131	93	110	MTS_S_37509-MTS_S_2404	5.87	181	149	150	MTS_S_3149-MTS_L_3149	5.05
132	110	111	MTS_S_2404-MTS_S_2435	5.70	182	140	151	MTS_S_3155-MTS_S_2706	8.91
133	111	112	MTS_S_2435-MTS_S_3143	5.09	183	151	152	MTS_S_2706-MTS_S_2707	8.65
134	112	113	MTS_S_3143-MTS_S_2422	2.53	184	152	153	MTS_S_2707-MTS_S_3013	9.25
135	113	114	MTS_S_2422-MTS_S_3152	4.12	185	153	154	MTS_S_3013-MTS_S_2414	1.11
136	114	115	MTS_S_3152-MTS_S_3140	0.86	186	155	198	MTS_L_2414-TRAF0_3395	1.05
137	116	188	MTS_L_3140-TRAF0_1995	0.84	187	154	155	MTS_S_2414-MTS_L_2414	1.39
138	115	116	MTS_S_3140-MTS_L_3140	2.42	188	153	156	MTS_S_3013-MTS_S_2419	3.38
139	113	117	MTS_S_2422-MTS_S_3141	4.09	189	156	157	MTS_S_2419-MTS_S_3134	4.19
140	118	189	MTS_L_3141-TRAF0_1802	1.69	190	157	158	MTS_S_3134-MTS_S_3106	2.15
141	117	118	MTS_S_3141-MTS_L_3141	2.60	191	159	199	MTS_L_3106-TRAF0_3753	2.11
142	113	119	MTS_S_2422-MTS_S_4373	4.41	192	158	159	MTS_S_3106-MTS_L_3106	4.05
143	119	120	MTS_S_4373-MTS_L_4373	0.14	193	156	160	MTS_S_2419-MTS_S_3107	4.63
144	111	121	MTS_S_2435-MTS_S_3142	5.94	194	161	200	MTS_L_3107-TRAF0_20112	1.27
145	122	190	MTS_L_3142-TRAF0_3789	3.17	195	160	161	MTS_S_3107-MTS_L_3107	3.89
146	121	122	MTS_S_3142-MTS_L_3142	4.21	196	153	162	MTS_S_3013-MTS_S_3109	5.36
147	93	123	MTS_S_37509-MTS_S_2379	6.63	197	163	201	MTS_L_3109-TRAF0_2556	4.22

			CURRENT MAGNITUDE B	Y LINES SOLUTIONS
1	k	m	NAME	Ikm[A]
198	162	163	MTS_S_3109-MTS_L_3109	4.83
199	140	164	MTS_S_3155-MTS_S_3148	5.17
200	165	202	MTS_L_3148-TRAF0_26474	3.51
201	164	165	MTS_S_3148-MTS_L_3148	4.49

ANEXO 9. Pérdidas de potencia activa por las líneas – Alimentador 0103.

			LOSS NETWORK BY LI	NE				LOSS NETWORK BY LINE	[
1	k	m	NAME	PLossKM[kW]	1	k	m	NAME	PLossKM[kW]
1	1	2	0500010S03-MTS S 2495	0.00032	46	40	41	MTS S 3600-MTS S 37520	0.00002
2	2	3	MTS S 2495-MTS S 3588	0.76061	47	41	42	MTS S 37520-MTS L 37519	0.00000
3	3	4	MTS S 3588-MTS S 37673	0.00588	48	41	43	MTS_S_37520-MTS_S_2832	0.00000
4	4	5	MTS S 37673-MTS S 3159	0.00060	49	43	44	MTS_S_2832-MTS_L_2832	0.00000
5	5	6	MTS S 3159-MTS S 3594	0 12385	50	41	45	MTS_S_37520-MTS_S_3598	0.00001
6	6	7	MTS S 2504_MTS S 27670	0.00190	51	45	46	MTS_S_3598-MTS_S_3599	0.00000
0	0		MTG C 37670 MTG C 3367	0.00180	52	47	93	MTS_L_3599-TRAF0_5977	0.09140
1	1	0	MI5_5_3/6/0-MI5_5_2393	0.00039	53	46	47	MTS_S_3599-MTS_L_3599	0.00000
8	8	9	MIS_5_2393-MIS_5_3605	0.05193	54	4	48	MTS_S_37673-MTS_S_27894	0.00007
9	9	10	MTS_S_3605-MTS_S_37498	0.00084	55	48	49	MTS_S_27894-MTS_S_20538	0.00018
10	10	11	MTS_S_37498-MTS_S_3092	0.00004	56	49	50	MTS_S_20538-MTS_S_20540	0.00615
11	11	12	MTS_S_3092-MTS_S_3095	0.00831	57	50	51	MTS_S_20540-MTS_S_20541	0.01069
12	12	13	MTS_S_3095-MTS_S_37636	0.00015	58	51	52	MTS_S_20541-MTS_S_27895	0.00984
13	13	14	MTS_S_37636-MTS_S_3094	0.00003	59	52	53	MTS_S_27895-MTS_S_70848	0.00007
14	14	15	MTS S 3094-MTS S 3161	0.00002	60	53	54	MTS_S_70848-MTS_S_70849	0.00003
15	16	87	MTS L 3161-TRAFO 6554	0.20406	61	54	55	MTS_S_70849-MTS_S_2394	0.00004
16	15	16	MTS S 3161-MTS L 3161	0.00002	62	55	50	MIS_5_2394-MIS_5_3100	0.03091
17	13	17	MTS S 37636-MTS S 2500	0 00000	03	50	5/	MIS_S_3100-MIS_S_3/496	0.00029
19	17	19	MTS S 2500-MTS S 2501	0.00000	64	5/	50	MIS_S_3/490-MIS_S_3090	0.00013
10	10	10	MTS S 2500-MIS_5_2301	0.00000	65	50	60	MTS S 20224_MTS S 104079	0.00007
19	10	19	MIS_5_2501-4706_BARRA	0.00000	67	60	61	MTS S 104078_MTS S 28225	0.00000
20	19	20	4706_BARRA-MIS_S_129167	0.00074	68	62	94	MTS I. 28225-TRAFO 6551	0.28724
21	20	21	MTS_S_129167-MTS_S_3831	0.00001	69	61	62	MTS S 28225-MTS L 28225	0.00001
22	22	88	MTS_L_3831-TRAF0_34881	0.03738	70	60	63	MTS S 104078-MTS S 3387	0.00045
23	21	22	MTS_S_3831-MTS_L_3831	0.00000	71	64	95	MTS L 3387-TRAFO 19604	0.14330
24	19	23	4706_BARRA-MTS_S_26954	0.00000	72	63	64	MTS S 3387-MTS L 3387	0.00003
25	23	24	MTS_S_26954-MTS_S_2429	0.00012	73	57	65	MTS S 37496-MTS S 2823	0.00000
26	25	89	MTS_L_2429-TRAF0_1291	0.02991	74	65	66	MTS 5 2823-MTS 5 2998	0.00001
27	24	25	MTS S 2429-MTS L 2429	0.00000	75	66	67	MTS_S_2998-MTS_S_37493	0.00001
28	19	26	4706 BARRA-MTS L 3164	0.00000	76	67	68	MTS_S_37493-MTS_S_2497	0.00000
29	13	27	MTS S 37636-MTS L 2438	0.00000	77	68	69	MTS_S_2497-MTS_S_2617	0.00026
30	10	28	MTS S 37498-MTS S 2499	0.00001	78	69	70	MTS_S_2617-MTS_S_2527	0.00013
31	28	29	MTS S 2499-MTS S 2498	0.00001	79	70	71	MTS_S_2527-MTS_S_2430	0.00000
32	20	30	MTS S 2469_MTS S 3160	0.00035	80	72	96	MTS_L_2430-TRAF0_2354	0.03734
22	21	00	MTS I 2160_TENEO EGE2	0.12720	81	71	72	MTS_S_2430-MTS_L_2430	0.00000
24	20	21	MTG C 2160 MTG T 2160	0.12/39	82	69	73	MTS_S_2617-MTS_S_2428	0.00010
34	30	31	MIS_S_3160-MIS_L_3160	0.00001	83	74	97	MTS_L_2428-TRAF0_2506	0.04978
35	10	32	MTS_S_37498-MTS_S_3603	0.00003	84	73	74	MTS_S_2428-MTS_L_2428	0.00000
36	32	33	MTS_S_3603-MTS_S_3604	0.00003	85	67	75	MTS_S_37493-MTS_S_2821	0.00000
37	34	91	MTS_L_3604-TRAF0_6567	0.28532	86	75	76	MTS_S_2821-MTS_S_2822	0.00003
38	33	34	MTS_S_3604-MTS_L_3604	0.00003	87	77	98	MTS_L_2822-TRAF0_16647	0.01493
39	7	35	MTS_S_37670-MTS_S_3592	0.00001	88	/6	11	MIS_S_2822-MIS_L_2822	0.00000
40	35	36	MTS_S_3592-MTS_S_3593	0.00001	69	70	70	MTS S 2000 MTS 1 2000	0.00000
41	37	92	MTS L 3593-TRAFO 6581	0.17581	90	52	80	MTS S 70848_MTS S 27504	0.00000
42	36	37	MTS S 3593-MTS L 3593	0.00001	92	80	81	MTS S 37584_MTS S 3112	0.00000
43	7	38	MTS S 37670-MTS S 2502	0.00001	93	82	99	MTS I. 3113-TRAFO 33454	0.02487
44	38	39	MTS S 2502-MTS S 2503	0.00001	94	81	82	MTS S 3113-MTS L 3113	0.00000
45	39	40	MTS S 2503-MTS S 3600	0.00081	95	4	83	MTS S 37673-MTS S 3587	0.00004
40	33	40	m5_5_2005-m5_5_3000	0.00001	23	-		1115 5 61616 HID 5 3307	0.00004

			LOSS NETWORK BY LI	NE
1	k	m	NAME	PLossKM[kW]
96	83	84	MTS_S_3587-MTS_S_3780	0.00003
97	84	85	MTS S_3780-MTS S_3781	0.00003
98	86	100	MTS_L_3781-TRAF0_21397	0.27193
99	85	86	MTS_S_3781-MTS_L_3781	0.00001

		-BUS SOLUTIONS				-BUS SOLUTIONS	
BUS	NAME	V[PU]	V[kV]	BUS	NAME	V[PU]	V[kV]
1	0500010503	1.010	3.67	49	MTS_S_20538	1.008	3.67
2	MTS_S_2495	1.010	3.67	50	MTS_S_20540	1.008	3.67
3	MTS_S_3588	1.008	3.67	51	MTS_S_20541	1.008	3.67
4	MTS_S_37673	1.008	3.67	52	MTS_S_27895	1.008	3.67
5	MTS_S_3159	1.008	3.67	53	MTS_S_70848	1.008	3.67
6	MTS_S_3594	1.008	3.66	54	MTS_S_70849	1.008	3.67
7	MTS_S_37670	1.008	3.66	55	MTS_S_2394	1.008	3.67
8	MTS_S_2393	1.008	3.66	56	MTS_S_3100	1.008	3.67
9	MTS S 3605	1.007	3.66	57	MTS_S_37496	1.008	3.67
10	MTS S 37498	1.007	3.66	58	MTS_S_3098	1.008	3.67
11	MTS S 3092	1.007	3.66	59	MTS_S_28224	1.008	3.67
12	MTS S 3095	1,007	3.66	60	MTS_S_104078	1.008	3.67
13	MTS S 37636	1.007	3.66	61	MIS_S_28225	1.008	3.67
14	MTS S 3094	1 007	3 66	02	MIS_L_28225	1.008	3.6/
15	MTS S 2161	1.007	3 66	03	MIS_5_3387	1.008	3.6/
16	MTG T 2161	1.007	2.66	04	MTS_E_3367	1.008	3.07
17	MTS S 2500	1.007	3.00	00	MTS S 2023	1.008	3.07
1/	MIS_5_2500	1.007	3.00	60	MTS S 27402	1.008	3.07
18	MIS_5_2501	1.007	3.00	69	MTS S 2493	1.008	3.67
19	4706_BARRA	1.007	3.66	60	MTS S 2617	1.008	3.67
20	MTS_S_129167	1.007	3.66	70	MTS S 2527	1.008	3.67
21	MTS_S_3831	1.007	3.66	71	MTS S 2430	1.008	3.67
22	MTS_L_3831	1.007	3.66	72	MTS I 2430	1.008	3.67
23	MTS_S_26954	1.007	3.66	73	MTS S 2428	1.008	3 67
24	MTS_S_2429	1.007	3.66	74	MTS L 2428	1.008	3 67
25	MTS_L_2429	1.007	3.66	75	MTS S 2821	1.008	3 67
26	MTS_L_3164	1.007	3.66	76	MTS 5 2822	1.008	3.67
27	MTS L 2438	1.007	3.66	77	MTS L 2822	1.008	3.67
28	MTS S 2499	1.007	3.66	78	MTS S 2899	1.008	3.67
29	MTS S 2498	1.007	3.66	79	MTS L 2899	1.008	3.67
30	MTS S 3160	1.007	3.66	80	MTS S 37584	1.008	3.67
31	MTS L 3160	1.007	3.66	81	MTS S 3113	1.008	3.67
32	MTS 5 3603	1.007	3.66	82	MTS L 3113	1.008	3.67
33	MTS 5 3604	1 007	3 66	83	MTS S 3587	1.008	3.67
34	MTS L 3604	1 007	3 66	84	MTS S 3780	1.008	3.67
35	MTS S 3592	1 008	3 66	85	MTS S 3781	1.008	3.67
36	MTS S 2502	1.009	3 66	86	MTS L 3781	1.008	3.67
27	MTG T 2502	1.000	3.00	87	TRAFO 6554	1.004	3.65
37	MIS_L_3593	1.008	3.00	88	TRAF0_34881	1.005	3.66
38	MI5_5_2502	1.008	3.00	89	TRAFO_1291	1.005	3.66
39	MIS_S_2503	1.008	3.66	90	TRAF0_5952	1.005	3.66
40	MTS_S_3600	1.008	3.66	91	TRAFO_6567	1.004	3.65
41	MIS_S_37520	1.007	3.66	92	TRAFO_6581	1.005	3.65
42	MTS_L_37519	1.007	3.66	93	TRAF0_5977	1.005	3.66
43	MTS_S_2832	1.007	3.66	94	TRAFO_6551	1.005	3.65
44	MTS_L_2832	1.007	3.66	95	TRAF0_19604	1.006	3.66
45	MTS_S_3598	1.007	3.66	96	TRAFO_2354	1.006	3.66
46	MTS_S_3599	1.007	3.66	97	TRAFO_2506	1.006	3.66
47	MTS_L_3599	1.007	3.66	98	TRAF0_16647	1.006	3.66
48	MTS_S_27894	1.008	3.67	99	TRAF0_33454	1.006	3.66

ANEXO 10. Tensión en nodos – Alimentador 0103.

		-BUS SOLUTION	IS
BUS	NAME	V[PU]	V[kV]
100	TRAF0_21397	1.006	3.66

ANEXO 11. Potencia de paso activa y reactiva – Alimentador 0103.

			TRANSFO	ORMER CAPA	CITY SOLUTION		43	7	38	MTS_S_37670-MTS_S_2502	19.44	-2.16
							44	38	39	MTS_S_2502-MTS_S_2503	19.44	-2.16
BUS		NAM	E Pss	s[kW]	Qss[kVAr]	S[kVA]	45	39	40	MTS_S_2503-MTS_S_3600	19.44	-2.16
1	050	0010	503 1042	2.31	-118.86 1	049.06	46	40	41	MTS_S_3600-MTS_S_37520	19.44	-2.16
							47	41	42	MTS_S_37520-MTS_L_37519	0.00	0.00
			-ACTIVE AND	REACTIVE	POWER FLOW SOLUT	IONS	48	41	43	MTS_S_37520-MTS_S_2832	0.00	0.00
							49	43	44	MTS_S_2832-MTS_L_2832	0.00	0.00
1	k	m	NAME		Pkm[kW]	Qkm[kVAr]	50	41	45	MTS_S_37520-MTS_S_3598	19.44	-2.16
1	1	2	0500010503-	-MTS_S_249	5 347.44	-39.62	51	45	46	MTS_S_3598-MTS_S_3599	19.44	-2.16
2	2	3	MTS_S_2495-	-MTS_S_358	8 346.68	-40.38	52	47	93	MTS_L_3599-TRAF0_5977	19.35	-2.52
3	3	4	MTS_S_3588-	-MIS_S_376	73 346.67	-40.38	53	46	47	MTS_S_3599-MTS_L_3599	19.44	-2.16
4	4	5	MTS_S_37673	3-MTS_S_31	59 183.92	-21.01	54	4	48	MTS_S_37673-MTS_S_27894	111.69	-13.43
5	5	6	MTS_S_3159-	-MTS_S_359	4 183.80	-21.13	55	48	49	MTS_S_27894-MTS_S_20538	111.69	-13.43
6	6	7	MTS_S_3594-	-MIS_S_376	70 183.80	-21.13	56	49	50	MTS_S_20538-MTS_S_20540	111.68	-13.44
7	7	8	MTS_S_37670	-MTS_5_23	93 131.89	-15.51	57	50	51	MTS_S_20540-MTS_S_20541	111.67	-13.45
8	8	9	MTS_S_2393-	-MTS_S_360	5 131.83	-15.56	58	51	52	MTS_S_20541-MTS_S_27895	111.66	-13.46
9	9	10	MTS_S_3605-	-MTS_S_374	98 131.83	-15.56	59	52	53	MTS_S_27895-MTS_S_70848	111.66	-13.46
10	10	11	MTS_S_37498	B-MTS_S_30	92 54.88	-6.82	60	53	54	MTS_S_70848-MTS_S_70849	105.51	-12.59
11	11	12	MTS_S_3092-	-MTS_S_309	5 54.87	-6.83	61	54	55	MTS_S_70849-MTS_S_2394	105.51	-12.59
12	12	13	MTS_S_3095-	-MTS_S_376	36 54.87	-6.83	62	55	56	MTS_S_2394-MTS_S_3100	105.48	-12.62
13	13	14	MTS_S_37636	5-MTS_S_30	94 38.26	-4.48	63	56	57	MTS_S_3100-MTS_S_37496	105.48	-12.62
14	14	15	MTS_S_3094-	-MTS_S_316	1 38.26	-4.48	64	57	58	MTS_S_37496-MTS_S_3098	80.26	-9.04
15	16	87	MTS_L_3161-	-TRAFO_655	4 38.06	-5.29	65	58	59	MTS_S_3098-MTS_S_28224	80.26	-9.04
16	15	16	MTS_S_3161-	-MTS_L_316	1 38.26	-4.48	66	59	60	MTS_S_28224-MTS_S_104078	80.26	-9.04
17	13	17	MTS_S_37636	6-MTS_S_25	00 16.61	-2.35	67	60	61	MTS_S_104078-MTS_S_28225	52.55	-5.24
18	17	18	MTS_S_2500-	-MTS_S_250	1 16.61	-2.35	68	62	94	MTS_L_28225-TRAF0_6551	52.26	-6.39
19	18	19	MTS_S_2501-	-4706_BARR	A 16.61	-2.35	69	61	62	MTS_S_28225-MTS_L_28225	52.55	-5.24
20	19	20	4706_BARRA-	-MTS_S_129	167 9.23	-1.31	70	60	63	MTS_S_104078-MTS_S_3387	27.71	-3.80
21	20	21	MTS_S_12916	57-MTS_S_3	831 9.23	-1.31	71	64	95	MTS_L_3387-TRAF0_19604	27.57	-4.37
22	22	88	MTS_L_3831-	-TRAFO_348	81 9.19	-1.46	72	63	64	MTS_S_3387-MTS_L_3387	27.71	-3.80
23	21	22	MTS_S_3831-	-MTS_L_383	1 9.23	-1.31	73	57	65	MTS_S_37496-MTS_S_2823	25.22	-3.57
24	19	23	4706_BARRA-	-MIS_S_269	54 7.38	-1.05	74	65	66	MTS_S_2823-MTS_S_2998	25.22	-3.57
25	23	24	MTS_5_26954	1-MIS_5_24	29 7.38	-1.05	75	66	67	MTS_S_2998-MTS_S_37493	25.22	-3.57
26	25	89	MTS_L_2429-	TRAFO_129	1 7.35	-1.17	76	67	68	MTS_S_37493-MTS_S_2497	21.53	-3.05
27	24	25	MIS_S_2429-	-MIS_L_242	9 7.38	-1.05	77	68	69	MTS_S_2497-MTS_S_2617	21.53	-3.05
28	19	26	4706_BARRA-	-MTS_L_316	4 0.00	0.00	78	69	70	MTS_S_2617-MTS_S_2527	9.23	-1.31
29	13	27	MIS_S_37636	-MTS_L_24	38 0.00	0.00	79	70	71	MTS_S_2527-MTS_S_2430	9.23	-1.31
30	10	28	MIS_S_37498	S-MIS_5_24	99 24.62	-3.38	80	72	96	MIS_L_2430-IRAF0_2354	9.19	-1.46
31	28	29	MTS_S_2499-	-MIS_S_249	8 24.62	-3.38	81	11	72	MTS_S_2430-MTS_L_2430	9.23	-1.31
32	29	30	MIS_5_2498-	-MIS_S_316	0 24.62	-3.38	82	69	73	MIS_5_2617-MIS_5_2428	12.30	-1.74
33	31	90	MIS_L_3160-	-IRAPO_595	2 24.50	-3.89	83	74	9/	MIS_L_2428-IRAF0_2506	12.25	-1.94
34	30	31	MI5_5_3160-	-MIS_L_316	0 24.62	-3.38	84	13	74	MIS_S_2428-MIS_L_2428	12.30	-1.74
35	10	32	MI5_5_3/498	-MI5_5_36	03 52.33	-5.30	85	0/	15	MIS_S_3/493-MIS_S_2821	3.69	-0.52
30	32	33	MTS 1 2004	-m15_5_360	4 52.33	-5.36	86	15	10	MIS_5_2021-MIS_5_2022	3.69	-0.52
31	34	91	MTG C 2604-	MTR T 000	1 52.05	-6.51	87	11	98	MIS_L_2022-IKAPU_10647	3.68	-0.58
38	33	34	MTC C 32004-	-m15_L_360	4 52.33	-5.30	88	10	11	MTS_5_2022-MTS_L_2022	3.69	-0.52
39	25	35	MTC C 2500	MTC C 250	32.47	-3.4/	89	5/	18	MTG G 2000 MTG I 2000	0.00	0.00
40	35	30	MTG I 2502	TRAFO 650	J J2.47	-3.4/	90	18	19	MIC C 20040 MIC C 22504	6.15	0.00
41	31	92	MTC C 2593-	MTG T 250	1 32.30	-4.1/	91	53	00	MTC C 27504 MTC C 2110	0.15	-0.87
42	30	51	MID_5_3293-	-m15_L_359	32.47	-3.47	92	20	91	m15_5_3/584-M15_5_3113	0.15	-0.87

1	k	m	NAME	Pkm[kW]	Qkm[kVAr]
93	82	99	MTS_L_3113-TRAF0_33454	6.13	-0.97
94	81	82	MTS_S_3113-MTS_L_3113	6.15	-0.87
95	4	83	MTS_S_37673-MTS_S_3587	51.06	-5.95
96	83	84	MTS_S_3587-MTS_S_3780	51.06	-5.95
97	84	85	MTS S 3780-MTS S 3781	51.06	-5.95
98	86	100	MTS L 3781-TRAFO 21397	50.79	-7.04
99	85	86	MTS S 3781-MTS L 3781	51.06	-5.95

	CURRENT MAGNITUDE BY LINES SOLUTIONS						CURRENT MAGNITUDE BY LINES SOLUTIONS				
1	k	m	NAME	Ikm [A]	1	k	m	NAME	I km [A]		
			CURRENT MAGNITUDE BY LINES	SOLUTIONS	48	41	43	MTS_S_37520-MTS_S_2832	1.07		
					49	43	44	MTS_S_2832-MTS_L_2832	1.12		
1	k	m	NAME	Ikm[A]	50	41	45	MTS_S_37520-MTS_S_3598	5.35		
1	1	2	0500010503-MTS_S_2495	95.19	51	45	46	MTS_S_3598-MTS_S_3599	5.36		
2	2	3	MTS_S_2495-MTS_S_3588	95.18	52	47	93	MTS_L_3599-TRAF0_5977	5.34		
3	3	4	MTS_S_3588-MTS_S_37673	95.18	53	46	47	MTS_S_3599-MTS_L_3599	5.36		
4	4	5	MTS_S_37673-MTS_S_3159	50.48	54	4	48	MTS_S_37673-MTS_S_27894	30.68		
5	5	6	MTS_S_3159-MTS_S_3594	50.48	55	48	49	MTS_S_27894-MTS_S_20538	30.68		
6	6	7	MTS_S_3594-MTS_S_37670	50.48	56	49	50	MTS_S_20538-MTS_S_20540	30.68		
7	7	8	MTS_S_37670-MTS_S_2393	36.24	57	50	51	MTS_S_20540-MTS_S_20541	30.68		
8	8	9	MTS_S_2393-MTS_S_3605	36.24	58	51	52	MTS_S_20541-MTS_S_27895	30.68		
9	9	10	MTS_S_3605-MTS_S_37498	36.24	59	52	53	MTS_S_27895-MTS_S_70848	30.68		
10	10	11	MTS_S_37498-MTS_S_3092	15.10	60	53	54	MTS_S_70848-MTS_S_70849	29.00		
11	11	12	MTS_S_3092-MTS_S_3095	15.10	61	54	55	MTS_S_70849-MTS_S_2394	29.00		
12	12	13	MTS_S_3095-MTS_S_37636	15.10	62	55	56	MTS_S_2394-MTS_S_3100	28.98		
13	13	14	MTS_S_37636-MTS_S_3094	10.52	63	56	57	MTS_S_3100-MTS_S_37496	28.99		
14	14	15	MTS_S_3094-MTS_S_3161	10.52	64	57	58	MTS_S_37496-MTS_S_3098	22.04		
15	16	87	MTS_L_3161-TRAF0_6554	10.52	65	58	59	MTS_S_3098-MTS_S_28224	22.04		
16	15	16	MTS_S_3161-MTS_L_3161	10.53	66	59	60	MTS_S_28224-MTS_S_104078	22.04		
17	13	17	MTS_S_37636-MTS_S_2500	4.62	67	60	61	MTS_S_104078-MTS_S_28225	14.49		
18	17	18	MTS_S_2500-MTS_S_2501	4.59	68	62	94	MTS_L_28225-TRAF0_6551	14.41		
19	18	19	MTS_S_2501-4706_BARRA	4.75	69	61	62	MTS_S_28225-MTS_L_28225	14.44		
20	19	20	4706_BARRA-MTS_S_129167	2.54	70	60	63	MTS_S_104078-MTS_S_3387	7.63		
21	20	21	MTS_S_129167-MTS_S_3831	2.55	71	64	95	MTS_L_3387-TRAF0_19604	7.63		
22	22	88	MTS_L_3831-TRAF0_34881	2.54	72	63	64	MTS_S_3387-MTS_L_3387	7.64		
23	21	22	MTS_S_3831-MTS_L_3831	2.66	73	57	65	MTS_S_37496-MTS_S_2823	6.99		
24	19	23	4706_BARRA-MTS_S_26954	2.10	74	65	66	MTS_S_2823-MTS_S_2998	6.96		
25	23	24	MIS_S_26954-MIS_S_2429	2.04	/5	00	6/	MI5_5_2998-MI5_5_3/493	0.96		
26	25	89	MTS_L_2429-TRAF0_1291	2.04	/0	67	68	MIS_5_3/493-MIS_5_249/	5.98		
27	24	25	MTS_S_2429-MTS_L_2429	2.09	11	68	69	MIS_5_2497-MIS_5_2617	5.93		
28	19	26	4706_BARRA-MIS_L_3164	0.05	78	09	70	MIS_5_2017-MIS_5_2527	2.54		
29	13	21	MIS_S_37636-MIS_L_2438	0.57	19	70	11	MIS_5_2527-MIS_5_2430	2.60		
30	10	28	MIS_5_3/498-MIS_5_2499	6.79	00	72	90	MIS_L_2430-IRAFU_2354	2.54		
31	28	29	MIS_5_2499-MIS_5_2498	6.80	01	60	72	MIS_5_2430-MIS_L_2430	2.00		
32	29	30	MIS_5_2490-MIS_5_3160	0.70	02	74	07	MTS I 2420 TENED 2506	2.35		
33	20	90	MIS_L_3160-IRAF0_5952	6.70	0.0	72	74	MTS C 2420-TRAFU 2500	2.40		
34	10	22	MIS_S_3160-MIS_L_3160	0.00	04	67	75	MTS S 27420-MTS S 2021	1.90		
30	20	22	MIS_S_3/490-MIS_S_3603	14.37	05	75	76	MTS S 2021_MTS S 2022	1.00		
27	24	01	MTS I 2604 TENEO 6667	14.37	87	77	99	MTS I 2822_TEARO 16647	1.02		
20	22	24	MTS S 2604 MTS T 2604	14.30	88	76	77	MTS S 2822-MTS I 2822	1.02		
20	22	25	MTS S 27670 MTS S 2502	9.04	89	57	79	MTS S 37/06_MTS S 2800	0.49		
39	35	30	MTS S 3562_MTS S 2562	9.02	90	78	79	MTS S 2899-MTS T 2899	1.12		
40	30	02	MTS I 3563_TDARO 6591	9.01	91	53	80	MTS S 70848-MTS S 37584	1.77		
41	36	37	MTS S 3563_MTS T 2562	8 93	92	80	81	MTS S 37584-MTS S 3113	2.08		
42	7	30	MTS S 37670_MTS S 2502	5 35	93	82	99	MTS I. 3113-TRAFO 33454	1.69		
4.0	3.9	30	MTS S 2502-MTS S 2502	5 35	94	81	82	MTS S 3113-MTS L 3113	1.99		
45	30	40	MTS S 2503-MTS S 3600	5 34	95	4	83	MTS S 37673-MTS S 3587	14.02		
46	40	41	MTS_S_2600_MTS_S_37520	5 34	96	83	84	MTS S 3587-MTS S 3780	14.03		
47	41	42	MTS_S_37520-MTS_L_37519	0.50	97	84	85	MTS S 3780-MTS S 3781	14.02		
2/	41	74		0.00		~ 2	50		11100		

ANEXO 12. Corriente por las líneas – Alimentador 0103.

 			CURRENT	MAGNITUDE	BY	LINES	SOLUTIONS	
1	k	m	NAME				Ikm[A]	
98	86	100	MTS_L_3781-	TRAFO_2139	7		14.02	
99	85	86	MTS_S_3781-	MTS_L_3781			14.05	

ANEXO 13. Pérdidas de potencia activa por las líneas – Alimentador 0104.

	LOSS NETWORK BY LINE				LOSS NETWORK BY LINE				
1	k	m	NAME	PLossKM[kW]	1	k	m	NAME	PLossKM[kW]
1	1	2	0500010S04-MTS_S_21174	0.00097	46	44	45	MTS_S_136293-MTS_S_136294	0.00000
2	2	3	MTS_S_21174-MTS_S_2475	0.00495	47	46	508	MTS_L_136294-TRAF0_35558	0.01216
3	3	4	MTS S 2475-MTA S 37021	0.04801	48	45	46	MTS_S_136294-MTS_L_136294	0.00000
4	4	5	MTA S 37021-MTA S 45205	0.00008	49	38	47	MTS_S_136290-MTA_S_37381	0.03026
5	5	6	MTA S 45205-MTA S 45204	0.00001	50	47	48	MTA_S_37381-MTA_S_76529	0.01819
6	7	506	MTA L 45204-TRAFO 1110	0.02840	51	48	49	MTA_S_76529-MTA_S_44540	0.00118
7	6	7	MTA S 45204-MTA L 45204	0.00000	52	49	50	MTA_S_44540-MTA_S_44539	0.00000
9	4	0	MTA S 37021_MTA S 37160	0.00003	53	51	509	MTA_L_44539-TRAFO_275	0.05294
0	0	9	MTA S 27160_MTA S 44522	0.00420	54	50	51	MIA_5_44539-MIA_L_44539	0.00000
9	0	9	MIA_5_3/190-MIA_5_44532	0.00420	55	49	52	MIA_5_44540-MIA_5_/6102	0.02180
10	9	10	MIA_5_44532-MIA_5_37000	0.09403	50	52	55	MTR S 76102-MTR S 76103	0.01475
11	10	11	MTA_S_37000-MTA_S_37001	0.07389	58	54	55	MTA S 76103-MTA S 76105	0.01157
12	11	12	MTA_S_37001-MTA_S_12639	0.08401	59	55	56	MTA S 76105-MTA S 37358	0.00778
13	12	13	MTA_S_12639-MTA_S_163508	0.05557	60	56	57	MTA S 37358-MTA S 43731	0.00091
14	13	14	MTA_S_163508-MTA_S_37209	0.02586	61	57	58	MTA S 43731-MTA S 43732	0.02002
15	14	15	MTA_S_37209-MTA_S_37210	0.05847	62	58	59	MTA S 43732-MTA S 43777	0.01006
16	15	16	MTA_S_37210-MTA_S_37211	0.06152	63	59	60	MTA S 43777-MTA S 43778	0.00257
17	16	17	MTA_S_37211-MTA_S_37212	0.04981	64	60	61	MTA S 43778-MTA S 43779	0.00980
18	17	18	MTA S 37212-MTA S 37213	0.00792	65	61	62	MTA S 43779-MTA S 43780	0.01015
19	18	19	MTA S 37213-MTA S 37214	0.05352	66	62	63	MTA_S_43780-MTA_S_43482	0.00294
20	19	20	MTA S 37214-MTA S 37104	0.04642	67	63	64	MTA_S_43482-MTA_S_43468	0.00737
21	20	21	MTA S 37104-MTA S 37216	0.04743	68	64	65	MTA_S_43468-MTA_S_43467	0.00000
22	21	22	MTA S 37216-MTA S 37217	0.06043	69	66	510	MTA_L_43467-TRAF0_1009	0.05673
23	22	23	MTA S 37217_MTA S 37218	0.04874	70	65	66	MTA_S_43467-MTA_L_43467	0.00001
24	22	24	MTA C 27210 MTA C 27102	0.02602	71	64	67	MTA_S_43468-MTA_S_43775	0.00704
24	23	24	MTA 5 37210-MTA 5 37103	0.02602	72	67	68	MTA_S_43775-MTA_S_43776	0.00686
25	24	25	MIA_5_3/103-MIA_5_4454/	0.00006	73	68	69	MTA_S_43776-MTA_S_43767	0.00224
26	25	26	MIA_5_44547-MIA_5_44548	0.00000	74	69	70	MTA_S_43767-MTA_S_43475	0.00000
27	27	507	MTA_L_44548-TRAF0_990	0.03989	75	70	71	MTA_S_43475-MTA_L_43475	0.00000
28	26	27	MTA_S_44548-MTA_L_44548	0.00000	76	69	72	MTA_S_43767-MTA_S_43771	0.00389
29	24	28	MTA_S_37103-MTA_S_37220	0.00837	77	72	73	MTA_S_43771-MTA_S_43772	0.00587
30	28	29	MTA_S_37220-MTA_S_37221	0.04277	78	73	74	MIA_5_43772-MIA_5_43773	0.00469
31	29	30	MTA_S_37221-MTA_S_37222	0.03706	/9	74	15	MIA_5_43//3-MIA_5_43/3/	0.00310
32	30	31	MTA_S_37222-MTA_S_37223	0.03401	00	75	70	MIA_5_45/5/-MIA_5_45/50	0.00192
33	31	32	MTA S 37223-MTA S 37224	0.03179	92	77	78	MTA S 43/83_MTA S 43763	0.00385
34	32	33	MTA S 37224-MTA S 37396	0.01137	83	78	79	MTA S 43762_MTA S 43756	0.00030
35	33	34	MTA S 37396-MTA S 37226	0.00000	84	79	80	MTA S 43756-MTA S 43757	0.00227
36	34	35	MTA S 37226-MTS S 21	0.00000	85	80	81	MTA S 43757-MTA S 43758	0.00236
37	33	36	MTA S 37396-MTA S 37378	0 00594	86	81	82	MTA S 43758-MTA S 43752	0.00069
30	36	37	MTA S 37378_MTA S 37379	0.02693	87	82	83	MTA S 43752-MTA S 43741	0.00067
20	27	20	MTA C 27270_MTC C 126200	0.02093	88	83	84	MTA S 43741-MTA S 43742	0.00115
39	20	20	MTG C 126200 MTG C 126200	0.02322	89	84	85	MTA S 43742-MTA S 43744	0.00104
40	38	39	MTG_0_136290-MTG_0_136287	0.00000	90	85	86	MTA_S_43744-MTA_S_37362	0.00012
41	39	40	MI5_5_136287-MI5_5_136288	0.00000	91	86	87	MTA_S_37362-MTA_S_37361	0.00000
42	40	41	MIS_S_136288-MTS_S_136289	0.00001	92	88	511	MTA_L_37361-TRAF0_182	0.07049
43	41	42	MTS_S_136289-MTS_S_136286	0.00001	93	87	88	MTA_S_37361-MTA_L_37361	0.00000
44	42	43	MTS_S_136286-MTS_S_136292	0.00001	94	86	89	MTA_S_37362-MTA_S_43746	0.00000
45	43	44	MTS_S_136292-MTS_S_136293	0.00000	95	89	90	MTA_S_43746-MTA_L_43746	0.00000

LOSS NETWORK BY LI	NE	LOSS NETWORK BY LINE				
l k m NAME	PLossKM[kW]	l k m NAME	PLossKM[kW]			
96 85 91 MTA_S_43744-MTA_S_43749	0.00031	146 131 132 MTA_S_43466-MTA_L_43466	0.00000			
97 91 92 MTA_S_43749-MTA_S_43750	0.00044	147 63 133 MTA_S_43482-MTA_L_43727	0.00000			
98 92 93 MTA_S_43750-MTA_S_43751	0.00044	148 59 134 MTA_S_43777-MTA_S_44518	0.00014			
99 93 94 MTA_S_43751-MTA_S_37363	0.00043	149 134 135 MTA_S_44518-MTA_S_43473	0.00023			
100 94 95 MTA_S_37363-MTA_S_37364	0.00000	150 135 136 MTA_S_43473-MTA_S_43474	0.00000			
101 96 512 MTA_L_37364-TRAFO_18	0.07156	151 137 521 MTA_L_43474-TRAF0_120	0.06137			
102 95 96 MTA_S_37364-MTA_L_37364	0.00000	152 136 137 MTA_S_43474-MTA_L_43474	0.00000			
103 85 97 MTA_S_43744-MTA_L_43754	0.00000	153 59 138 MTA_S_43777-MTA_S_44527	0.00000			
104 82 98 MTA_S_43752-MTA_L_43743	0.00000	154 138 139 MTA_S_44527-MTA_S_44528	0.00000			
105 82 99 MTA_S_43752-MTA_S_43753	0.00009	155 139 140 MTA_S_44528-MTA_S_37386	0.00000			
106 99 100 MTA_S_43753-MTA_S_37365	0.00024	156 57 141 MTA_S_43731-MTA_S_43469	0.00091			
107 100 101 MTA_S_37365-MTA_S_43447	0.00000	157 141 142 MTA_S_43469-MTA_S_43470	0.00000			
108 102 513 MTA_L_43447-TRAF0_2412	0.03261	158 143 522 MTA_L_43470-TRAF0_1161	0.04034			
109 101 102 MTA_S_43447-MTA_L_43447	0.00000	159 142 143 MTA_S_43470-MTA_L_43470	0.00000			
110 78 103 MTA_S_43762-MTA_S_43759	0.00000	160 141 144 MTA_S_43469-MTA_S_43729	0.00017			
111 78 104 MTA_S_43762-MTA_S_43764	0.00002	161 144 145 MTA_S_43729-MTA_S_43730	0.00009			
112 104 105 MTA_S_43764-MTA_S_43452	0.00015	162 145 146 MTA_S_43730-MTA_L_43730	0.00000			
113 105 106 MTA_S_43452-MTA_S_43453	0.00000	163 145 147 MTA_S_43730-MTA_S_43472	0.00008			
114 107 514 MTA_L_43453-TRAF0_141	0.04193	164 147 148 MTA_S_43472-MTA_S_43471	0.00000			
115 106 107 MTA_S_43453-MTA_L_43453	0.00000	165 149 523 MTA_L_43471-TRAF0_2008	0.02940			
116 75 108 MTA_S_43737-MTA_S_43766	0.00005	166 148 149 MTA_S_43471-MTA_L_43471	0.00000			
117 108 109 MTA_S_43766-MTA_S_43451	0.00013	167 145 150 MTA_S_43730-MTA_L_44520	0.00000			
118 109 110 MTA_S_43451-MTA_S_43450	0.00000	168 36 151 MTA_S_37378-MTA_S_44544	0.00000			
119 111 515 MTA_L_43450-TRAF0_1989	0.02791	169 152 524 MTA_L_44544-TRAF0_2202	0.04489			
120 110 111 MTA_S_43450-MTA_L_43450	0.00000	170 151 152 MTA_S_44544-MTA_L_44544	0.00000			
121 75 112 MTA_S_43737-MTA_S_43449	0.00004	171 33 153 MTA_S_37396-MTA_S_44529	0.00004			
122 112 113 MTA_S_43449-MTA_S_43448	0.00000	172 153 154 MTA_S_44529-MTS_S_2633	0.00000			
123 114 516 MTA_L_43448-TRAF0_640	0.03178	173 154 155 MTS_S_2633-MTS_S_2634	0.00006			
124 113 114 MTA_S_43448-MTA_L_43448	0.00000	174 156 525 MTS_L_2634-TRAF0_1814	0.02430			
125 112 115 MTA_S_43449-MTA_S_43476	0.00001	175 155 156 MTS_S_2634-MTS_L_2634	0.00000			
126 115 116 MTA_S_43476-MTA_S_43477	0.00001	176 153 157 MTA_S_44529-MTS_S_2632	0.00000			
127 116 117 MTA_S_43477-MTA_S_37359	0.00001	177 157 158 MTS_S_2632-MTS_L_37519	0.00000			
128 117 118 MTA_S_37359-MTA_S_37360	0.00000	178 24 159 MTA_S_37103-MTA_S_37383	0.00015			
129 119 517 MTA_L_37360-TRAF0_13233	0.00764	179 159 160 MTA_S_37383-MTA_S_37384	0.00069			
130 118 119 MTA_S_37360-MTA_L_37360	0.00000	180 160 161 MTA_S_37384-MTA_S_37385	0.00063			
131 69 120 MTA_S_43767-MTA_S_57676	0.00007	181 161 162 MTA_S_37385-MTA_S_36507	0.00039			
132 120 121 MTA_S_57676-MTA_S_57677	0.00017	182 162 163 MTA_S_36507-MTA_L_36507	0.00000			
133 121 122 MTA_S_57677-MTA_S_57674	0.00008	183 162 164 MTA_S_36507-MTA_S_44546	0.00008			
134 122 123 MTA_S_57674-MTA_S_57673	0.00000	184 164 165 MTA_S_44546-MTA_S_44545	0.00000			
135 124 518 MTA_L_57673-TRAF0_1963	0.03179	185 166 526 MTA_L_44545-TRAF0_515	0.03766			
136 123 124 MTA_S_57673-MTA_L_57673	0.00000	186 165 166 MTA_S_44545-MTA_L_44545	0.00000			
137 122 125 MTA_S_57674-MTA_S_57679	0.00000	187 162 167 MTA_S_36507-MTA_S_40264	0.00003			
138 125 126 MTA_S_57679-MTA_S_57680	0.00008	188 167 168 MTA_S_40264-MTA_S_40265	0.00018			
139 126 127 MTA_S_57680-MTA_S_57681	0.00007	189 168 169 MTA_S_40265-MTA_S_45227	0.00001			
140 127 128 MTA_S_57681-MTA_S_53278	0.00000	190 169 170 MTA_S_45227-MTA_S_45228	0.00034			
141 129 519 MTA_L_53278-TRAF0_14976	0.02605	191 170 171 MTA_S_45228-MTA_S_44536	0.00030			
142 128 129 MTA_S_53278-MTA_L_53278	0.00000	192 171 172 MTA_S_44536-MTA_S_44535	0.00000			
143 63 130 MTA_S_43482-MTA_S_3247	0.00000	193 173 527 MTA_L_44535-TRAF0_2784	0.04968			
144 130 131 MTA_S_3247-MTA_S_43466	0.00000	194 172 173 MTA_S_44535-MTA_L_44535	0.00000			
145 132 520 MTA_L_43466-TRAF0_5939	0.00397	195 20 174 MTA_S_37104-MTA_S_44549	0.00000			

LOSS NETWORK BY LINE-		LOSS NETWORK BY LINE				
1 I	Discolaria		Discolarity			
I K M NAME	PLOSSKM[KW]	I K M NAME	PLOSSKM[KW]			
196 175 528 MIA_L_44549-IRAFO_45	0.03878	246 217 218 MIA_S_37004-MIA_S_37005	0.00017			
19/ 1/4 1/5 MIA_5_44549-MIA_L_44549	0.00000	24/ 218 219 MIA_5_3/005-MIA_5_44/63	0.00000			
198 13 1/6 MIA_5_163508-MIA_5_3/106	0.00148	248 220 535 MIA_L_44763-IRAF0_70	0.04181			
199 1/6 1// MIA_5_3/106-MIA_5_45201	0.00357	249 219 220 MIA_5_44763-MIA_L_44763	0.00000			
200 1// 1/8 MIA_5_45201-MIA_5_134029	0.00150	250 217 221 MIA_5_37004-MIA_5_37202	0.13347			
201 178 179 MIA_5_134029-MIA_5_43128	0.00040	251 221 222 MTA 5 37202-MTA 5 37203	0.10686			
202 180 529 MIA_L_43128-IRAFO_2534	0.04453	252 222 223 MTA 5 37203-MTA 5 37204	0.00389			
203 179 180 MIA_5_43128-MIA_L_43128	0.00000	253 223 224 MTA_S_37204-MTA_S_37205	0.00413			
204 178 181 MTA_5_134029-MTA_5_134031	0.00000	254 224 225 MTA_S_37205-MTA_S_37206	0.02628			
205 181 182 MTA_S_134031-MTS_S_45176	0.00000	255 225 226 MTA_S_37206-MTA_S_37207	0.12008			
206 182 183 MTS_5_45176-MTS_5_45177	0.00005	256 226 227 MTA_S_37207-MTA_S_37002	0.04141			
207 183 184 MTS_5_45177-MTS_S_45178	0.00000	257 227 228 MTA_S_37002-MTA_S_45215	0.04492			
208 185 530 MTS_L_45178-TRAF0_29536	0.03614	258 228 229 MTA_S_45215-MTA_S_45216	0.13063			
209 184 185 MTS_S_45178-MTS_L_45178	0.00000	259 229 230 MTA_S_45216-MTA_S_37191	0.05841			
210 177 186 MTA_S_45201-MTA_S_45200	0.00000	260 230 231 MTA_S_37191-MTA_L_37191	0.00000			
211 187 531 MTA_L_45200-TRAF0_4438	0.04900	261 230 232 MTA_S_37191-MTA_S_45219	0.04004			
212 186 187 MTA_S_45200-MTA_L_45200	0.00000	262 232 233 MTA_S_45219-MTA_S_45220	0.11034			
213 13 188 MTA_S_163508-MTA_S_97012	0.00002	263 233 234 MTA_S_45220-MTA_S_45221	0.11590			
214 188 189 MTA_S_97012-MTA_S_97013	0.00000	264 234 235 MTA_S_45221-MTA_S_37394	0.02748			
215 190 532 MTA_L_97013-TRAF0_26080	0.01446	265 236 235 MTA_S_37231-MTA_S_37394	0.04672			
216 189 190 MTA_S_97013-MTA_L_97013	0.00000	266 237 236 MTA_S_37230-MTA_S_37231	0.06638			
217 10 191 MTA_S_37000-MTA_S_45203	0.00000	267 238 237 MTA_S_37229-MTA_S_37230	0.05780			
218 192 533 MTA_L_45203-TRAF0_2820	0.04304	268 239 238 MTA_S_158567-MTA_S_37229	0.00155			
219 191 192 MTA_S_45203-MTA_L_45203	0.00000	269 240 239 MTA_S_158568-MTA_S_158567	0.00124			
220 3 193 MTS_S_2475-MTA_S_37020	0.11484	270 241 240 MTA_S_37395-MTA_S_158568	0.00723			
221 193 194 MTA_S_37020-MTA_S_69047	0.28595	271 241 242 MTA_S_37395-MTA_L_37228	0.00022			
222 194 195 MTA_S_69047-MTA_S_126260	0.00000	272 243 242 MTS_S_132878-MTA_L_37228	0.00003			
223 195 196 MTA_S_126260-MTA_S_126258	0.00012	273 243 244 MTS_S_132878-MTS_S_132879	0.00018			
224 196 197 MTA_S_126258-MTS_S_35574	0.00000	274 244 245 MTS_S_132879-MTS_S_132880	0.00016			
225 197 198 MTS_S_35574-MTS_S_35575	0.00014	275 245 246 MTS_S_132880-MTS_S_132881	0.00063			
226 198 199 MTS_S_35575-MTS_S_35576	0.00000	276 246 247 MTS_S_132881-MTS_S_132882	0.00019			
227 200 534 MTS_L_35576-TRAF0_19586	0.03607	277 247 248 MTS_S_132882-MTS_S_132883	0.00029			
228 199 200 MTS_S_35576-MTS_L_35576	0.00000	278 248 249 MTS_S_132883-MTS_S_132884	0.00312			
229 194 201 MTA_S_69047-MTA_S_11583	0.00197	279 249 250 MTS_S_132884-MTS_S_132885	0.00002			
230 201 202 MTA_S_11583-MTA_S_11584	0.22026	280 251 536 MTS_L_132885-TRAF0_35458	0.15782			
231 202 203 MTA_S_11584-MTA_S_37019	0.03729	281 250 251 MTS_S_132885-MTS_L_132885	0.00002			
232 203 204 MTA_S_37019-MTA_S_134437	0.03459	282 241 252 MTA_S_37395-MTA_S_136838	0.02754			
233 204 205 MTA_S_134437-MTA_S_134438	0.17990	283 252 253 MTA_S_136838-MTA_S_136839	0.03496			
234 205 206 MTA_S_134438-MTA_S_134439	0.19196	284 253 254 MTA_S_136839-MTA_S_136840	0.02809			
235 206 207 MTA_S_134439-MTA_S_134440	0.18794	285 254 255 MTA_S_136840-MTA_S_37388	0.00601			
236 207 208 MTA_S_134440-MTA_S_134441	0.14328	286 255 256 MTA S 37388-MTA S 37389	0.02820			
237 208 209 MTA_S_134441-MTA_S_134442	0.16818	287 256 257 MTA S 37389-MTA S 37390	0.03163			
238 209 210 MTA_S_134442-MTA_S_9468	0.13723	288 257 258 MTA_S 37390-MTA_S 37391	0.03149			
239 210 211 MTA_S_9468-MTA_S_9469	0.11173	289 258 259 MTA_S 37391-MTA_S 45226	0.02761			
240 211 212 MTA_S_9469-MTA_S_9470	0.13405	290 259 260 MTA S 45226-MTA S 37387	0.02795			
241 212 213 MTA_S_9470-MTA_S_9471	0.12252	291 260 261 MTA 5 37387-MTA 5 37232	0.03172			
242 213 214 MTA_S_9471-MTA_S_37006	0.05964	292 261 262 MTA 5 37232-MTA 5 37233	0.01710			
243 214 215 MTA_S_37006-MTA_S_37007	0.04695	293 262 263 MTA 5 37233-MTA 5 37234	0.01841			
244 215 216 MTA_S_37007-MTA_S_37008	0.13557	294 263 264 MTA S 37234-MTA S 44522	0.00819			
245 216 217 MTA_S_37008-MTA_S_37004	0.15185	295 265 264 MTS_S_248-MTA_S_44522	0.00000			

LOSS NETWORK BY LINE-		LOSS NETWORK BY LINE				
l k m NAME	PLossKM[kW]	l k m NAME	PLossKM[kW]			
296 264 266 MTA_S_44522-MTA_S_44523	0.01924	346 313 312 MTS_S_86814-MTS_S_86815	0.00068			
297 266 267 MTA_S_44523-MTA_S_44524	0.02002	347 314 313 MTS_S_86798-MTS_S_86814	0.00003			
298 267 268 MTA_S_44524-MTA_S_44525	0.02266	348 315 314 MTS_S_86541-MTS_S_86798	0.00006			
299 268 269 MTA_S_44525-MTA_S_155993	0.02046	349 316 315 MTA_S_156001-MTS_S_86541	0.00007			
300 269 270 MTA_S_155993-MTA_S_155994	0.01864	350 317 316 MTA_S_174242-MTA_S_156001	0.00039			
301 270 271 MTA_S_155994-MTA_S_156000	0.00407	351 318 317 MTS_S_108689-MTA_S_174242	0.00008			
302 271 272 MTA_S_156000-MTA_S_155986	0.00019	352 319 318 MTS_S_108690-MTS_S_108689	0.00301			
303 272 273 MTA_S_155986-MTS_S_86530	0.00019	353 320 319 MTS_S_108688-MTS_S_108690	0.00292			
304 273 274 MTS_S_86530-MTS_S_86531	0.00110	354 321 320 MTS_S_108691-MTS_S_108688	0.00167			
305 274 275 MTS_S_86531-MTS_S_86816	0.00669	355 322 321 MTS_S_108694-MTS_S_108691	0.00038			
306 276 275 MTS_S_2438-MTS_S_86816	0.00219	356 323 322 MTS_S_108692-MTS_S_108694	0.00002			
307 276 277 MTS_S_2438-MTS_L_2438	0.00000	357 324 323 MTA_S_163761-MTS_S_108692	0.00003			
308 278 276 MTS_S_86533-MTS_S_2438	0.00011	358 325 324 MTS_S_108687-MTA_S_163761	0.00000			
309 279 278 MTA_S_155999-MTS_S_86533	0.00022	359 325 326 MTS_S_108687-MTS_S_108682	0.00006			
310 280 279 MTA_S_44515-MTA_S_155999	0.00022	360 326 327 MTS_S_108682-MTS_S_108686	0.00017			
311 280 281 MTA_S_44515-MTA_S_44516	0.00506	361 327 328 MTS_S_108686-MTS_S_108685	0.00023			
312 281 282 MTA S 44516-MTA S 80763	0.01340	362 328 329 MTS S 108685-MTS S 108684	0.00000			
313 282 283 MTA S 80763-MTA S 80764	0.01415	363 329 330 MTS S 108684-MTS S 108683	0.00000			
314 283 284 MTA S 80764-MTA S 39865	0.00075	364 330 331 MTS S 108683-MTS L 108683	0.00000			
315 284 285 MTA S 39865-MTS S 3846	0.00000	365 328 332 MTS S 108685-MTS S 2486	0.00011			
316 285 286 MTS S 3846-MTS S 3847	0.00007	366 332 333 MTS S 2486-MTS S 2485	0.00001			
317 287 537 MTS L 3847-TRAFO 14344	0.02505	367 334 540 MTS L 2485-TRAFO 2929	0.02989			
318 286 287 MTS S 3847-MTS L 3847	0.00000	368 333 334 MTS S 2485-MTS L 2485	0.00000			
319 284 288 MTA S 39865-MTA S 43463	0.00000	369 332 335 MTS S 2486-MTS S 2484	0.00000			
320 289 538 MTA L 43463-TRAFO 2690	0.09987	370 336 541 MTS L 2484-TRAFO 2928	0.02989			
321 288 289 MTA 5 43463-MTA L 43463	0.00000	371 335 336 MTS S 2484-MTS L 2484	0.00000			
322 284 290 MTA S 39865-MTA S 43733	0.00044	372 324 337 MTA S 163761-MTA S 163763	0.00000			
323 290 291 MTA S 43733-MTA S 43734	0.01266	373 337 338 MTA S 163763-MTS S 20	0.00000			
324 291 292 MTA S 43734-MTA S 43735	0.01047	374 324 339 MTA S 163761-MTA S 44511	0.00010			
325 292 293 MTA S 43735-MTA S 43736	0.01041	375 339 340 MTA S 44511-MTA S 44512	0.00150			
326 293 294 MTA 5 43736-MTA 5 155983	0.01334	376 340 341 MTA S 44512-MTA S 142382	0.00216			
327 294 295 MTA_S_155983-MTA_S_155984	0.00000	377 341 342 MTA S 142382-MTA S 188450	0.00139			
328 295 296 MTA_S_155984-MTS_L_86540	0.00000	378 343 342 MTA S 188449-MTA S 188450	0.00001			
329 297 296 MTS_S_86540-MTS_L_86540	0.00000	379 343 344 MTA S 188449-MTS S 128835	0.00000			
330 298 297 MTS_S_86539-MTS_S_86540	0.00006	380 344 345 MTS S 128835-MTS S 128836	0.00000			
331 299 298 MTS S 86538-MTS S 86539	0.00001	381 345 346 MTS S 128836-MTS S 128837	0.00001			
332 300 299 MTA S 155982-MTS S 86538	0.00001	382 346 347 MTS S 128837-MTS S 128839	0.00001			
333 301 300 MTA S 44513-MTA S 155982	0.00001	383 347 348 MTS S 128839-MTS S 128838	0.00000			
334 301 302 MTA S 44513-MTA S 44514	0.00052	384 349 542 MTS L 128838-TRAFO 34606	0.01245			
335 302 303 MTA S 44514-MTA S 43465	0.00002	385 348 349 MTS S 128838-MTS L 128838	0.00000			
336 303 304 MTA S 43465-MTA S 43464	0.00000	386 342 350 MTA S 188450-MTA S 164346	0.00025			
337 305 539 MTA L 43464-TRAFO 885	0.07227	387 350 351 MTA S 164346-MTA S 142383	0.00052			
338 304 305 MTA_S_43464-MTA_L_43464	0.00000	388 351 352 MTA S 142383-MTA S 160172	0.00164			
339 294 306 MTA_S_155983-MTA_S_155996	0.00807	389 352 353 MTA S 160172-MTA S 43456	0.00138			
340 306 307 MTA S 155996-MTA S 155997	0.00676	390 353 354 MTA S 43456-MTA S 43457	0.00000			
341 307 308 MTA_S_155997-MTA_S_155998	0.00568	391 355 543 MTA L 43457-TRAFO 18819	0.05103			
342 308 309 MTA_S_155998-MTA_S_156003	0.00136	392 354 355 MTA S 43457-MTA L 43457	0.00000			
343 309 310 MTA_S_156003-MTA_S_155979	0.00007	393 353 356 MTA S 43456-MTA S 40065	0.00081			
344 310 311 MTA_S 155979-MTS S 87134	0.00007	394 356 357 MTA S 40065-MTS S 3718	0.00000			
345 311 312 MTS_S_87134-MTS_S_86815	0.00055	395 357 358 MTS_S_3718-MTS_L_3718	0.00000			

LOSS NETWORK BY LINE-		LOSS NETWORK BY LINE				
l k m NAME	PLossKM[kW]	1 k m NAME PLossKM[kW]				
396 356 359 MTA_S_40065-MTA_S_43484	0.00043	446 403 402 MTA_S_137875-MTS_L_86532 0.00000				
397 359 360 MTA_S_43484-MTA_S_43485	0.00004	447 403 404 MTA_S_137875-MTS_S_50290 0.00000				
398 360 361 MTA_S_43485-MTA_S_43486	0.00009	448 404 405 MTS_S_50290-MTS_S_50291 0.00013				
399 361 362 MTA_S_43486-MTA_S_43455	0.00010	449 405 406 MTS_S_50291-MTS_S_50292 0.00000				
400 362 363 MTA_S_43455-MTA_S_43454	0.00000	450 407 550 MTS_L_50292-TRAF0_30125 0.02480				
401 364 544 MTA_L_43454-TRAFO_16	0.04658	451 406 407 MTS_S_50292-MTS_L_50292 0.00000				
402 363 364 MTA_S_43454-MTA_L_43454	0.00000	452 264 408 MTA_S_44522-MTA_L_45229 0.00000				
403 359 365 MTA_S_43484-MTA_L_43487	0.00000	453 261 409 MTA_S_37232-MTA_S_44537 0.00000				
404 359 366 MTA_S_43484-MTA_S_43726	0.00005	454 410 551 MTA_L_44537-TRAF0_2774 0.09632				
405 366 367 MTA_S_43726-MTA_S_150538	0.00009	455 409 410 MTA_S_44537-MTA_L_44537 0.00000				
406 367 368 MTA_S_150538-MTS_S_69863	0.00000	456 260 411 MTA_S_37387-MTA_S_44533 0.00000				
407 368 369 MTS_S_69863-MTS_S_69864	0.00000	457 412 552 MTA_L_44533-TRAF0_4682 0.02520				
408 369 370 MTS_S_69864-MTS_S_69865	0.00006	458 411 412 MTA_S_44533-MTA_L_44533 0.00000				
409 370 371 MTS_S_69865-MTS_S_69866	0.00000	459 255 413 MTA_S_37388-MTA_L_37392 0.00000				
410 372 545 MTS_L_69866-TRAF0_31566	0.03733	460 255 414 MTA_S_37388-MTA_S_80762 0.00003				
411 371 372 MTS_S_69866-MTS_L_69866	0.00000	461 414 415 MTA_S_80762-MTA_S_44541 0.00001				
412 352 373 MTA_S_160172-MTS_S_96750	0.00000	462 415 416 MTA_S_44541-MTA_S_44542 0.00000				
413 373 374 MTS_S_96750-MTS_S_96751	0.00001	463 417 553 MTA_L_44542-TRAF0_158 0.04726				
414 374 375 MTS_S_96751-MTS_S_96752	0.00003	464 416 417 MTA_S_44542-MTA_L_44542 0.00000				
415 375 376 MTS_S_96752-MTS_S_96753	0.00000	465 415 418 MTA_S_44541-MTA_L_80760 0.00000				
416 377 546 MTS_L_96753-TRAFO_32617	0.02491	466 254 419 MTA_S_136840-MTS_S_49357 0.00000				
417 376 377 MTS_S_96753-MTS_L_96753	0.00000	467 419 420 MTS_S_49357-MTS_S_49361 0.00011				
418 378 351 MTA_S_164004-MTA_S_142383	0.00000	468 420 421 MTS_S_49361-MTS_S_49362 0.00000				
419 342 379 MTA_S_188450-MTA_L_188451	0.00000	469 422 554 MTS_L_49362-TRAF0_29687 0.01849				
420 341 380 MTA_S_142382-MTA_S_43458	0.00000	470 421 422 MT5_5_49362-MT5_L_49362 0.00000				
421 381 547 MTA_L_43458-TRAF0_519	0.02260	471 423 241 MTA_S_45230-MTA_S_37395 0.00000				
422 380 381 MTA_S_43458-MTA_L_43458	0.00000	472 235 424 MTA_S_37394-MTA_S_37393 0.00038				
423 382 322 MTS_S_108693-MTS_S_108694	0.00000	473 424 425 MTA_S_37393-MTS_S_2482 0.00143				
424 317 383 MTA_S_174242-MTA_S_156033	0.00000	474 425 426 MTS_S_2482-MTA_S_22048 0.00063				
425 384 548 MTA_L_156033-TRAF0_964	0.03083	475 426 427 MTA_S_22048-MTA_S_22049 0.00025				
426 383 384 MTA_S_156033-MTA_L_156033	0.00000	476 427 428 MTA_S_22049-MTA_S_22050 0.00005				
427 312 385 MTS_S_86815-MTS_S_86535	0.00002	477 428 429 MTA_S_22050-MTA_S_44759 0.00028				
428 385 386 MTS_S_86535-MTS_S_86536	0.00002	478 429 430 MTA 5 44759-MTA 5 44760 0.00000				
429 386 387 MTS_S_86536-MTS_L_86536	0.00000	479 431 555 MTA L 44760-TRAFO 1595 0.04428				
430 388 387 MTA_S_156002-MTS_L_86536	0.00000	480 430 431 MIA_S_44760-MIA_L_44760 0.00000				
431 389 388 MTA_S_80766-MTA_S_156002	0.00000	481 427 432 MIA_S_22049-MIA_L_22051 0.00000				
432 389 390 MTA_S_80766-MTA_S_80767	0.00010	482 427 433 MIA_5_22049-MIA_5_22053 0.00012				
433 390 391 MIA_5_80/6/-MIA_5_43461	0.00013	483 433 434 MIA_5_22053-MIA_5_22054 0.00040				
434 391 392 MIA_5_43461-MIA_5_43460	0.00000	484 434 435 MIA_5_22054-MIA_5_22055 0.00000				
435 393 549 MIA_L_43460-IRAFO_2421	0.05208	485 436 556 MIA_L_22055-IRAF0_18605 0.0245/				
436 392 393 MIA 5 43460-MIA L 43460	0.00000	486 435 436 MIA_5_22055-MIA_L_22055 0.00000				
437 394 391 MIA_5_43478-MIA_5_43461	0.00000	487 434 437 MIA_5_22054-MIA_5_22057 0.00000				
400 004 005 MIA 0 40470 MIA L 40470	0.00000	400 430 337 MIA L 22037-IKATU 10011 0.014/5				
435 354 350 MIA_2_434/0-MIA_L_43/39	0.00000	405 451 450 MIR_5_22057-MIR_5_22057 0.00000				
440 35/ 354 MIA 2 43760 MTA 2 434/8	0.00000	450 425 455 mi5_5_2402-mi5_5_2405 0.00015				
441 350 35/ MIR_3_43/0U-MIR_3_43/01	0.00000	492 439 440 MTS S 2483_MTS T 2483 0 00000				
442 375 350 mis_244/-miA_243/60	0.00000	493 424 441 MTA S 37383_MTA S 44758 0 00000				
445 2/5 400 MIS S 06010-MIS S 0601/	0.00000	494 442 559 MTA T. 44758_TDARO 125 0 04714				
444 400 401 MIS_S 0001/-MIS_S 00532	0.00000	495 441 442 MTA S 44758_MTA T 44758 0 00000				
445 401 402 MID_D_00552-MID_L_00552	0.00000	455 441 442 MIN 5 44/30-MIN 5 44/30 0.00000				

		LOSS NETWORK BY LINH	E
1 1	k m	NAME	PLossKM[kW]
496 2	235 443	MTA_S_37394-MTS_S_25337	0.00344
497 4	43 444	MTS_S_25337-MTS_S_29517	0.00014
498 4	44 445	MTS_S_29517-MTS_S_29806	0.00022
499 4	45 446	MTS_S_29806-MTS_S_25340	0.00019
500 4	46 447	MTS_S_25340-MTS_S_2480	0.00182
501 4	47 448	MTS_S_2480-MTS_S_2479	0.00008
502 4	49 560	MTS_L_2479-TRAF0_3163	0.12601
503 4	48 449	MTS_S_2479-MTS_L_2479	0.00001
504 4	47 450	MTS_S_2480-MTS_S_2481	0.00001
505 4	51 561	MTS_L_2481-TRAF0_9104	0.18900
506 4	50 451	MTS S 2481-MTS L 2481	0.00002
507 2	30 452	MTA S 37191-MTA S 44762	0.00043
508 4	52 453	MTA S 44762-MTA S 44761	0.00000
509 4	54 562	MTA L 44761-TRAFO 3686	0.02238
510 4	53 454	MTA S 44761-MTA L 44761	0.00000
511 4	52 455	MTA S 44762-MTA S 94686	0.00013
512 4	155 456	MTA S 94686-MTA S 94687	0.00000
513 4	56 457	MTA 5 94687-MTS 5 9072	0.00000
514 4	57 458	MTS S 9072-MTS S 9073	0.00004
515 4	58 459	MTS S 9073-MTS S 9074	0.00003
516 4	59 460	MTS S 9074-MTS S 9075	0.00000
517 4	61 563	MTS L 9075-TRAFO 25020	0.03676
518 4	60 461	MTS S 9075-MTS I 9075	0.00000
519 2	27 462	MTA S 37002-MTA L 37003	0.00000
520 2	27 463	MTA 5 37002-MTA L 37208	0.00000
521 2	14 464	MTA 5 37006-MTA L 37018	0.00000
522 2	14 465	MTA S 37006-MTA L 37200	0.00000
523 2	07 466	MTA S 134440-MTA S 134444	0.00000
524 4	67 564	MTA L 134444-TRAFO 18824	0.02875
525 4	66 467	MTA S 134444-MTA T. 134444	0.00000
526 2	03 468	MTA 5 37019-MTA L 37019	0.00000
527 2	03 469	MTA 5 37019-MTA 5 43723	0.00678
528 4	169 470	MTA S 43723-MTA S 40262	0.00740
520 4	70 471	MTA S 40262-MTA S 37015	0.00081
530 4	71 472	MTA S 37015-MTA S 37016	0.00004
531 4	72 473	MTA S 37016-MTA S 37017	0.00003
532 4	73 474	MTA S 37017-MTA S 45207	0.00002
533 /	74 475	MTA S 45207-MTA S 45206	0.00002
534 4	76 565	MTA L 45206-TPAFO 2043	0.02592
535 /	75 476	MTA S 45206-MTA I 45206	0.00000
536 /	71 477	MTA S 37015_MTA S 37163	0.00125
537 /	77 478	MTA S 37163_MTA S 37164	0.00123
530 A	79 470	MTA S 27104_MTA S 27105	0.00205
530 4 520 4	79 499	MTA S 37165_MTA S 37166	0.00261
540 4	190 491	MTA S 37106_MTA S 37107	0.00201
540 4	191 491	MTA S 37107_MTA S 37100	0.00339
E40 4	192 402	MTA S 27160_MTA S 27100	0.00233
542 4 EA2 A	193 403	MTA S 37100_MTA S 4500	0.00040
545 4	103 404	MTA S 45208_MTA S 45208	0.00000
544 4 EAE A	96 566	MTA I 45200-TEATO 10010	0.00000
343 4	00 300	INA_1_40205-IKHTU_10010	0.00327

1	k	m	NAME	PLossKM[kW]
546	485	486	MTA_S_45209-MTA_L_45209	0.00000
547	484	487	MTA_S_45208-MTA_S_45225	0.00482
548	487	488	MTA_S_45225-MTS_S_2368	0.00092
549	488	489	MTS_S_2368-MTS_S_2669	0.00075
550	490	567	MTS_L_2669-TRAF0_2360	0.08053
551	489	490	MTS_S_2669-MTS_L_2669	0.00000
552	488	491	MTS_S_2368-MTA_S_44530	0.00006
553	491	492	MTA_S_44530-MTA_S_44531	0.00077
554	492	493	MTA_S_44531-MTA_S_6368	0.00130
555	493	494	MTA_S_6368-MTA_S_37009	0.00380
556	494	495	MTA_S_37009-MTA_S_37010	0.00201
557	495	496	MTA_S_37010-MTA_S_37011	0.00136
558	496	497	MTA_S_37011-MTA_S_37012	0.00205
559	497	498	MTA_S_37012-MTA_S_37013	0.00153
560	498	499	MTA_S_37013-MTA_S_45210	0.00071
561	499	500	MTA_S_45210-MTA_S_45213	0.00001
562	501	568	MTA_L_45213-TRAF0_2773	0.08978
563	500	501	MTA_S_45213-MTA_L_45213	0.00001
564	494	502	MTA_S_37009-MTA_S_45211	0.00000
565	503	569	MTA_L_45211-TRAFO_66	0.06038
566	502	503	MTA_S_45211-MTA_L_45211	0.00001
567	493	504	MTA_S_6368-MTA_S_6369	0.00000
568	504	505	MTA_S_6369-MTA_L_6369	0.00000

		BUS SOLUTIONS				-BUS SOLUTIONS-	
BUS	NAME	V[PU]	V[kV]	BUS	NAME	V[PU]	V[kV]
1	0500010504	1.018	3.70	49	MTA_S_44540	1.011	3.68
2	MTS S 21174	1.018	3.70	50	MTA_S_44539	1.011	3.68
3	MTS S 2475	1.018	3.70	51	MTA_L_44539	1.011	3.68
4	MTA 5 37021	1.018	3.70	52	MTA_S_76102	1.011	3.68
5	MTA S 45205	1.018	3.70	53	MTA_S_76103	1.011	3.68
6	MTA S 45204	1.018	3.70	54	MTA_S_76104	1.010	3.68
7	MTA L 45204	1.018	3.70	55	MTA_S_76105	1.010	3.67
8	MTA S 37190	1.018	3.70	56	MTA_S_37358	1.010	3.67
9	MTA S 44532	1.018	3 70	57	MTA_5_43731	1.010	3.67
10	MTA 5 37000	1.018	3 70	58	MIA_5_43/32	1.010	3.67
11	MTA 5 37001	1 017	3 70	59	MTA 5 43777	1.010	2.67
12	MTA S 12639	1.017	3 70	60	MTA 5 43770	1.010	2 67
12	MTA S 162509	1.016	3.70	62	MTA S 43790	1.010	3.67
14	MTA S 27200	1.016	2 70	63	MTA S 43482	1.009	3 67
15	MTA S 27210	1.016	2 70	64	MTA 5 43468	1.009	3.67
15	MIA_5_57210	1.016	3.70	65	MTA 5 43467	1.009	3.67
10	MIA_5_5/211	1.015	3.09	66	MTA L 43467	1.009	3.67
1/	MIA_5_37212	1.015	3.69	67	MTA S 43775	1.009	3.67
18	MIA_5_37213	1.015	3.69	68	MTA 5 43776	1.009	3.67
19	MIA_5_37214	1.015	3.69	69	MTA S 43767	1.009	3.67
20	MTA_S_37104	1.014	3.69	70	MTA S 43475	1.009	3.67
21	MTA_S_37216	1.014	3.69	71	MTA L 43475	1.009	3.67
22	MTA_S_37217	1.014	3.69	72	MTA_S_43771	1.009	3.67
23	MTA_S_37218	1.013	3.69	73	MTA_S_43772	1.009	3.67
24	MTA_S_37103	1.013	3.69	74	MTA_S_43773	1.009	3.67
25	MTA_S_44547	1.013	3.69	75	MTA_S_43737	1.009	3.67
26	MTA_S_44548	1.013	3.69	76	MTA_S_43738	1.009	3.67
27	MTA_L_44548	1.013	3.69	77	MTA_S_43483	1.009	3.67
28	MTA_S_37220	1.013	3.69	78	MTA_S_43762	1.008	3.67
29	MTA_S_37221	1.013	3.68	79	MTA_S_43756	1.008	3.67
30	MTA_S_37222	1.013	3.68	80	MTA_S_43757	1.008	3.67
31	MTA_S_37223	1.012	3.68	18	MTA_S_43758	1.008	3.67
32	MTA_S_37224	1.012	3.68	82	MIA_5_43752	1.008	3.67
33	MTA_S_37396	1.012	3.68	83	MIA_5_43741	1.008	3.0/
34	MTA_S_37226	1.012	3.68	04	MTA 5 43742	1.008	3.07
35	MTS_S_21	1.012	3.68	86	MTA S 37362	1.008	3.67
36	MTA_S_37378	1.012	3.68	87	MTA S 37361	1.008	3 67
37	MTA_S_37379	1.012	3.68	88	MTA L 37361	1.008	3.67
38	MTS_S_136290	1.011	3.68	89	MTA S 43746	1.008	3.67
39	MTS_S_136287	1.011	3.68	90	MTA L 43746	1.008	3.67
40	MTS_S_136288	1.011	3.68	91	MTA 5 43749	1.008	3.67
41	MTS_S_136289	1.011	3.68	92	MTA S 43750	1.008	3.67
42	MTS_S_136286	1.011	3.68	93	MTA_S_43751	1.008	3.67
43	MTS_S_136292	1.011	3.68	94	MTA_S_37363	1.008	3.67
44	MTS_S_136293	1.011	3.68	95	MTA_S_37364	1.008	3.67
45	MTS_S_136294	1.011	3.68	96	MTA_L_37364	1.008	3.67
46	MTS_L_136294	1.011	3.68	97	MTA_L_43754	1.008	3.67
47	MTA_S_37381	1.011	3.68	98	MTA_L_43743	1.008	3.67
48	MTA_S_76529	1.011	3.68	99	MTA_S_43753	1.008	3.67

ANEXO 14. Tensión en nodos – Alimentador 0104.

	BUS SOLUTIONS-		BUS SOLUTIONS				
BUS NAME	V[PU]	V[kV]	BUS NAME	V[PU]	V[kV]		
100 MTA_S_37365	1.008	3.67	151 MTA_S_44544	1.012	3.68		
101 MTA 5 43447	1.008	3.67	152 MTA_L_44544	1.012	3.68		
102 MTA L 43447	1.008	3.67	153 MTA_S_44529	1.012	3.68		
103 MTA S 43759	1.008	3.67	154 MTS_S_2633	1.012	3.68		
104 MTA S 43764	1.008	3.67	155 MTS_S_2634	1.012	3.68		
105 MTA S 43452	1.008	3.67	156 MTS_L_2634	1.012	3.68		
106 MTA S 43453	1.008	3.67	157 MTS_S_2632	1.012	3.68		
107 MTA L 43453	1.008	3.67	158 MTS_L_37519	1.012	3.68		
108 MTA S 43766	1.009	3.67	159 MTA_S_37383	1.013	3.69		
109 MTA S 43451	1.009	3.67	160 MTA_S_37384	1.013	3.69		
110 MTA S 43450	1.009	3.67	161 MTA_S_37385	1.013	3.69		
111 MTA L 43450	1.009	3.67	162 MTA_S_36507	1.013	3.69		
112 MTA 5 43449	1.009	3.67	163 MTA_L_36507	1.013	3.69		
113 MTA S 43448	1.009	3.67	164 MTA_S_44546	1.013	3.69		
114 MTA L 43448	1.009	3.67	165 MTA_S_44545	1.013	3.69		
115 MTA S 43476	1.009	3.67	166 MTA L 44545	1.013	3.69		
116 MTA S 43477	1.009	3.67	167 MTA_S_40264	1.013	3.69		
117 MTA S 37359	1.009	3.67	168 MTA S 40265	1.013	3.68		
118 MTA S 37360	1.009	3.67	169 MTA_S_45227	1.013	3.68		
119 MTA L 37360	1.009	3.67	170 MTA_S_45228	1.013	3.68		
120 MTA S 57676	1.009	3.67	171 MTA_S_44536	1.013	3.68		
121 MTA S 57677	1.009	3.67	172 MTA_S_44535	1.013	3.68		
122 MTA S 57674	1.009	3.67	173 MTA_L_44535	1.013	3.68		
123 MTA 5 57673	1.009	3.67	174 MTA_S_44549	1.014	3.69		
124 MTA_L_57673	1.009	3.67	175 MTA_L_44549	1.014	3.69		
125 MTA_S_57679	1.009	3.67	176 MTA_S_37106	1.016	3.70		
126 MTA_S_57680	1.009	3.67	177 MTA_S_45201	1.016	3.70		
127 MTA_S_57681	1.009	3.67	178 MTA_S_134029	1.016	3.70		
128 MTA_S_53278	1.009	3.67	179 MTA_S_43128	1.016	3.70		
129 MTA_L_53278	1.009	3.67	180 MTA_L_43128	1.016	3.70		
130 MTA_S_3247	1.009	3.67	181 MTA_S_134031	1.016	3.70		
131 MTA_S_43466	1.009	3.67	182 MTS_S_45176	1.016	3.70		
132 MTA_L_43466	1.009	3.67	183 MTS_S_45177	1.016	3.70		
133 MTA_L_43727	1.009	3.67	184 MTS_S_45178	1.016	3.70		
134 MTA_S_44518	1.010	3.67	185 MTS_L_45178	1.016	3.70		
135 MTA_S_43473	1.010	3.67	186 MTA_S_45200	1.016	3.70		
136 MTA_S_43474	1.010	3.67	187 MTA_L_45200	1.016	3.70		
137 MTA_L_43474	1.010	3.67	188 MTA_S_97012	1.016	3.70		
138 MTA_S_44527	1.010	3.67	189 MTA_S_97013	1.016	3.70		
139 MTA_S_44528	1.010	3.67	190 MIA_L_97013	1.016	3.70		
140 MTA_S_37386	1.010	3.67	191 MIA_5_45203	1.018	3.70		
141 MTA_S_43469	1.010	3.67	192 MIA_L_45203	1.018	3.70		
142 MTA_S_43470	1.010	3.67	193 MIA_5_37020	1.018	3.70		
143 MTA L 43470	1.010	3.67	194 MIA_5_69047	1.017	3.70		
144 MIA 5_43729	1.010	3.67	195 MIA 5 126260	1.017	3.70		
145 MIA_5_43730	1.010	3.67	107 MTC C 20074	1.017	3.70		
140 MIA_L_43/30	1.010	3.0/	100 MTS C 20070	1.017	3.70		
14/ MIA_5_434/2	1.010	3.0/	100 MTS S 25576	1 017	3.70		
140 MTA T 42471	1.010	3.07	200 MTS T 35576	1 017	3 70		
145 MTA L 434/1	1 010	3.07	201 MTA S 11583	1.017	3 70		
150 MIA_L_44520	1.010	5.0/	201 mm_5_11505	1.01/	5.70		

I	BUS SOLUTIO	NS	BUS SOLUTIONS				
BUS NAME	V[PU]	V[kV]	BUS NAME	V[PU]	V[kV]		
202 MTA_S_11584	1.016	3.70	253 MTA_S_136839	1.004	3.65		
203 MTA 5 37019	1.016	3.70	254 MTA_S_136840	1.004	3.65		
204 MTA 5 134437	1.016	3.70	255 MTA_S_37388	1.004	3.65		
205 MTA S 134438	1.016	3.69	256 MTA_S_37389	1.004	3.65		
206 MTA S 134439	1.015	3.69	257 MTA_S_37390	1.004	3.65		
207 MTA S 134440	1.014	3.69	258 MTA S 37391	1.003	3.65		
208 MTA S 134441	1.014	3.69	259 MTA 5 45226	1.003	3.65		
209 MTA S 134442	1.013	3.68	260 MTA S 37387	1.003	3.65		
210 MTA S 9468	1.013	3.68	261 MTA S 37232	1.003	3.65		
211 MTA S 9469	1.012	3.68	262 MTA 5 37233	1.002	3.65		
212 MTA S 9470	1.012	3.68	263 MTA S 37234	1.002	3.65		
213 MTA S 9471	1.011	3.68	264 MTA S 44522	1.002	3.65		
214 MTA S 37006	1.011	3.68	265 MTS S 248	1.002	3.65		
215 MTA S 37007	1.011	3.68	266 MTA S 44523	1.002	3.64		
216 MTA S 37008	1.010	3.67	267 MTA S 44524	1.002	3.64		
217 MTA S 37004	1.010	3.67	268 MTA S 44525	1.002	3.64		
218 MTA S 37005	1.010	3.67	269 MTA S 155993	1.001	3.64		
219 MTA 5 44763	1.010	3.67	270 MTA S 155994	1.001	3.64		
220 MTA L 44763	1.010	3.67	271 MTA S 156000	1.001	3.64		
221 MTA 5 37202	1.009	3.67	272 MTA_S_155986	1.001	3.64		
222 MTA S 37203	1.009	3.67	273 MTS S 86530	1.001	3.64		
223 MTA S 37204	1.009	3.67	274 MTS S 86531	1.001	3.64		
224 MTA S 37205	1.009	3.67	275 MTS S 86816	1.001	3.64		
225 MTA_S_37206	1.009	3.67	276 MTS_S_2438	1.001	3.64		
226 MTA_S_37207	1.008	3.67	277 MTS_L_2438	1.001	3.64		
227 MTA_S_37002	1.008	3.67	278 MTS_S_86533	1.001	3.64		
228 MTA_S_45215	1.008	3.67	279 MTA_S_155999	1.001	3.64		
229 MTA_S_45216	1.007	3.66	280 MTA_S_44515	1.001	3.64		
230 MTA_S_37191	1.007	3.66	281 MTA_S_44516	1.001	3.64		
231 MTA_L_37191	1.007	3.66	282 MTA_S_80763	1.001	3.64		
232 MTA_S_45219	1.007	3.66	283 MTA_S_80764	1.001	3.64		
233 MTA_S_45220	1.007	3.66	284 MTA_S_39865	1.001	3.64		
234 MTA_S_45221	1.006	3.66	285 MTS_S_3846	1.001	3.64		
235 MTA_S_37394	1.006	3.66	286 MTS_S_3847	1.001	3.64		
236 MTA_S_37231	1.006	3.66	287 MTS_L_3847	1.001	3.64		
237 MTA_S_37230	1.005	3.66	288 MTA_S_43463	1.001	3.64		
238 MTA_S_37229	1.005	3.66	289 MTA_L_43463	1.001	3.64		
239 MTA_S_158567	1.005	3.66	290 MTA_S_43733	1.001	3.64		
240 MTA_S_158568	1.005	3.66	291 MTA_S_43734	1.001	3.64		
241 MTA_S_37395	1.005	3.65	292 MTA_S_43735	1.000	3.64		
242 MTA_L_37228	1.005	3.65	293 MTA_S_43736	1.000	3.64		
243 MTS_S_132878	1.005	3.65	294 MTA_S_155983	1.000	3.64		
244 MTS_S_132879	1.005	3.65	295 MTA_S_155984	1.000	3.64		
245 MTS_S_132880	1.005	3.65	296 MTS_L_86540	1.000	3.64		
246 MTS_S_132881	1.005	3.65	297 MTS_S_86540	1.000	3.64		
247 MTS_S_132882	1.005	3.65	298 MTS_S_86539	1.000	3.64		
248 MIS_S_132883	1.005	3.65	299 MTS_S_86538	1.000	3.64		
249 MI5_5_132884	1.005	3.65	300 MTA_S_155982	1.000	3.64		
250 MI5_5_132885	1.005	3.65	301 MIA_S_44513	1.000	3.64		
251 MI5_L_132885	1.005	3.65	302 MTA_S_44514	1.000	3.64		
252 MIA_5_136838	1.005	3.65	303 MIA_5_43465	1.000	3.64		

	BUS SOLUTIONS	BUS SOLUTIONS			
BUS NAME	V[PU] V[kV]	BUS NAME	V[PU]	V[kV]	
304 MTA_S_43464	1.000 3.64	355 MTA_L_43457	0.999	3.63	
305 MTA_L_43464	1.000 3.64	356 MTA_S_40065	0.999	3.63	
306 MTA_S_15599	6 1.000 3.64	357 MTS_S_3718	0.999	3.63	
307 MTA_S_15599	7 1.000 3.64	358 MTS_L_3718	0.999	3.63	
308 MTA_S_15599	8 1.000 3.64	359 MTA_S_43484	0.999	3.63	
309 MTA_S_15600	3 1.000 3.64	360 MTA_S_43485	0.999	3.63	
310 MTA_S_15597	9 1.000 3.64	361 MTA_S_43486	0.999	3.63	
311 MTS_S_87134	1.000 3.64	362 MTA_S_43455	0.999	3.63	
312 MTS_S_86815	1.000 3.64	363 MTA_S_43454	0.999	3.63	
313 MTS_S_86814	1.000 3.64	364 MTA_L_43454	0.999	3.63	
314 MTS_S_86798	1.000 3.64	365 MTA_L_43487	0.999	3.63	
315 MTS_S_86541	1.000 3.64	366 MTA_S_43726	0.999	3.63	
316 MTA_S_15600	1 1.000 3.64	367 MTA_S_150538	0.999	3.63	
317 MTA_S_17424	2 1.000 3.64	368 MTS_S_69863	0.999	3.63	
318 MTS_S_10868	9 1.000 3.64	369 MTS_S_69864	0.999	3.63	
319 MTS_S_10869	0 1.000 3.64	370 MTS_S_69865	0.999	3.63	
320 MTS_S_10868	8 1.000 3.64	371 MTS_S_69866	0.999	3.63	
321 MTS_S_10869	1 0.999 3.64	372 MTS_L_69866	0.999	3.63	
322 MTS_S_10869	4 0.999 3.64	373 MTS_S_96750	0.999	3.63	
323 MTS_S_10869	2 0.999 3.64	374 MTS_S_96751	0.999	3.63	
324 MTA_S_16376	1 0.999 3.64	375 MTS_S_96752	0.999	3.63	
325 MTS_S_10868	7 0.999 3.64	376 MTS S 96753	0.999	3.63	
326 MTS_S_10868	2 0.999 3.64	377 MTS L 96753	0.999	3.63	
327 MTS_S_10868	6 0.999 3.64	378 MTA S 164004	0.999	3.63	
328 MTS_S_10868	5 0.999 3.64	379 MTA L 188451	0.999	3.63	
329 MTS_S_10868	4 0.999 3.64	380 MTA S 43458	0.999	3.64	
330 MTS_S_10868	3 0.999 3.64	381 MTA L 43458	0.999	3.64	
331 MTS_L_10868	3 0.999 3.64	382 MTS S 108693	0.999	3.64	
332 MTS_S_2486	0.999 3.64	383 MTA S 156033	1.000	3.64	
333 MTS_S_2485	0.999 3.64	384 MTA L 156033	1.000	3.64	
334 MTS_L_2485	0.999 3.64	385 MTS_S_86535	1.000	3.64	
335 MTS_S_2484	0.999 3.64	386 MTS S 86536	1.000	3.64	
336 MTS_L_2484	0.999 3.64	387 MTS L 86536	1.000	3.64	
337 MTA_S_16376	3 0.999 3.64	388 MTA S 156002	1.000	3.64	
338 MTS_S_20	0.999 3.64	389 MTA_S_80766	1.000	3.64	
339 MTA_S_44511	0.999 3.64	390 MTA_S_80767	1.000	3.64	
340 MTA_S_44512	0.999 3.64	391 MTA S 43461	1.000	3.64	
341 MTA_S_14238	2 0.999 3.64	392 MTA 5 43460	1.000	3.64	
342 MTA_S_18845	0 0.999 3.63	393 MTA L 43460	1.000	3.64	
343 MTA_S_18844	9 0.999 3.63	394 MTA S 43478	1.000	3.64	
344 MTS_S_12883	5 0.999 3.63	395 MTA L 43478	1.000	3.64	
345 MTS_S_12883	6 0.999 3.63	396 MTA L 43739	1.000	3.64	
346 MTS_S_12883	7 0.999 3.63	397 MTA S 43761	1.000	3.64	
347 MTS_S_12883	9 0.999 3.63	398 MTA S 43760	1.000	3.64	
348 MTS_S_12883	8 0.999 3.63	399 MTS S 247	1.000	3.64	
349 MTS_L_12883	8 0.999 3.63	400 MTS S 86817	1.001	3.64	
350 MTA_S_16434	6 0.999 3.63	401 MTS S 86532	1.001	3.64	
351 MTA_S_14238	3 0.999 3.63	402 MTS L 86532	1.001	3.64	
352 MTA_S_16017	2 0.999 3.63	403 MTA S 137875	1.001	3.64	
353 MTA_S_43456	0.999 3.63	404 MTS S 50290	1.001	3.64	
354 MTA_S_43457	0.999 3.63	405 MTS S 50291	1.001	3.64	

Jniversidad	DE	CUENCA	

	BUS SOLUTI	ONS	BUS SOLUTIONS			
BUS NAME	V[PU]	V[kV]	BUS NAME	V[PU]	V[kV]	
406 MTS_S_5029	2 1.001	3.64	457 MTS_S_9072	1.007	3.66	
407 MTS_L_5029	2 1.001	3.64	458 MTS_S_9073	1.007	3.66	
408 MTA_L_4522	9 1.002	3.65	459 MTS_S_9074	1.007	3.66	
409 MTA S 4453	7 1.003	3.65	460 MTS S 9075	1.007	3.66	
410 MTA L 4453	7 1.003	3.65	461 MTS L 9075	1.007	3.66	
411 MTA S 4453	3 1.003	3.65	462 MTA L 37003	1.008	3.67	
412 MTA L 4453	3 1.003	3.65	463 MTA L 37208	1.008	3.67	
413 MTA L 3739	2 1.004	3.65	464 MTA L 37018	1.011	3.68	
414 MTA S 8076	2 1.004	3.65	465 MTA L 37200	1.011	3.68	
415 MTA S 4454	1 1.004	3.65	466 MTA_S_134444	1.014	3.69	
416 MTA S 4454:	2 1.004	3.65	467 MTA L 134444	1.014	3.69	
417 MTA L 4454	2 1.004	3.65	468 MTA L 37019	1.016	3.70	
418 MTA L 8076	0 1.004	3.65	469 MTA S 43723	1.016	3.70	
419 MTS S 4935	7 1.004	3.65	470 MTA S 40262	1.016	3.70	
420 MTS S 4936	1 1.004	3.65	471 MTA S 37015	1.016	3.70	
421 MTS S 4936	2 1.004	3.65	472 MTA S 37016	1.016	3.70	
422 MTS L 4936	2 1.004	3.65	473 MTA S 37017	1.016	3.70	
423 MTA S 4523	0 1.005	3.65	474 MTA S 45207	1.016	3.70	
424 MTA S 3739	3 1.006	3.66	475 MTA S 45206	1.016	3.70	
425 MTS S 2482	1.006	3.66	476 MTA L 45206	1.016	3.70	
426 MTA S 2204	8 1.006	3.66	477 MTA_S_37193	1.016	3.70	
427 MTA S 2204	9 1.006	3.66	478 MTA_S_37194	1.016	3.70	
428 MTA 5 2205	1.006	3.66	479 MTA_S_37195	1.016	3.69	
429 MTA_S_4475	9 1.006	3.66	480 MTA_S_37196	1.016	3.69	
430 MTA_S_4476	0 1.006	3.66	481 MTA_S_37197	1.016	3.69	
431 MTA_L_4476	0 1.006	3.66	482 MTA_S_37198	1.016	3.69	
432 MTA_L_2205	1 1.006	3.66	483 MTA_S_37199	1.016	3.69	
433 MTA_S_2205	3 1.006	3.66	484 MTA_S_45208	1.016	3.69	
434 MTA_S_2205	4 1.006	3.66	485 MTA_S_45209	1.016	3.69	
435 MTA_S_2205	5 1.006	3.66	486 MTA_L_45209	1.016	3.69	
436 MTA_L_2205	5 1.006	3.66	487 MTA_S_45225	1.015	3.69	
437 MTA_S_2205	7 1.006	3.66	488 MTS_S_2368	1.015	3.69	
438 MTA_L_2205	7 1.006	3.66	489 MTS_S_2669	1.015	3.69	
439 MTS_S_2483	1.006	3.66	490 MTS_L_2669	1.015	3.69	
440 MTS_L_2483	1.006	3.66	491 MTA_S_44530	1.015	3.69	
441 MTA_S_4475	8 1.006	3.66	492 MTA_S_44531	1.015	3.69	
442 MTA_L_4475	8 1.006	3.66	493 MTA_S_6368	1.015	3.69	
443 MTS_S_2533	7 1.006	3.66	494 MTA_S_37009	1.015	3.69	
444 MTS_S_2951	7 1.006	3.66	495 MTA_S_37010	1.015	3.69	
445 MTS_S_2980	6 1.006	3.66	496 MTA_S_37011	1.015	3.69	
446 MTS_S_2534	0 1.006	3.66	497 MTA_S_37012	1.015	3.69	
447 MTS_S_2480	1.006	3.66	498 MTA_S_37013	1.015	3.69	
448 MTS_S_2479	1.006	3.66	499 MIA_5_45210	1.015	3.69	
449 MTS_L_2479	1.006	3.66	500 MIA_5_45213	1.015	3.69	
450 MTS_S_2481	1.006	3.66	501 MIA_L_45213	1.015	3.69	
451 MTS_L_2481	1.006	3.66	502 MTA T 45211	1.015	3.69	
452 MIA 5 4476	2 1.007	3.66	503 MTA C 6260	1.015	3.09	
453 MIA 5 4476.	1 1.007	3.66	505 MTA T 6360	1 015	3.69	
454 MIA L 44/6.	1.007	3.00	506 TRAFO 1110	1 010	3 67	
455 MIA 5 9468	1.007	3.00	507 TRAFO 990	1 004	3 65	
400 MIA 5_9468	1.007	3.00	507 INALO_330	1.004	3.03	

	BUS SOLUTIONS	5
BUS NAME	V[PU]	V[kV]
508 TRAF0_35558	1.004	3.65
509 TRAF0_275	1.003	3.65
510 TRAF0_1009	1.002	3.64
511 TRAF0_182	1.000	3.64
512 TRAF0_18	1.000	3.64
513 TRAF0_2412	1.000	3.64
514 TRAF0_141	1.000	3.64
515 TRAF0_1989	1.001	3.64
516 TRAF0_640	1.000	3.64
517 TRAF0_13233	1.002	3.64
518 TRAF0_1963	1.001	3.64
519 TRAF0_14976	1.001	3.64
520 TRAFO 5939	1.004	3.65
521 TRAFO 120	1.002	3.64
522 TRAFO 1161	1.003	3.65
523 TRAFO 2008	1.002	3.64
524 TRAFO 2202	1.004	3.65
525 TRAFO 1814	1.005	3.66
526 TRAFO 515	1.005	3.66
527 TRAFO 2784	1.005	3.65
528 TRAFO 45	1.006	3.66
529 TRAFO 2534	1.008	3.67
530 TRAFO 29536	1.009	3.67
531 TRAFO 4438	1.008	3.67
532 TRAFO 26080	1.009	3.67
533 TRAFO 2820	1.010	3.67
534 TRAFO 19586	1.010	3.67
535 TRAFO 70	1.001	3.64
536 TRAFO 35458	0.996	3.62
537 TRAFO 14344	0.994	3.61
538 TRAFO 2690	0.992	3.61
539 TRAFO 885	0.991	3.61
540 TRAFO 2929	0.992	3.61
541 TRAFO 2928	0.992	3.61
542 TRAFO 34606	0.992	3.61
543 TRAFO 18819	0.991	3.60
544 TRAFO 16	0.990	3.60
545 TRAFO 31566	0.992	3.61
546 TRAFO 32617	0.992	3.61
547 TRAFO 519	0.991	3.60
548 TRAFO 964	0.992	3.61
549 TRAFO 2421	0.989	3.60
550 TRAFO 30125	0.994	3.62
551 TRAFO 2774	0.994	3.62
552 TRAFO 4682	0.996	3.62
553 TRAFO 158	0.996	3.62
554 TRAFO 29687	0.997	3.63
555 TRAFO 1595	0.998	3.63
556 TRAFO 18605	0.999	3.63
557 TRAFO 18811	0.999	3.63
558 TRAFO 3570	0.999	3.63
		CONTRACTOR NO.

		-BUS SOLUTION	S
BUS	NAME	V[PU]	V[kV]
559	TRAFO_125	0.998	3.63
560	TRAFO_3163	0.997	3.63
561	TRAF0_9104	0.997	3.63
562	TRAFO_3686	0.998	3.63
563	TRAF0_25020	1.000	3.64
564	TRAF0_18824	1.007	3.66
565	TRAFO_2043	1.008	3.67
566	TRAF0_18818	1.008	3.67
567	TRAFO_2360	1.008	3.67
568	TRAF0_2773	1.007	3.66
569	TRAFO_66	1.007	3.66

ANEXO 15. Potencia de paso activa y reactiva – Alimentador 0104.

	TRANSFORMER CAPACITY SOLUTION			43	41	42	MTS_S_136289-MTS_S_136286	3.02	0.61				
							<u></u>	44	42	43	MTS_S_136286-MTS_S_136292	3.02	0.61
BUS		NAM	E	Pss[kW]	Qss[kV	Ar]	S[kVA]	45	43	44	MTS_S_136292-MTS_S_136293	3.02	0.61
1	050	0010	S04	1874.13	399.	85 1	916.31	46	44	45	MTS_S_136293-MTS_S_136294	3.02	0.61
								47	46	508	MTS_L_136294-TRAF0_35558	3.01	0.56
			-ACTI	VE AND REACT	IVE POWER	FLOW SOLUT	IONS	48	45	46	MTS_S_136294-MTS_L_136294	3.02	0.61
								49	38	47	MTS_S_136290-MTA_S_37381	127.66	26.56
1	k	m		NAME		Pkm[kW]	Qkm[kVAr]	50	47	48	MTA_S_37381-MTA_S_76529	127.64	26.53
1	1	2	0500	010504-MTS_S	_21174	624.71	133.28	51	48	49	MTA_S_76529-MTA_S_44540	127.64	26.53
2	2	3	MTS_	S_21174-MTS_	S_2475	624.71	133.28	52	49	50	MTA_S_44540-MTA_S_44539	11.95	2.45
3	3	4	MTS_	S_2475-MTA_S	_37021	232.17	48.92	53	51	509	MTA_L_44539-TRAF0_275	11.89	2.24
4	4	5	MTA_	S_37021-MTA_	S_45205	6.23	1.29	54	50	51	MTA_S_44539-MTA_L_44539	11.95	2.45
5	5	6	MTA	S_45205-MTA_	S_45204	6.23	1.29	55	49	52	MTA_S_44540-MTA_S_76102	115.68	24.06
6	7	506	MTA	L_45204-TRAF	0_1110	6.20	1.18	56	52	53	MTA_S_76102-MTA_S_76103	115.66	24.04
7	6	7	MTA_	S_45204-MTA_	L_45204	6.23	1.29	57	53	54	MTA_S_76103-MTA_S_76104	115.64	24.02
8	4	8	MTA_	S_37021-MTA_	5_37190	225.94	47.63	58	54	55	MTA_S_76104-MTA_S_76105	115.63	24.00
9	8	9	MTA	S_37190-MTA_	S_44532	225.94	47.62	59	55	56	MTA_S_76105-MTA_S_37358	115.62	23.99
10	9	10	MTA_	S_44532-MTA_	S_37000	225.85	47.53	60	56	57	MTA_S_37358-MTA_S_43731	115.62	23.99
11	10	11	MTA_	S_37000-MTA_	S_37001	215.87	45.43	61	57	58	MTA_S_43731-MTA_S_43732	99.80	20.73
12	11	12	MTA_	S_37001-MTA_	S_12639	215.79	45.35	62	58	59	MTA_S_43732-MTA_S_43777	99.79	20.72
13	12	13	MTA_	S_12639-MTA_	S_163508	215.74	45.30	63	59	60	MTA_S_43777-MTA_S_43778	86.25	17.93
14	13	14	MTA_	S_163508-MTA	_S_37209	182.42	38.44	64	60	61	MTA_S_43778-MTA_S_43779	86.24	17.92
15	14	15	MTA_	S_37209-MTA_	S_37210	182.36	38.38	65	61	62	MTA_S_43779-MTA_S_43780	86.23	17.90
16	15	16	MTA_	S_37210-MTA_	S_37211	182.30	38.33	66	62	63	MTA_S_43780-MTA_S_43482	86.22	17.90
17	16	17	MTA_	S_37211-MTA_	5_37212	182.25	38.28	67	63	64	MTA_S_43482-MTA_S_43468	84.88	17.63
18	17	18	MTA_	S_37212-MTA_	S_37213	182.24	38.27	68	64	65	MTA_S_43468-MTA_S_43467	13.02	2.67
19	18	19	MTA_	S_37213-MTA_	S_37214	182.19	38.22	69	66	510	MTA_L_43467-TRAF0_1009	12.96	2.44
20	19	20	MTA_	S_37214-MTA_	S_37104	182.14	38.18	70	65	66	MTA_S_43467-MTA_L_43467	13.02	2.67
21	20	21	MTA_	S_37104-MTA_	S_37216	173.72	36.39	71	64	67	MTA_S_43468-MTA_S_43775	71.86	14.95
22	21	22	MTA_	S_37216-MTA_	5_37217	173.66	36.33	72	67	68	MTA_S_43775-MTA_S_43776	71.85	14.94
23	22	23	MTA_	S_37217-MTA_	S_37218	173.61	36.29	73	68	69	MTA_S_43776-MTA_S_43767	71.85	14.94
24	23	24	MTA_	S_37218-MTA_	5_37103	173.59	36.26	74	69	70	MTA_S_43767-MTA_S_43475	0.00	0.00
25	24	25	MTA_	S_37103-MTA_	S_44547	7.74	1.64	75	70	71	MTA_S_43475-MTA_L_43475	0.00	0.00
26	25	26	MTA_	S_44547-MTA_	S_44548	7.74	1.64	76	69	72	MTA_S_43767-MTA_S_43771	59.41	12.35
27	27	507	MTA_	L_44548-TRAE	0_990	7.70	1.48	77	72	73	MTA_S_43771-MTA_S_43772	59.40	12.34
28	26	27	MTA_	S_44548-MTA_	L_44548	7.74	1.64	78	73	74	MTA_S_43772-MTA_S_43773	59.40	12.34
29	24	28	MTA_	S_37103-MTA_	5_37220	147.02	30.71	79	74	75	MTA_S_43773-MTA_S_43737	59.39	12.34
30	28	29	MTA_	S_37220-MTA_	S_37221	146.98	30.67	80	75	76	MTA_5_43737-MTA_5_43738	44.90	9.33
31	29	30	MTA_	S_37221-MTA_	5_37222	146.94	30.64	81	76	11	MTA_S_43/38-MTA_S_43483	44.89	9.32
32	30	31	MTA_	S_37222-MTA_	5_37223	146.90	30.60	82	11	78	MIA_S_43483-MIA_S_43762	44.89	9.32
33	31	32	MTA_	S_37223-MTA_	S_37224	146.87	30.57	83	78	79	MTA_S_43762-MTA_S_43756	36.24	7.51
34	32	33	MIA	5_37224-MIA_	5_37396	146.86	30.56	84	19	80	MIA_5_43/56-MIA_5_43/5/	30.23	7.51
35	33	34	MIA	5_37396-MIA_	5_37226	0.00	0.00	85	80	81	MIA_5_43/5/-MIA_5_43/58	30.23	7.51
36	34	35	MIA	5_37226-MIS_	5_21	0.00	0.00	86	81	82	MIA_5_43/58-MIA_5_43/52	30.23	7.51
37	33	30	MIA	5_37396-MIA_	5_3/3/8	140.81	29.33	87	82	83	MIA_5_43/52-MIA_5_43/41	29.20	6.06
38	30	31	MIA_	5_3/3/8-MTA_	5_3/3/9	130.74	27.23	88	03	04	MTA C 43741-MIA 5 43742	29.20	6.06
39	37	38	MIA	5_3/3/9-MTS_	5_136290	130.71	27.20	89	04	00	MTA C 43744 MTA C 27343	29.20	0.00
40	38	39	MIS_	5_136290-MTS	5_136287	3.02	0.61	90	00	00	MTA C 27262 MTA C 27261	14.50	3.02
41	39	40	MIS_	5_136287-MIS	5_136288	3.02	0.61	91	00	6/	MTA I 27261 TRAED 102	14.58	3.02
42	40	41	MIS_	5_136288-MTS	5_136289	3.02	0.61	92	00	211	MIA_L_3/361-IKAPU_182	14.51	4.13

ACTIVE AND REACTIVE POWER FLOW SOLUTIONS					NS	ACTIVE AND REACTIVE POWER FLOW SOLUTIONS			
1	k	m	NAME	Pkm [kW]		l k m NAME Pkm[kW]	Qkm[kVAr]		
93	87	88	MTA_S_37361-MTA_L_37361	14.58	3.02	143 63 130 MTA_S_43482-MTA_S_3247 1.33	0.27		
94	86	89	MTA_S_37362-MTA_S_43746	0.00	0.00	144 130 131 MTA_S_3247-MTA_S_43466 1.33	0.27		
95	89	90	MTA_S_43746-MTA_L_43746	0.00	0.00	145 132 520 MTA_L_43466-TRAFO_5939 1.33	0.25		
96	85	91	MTA_S_43744-MTA_S_43749	14.68	3.05	146 131 132 MTA_S_43466-MTA_L_43466 1.33	0.27		
97	91	92	MTA_S_43749-MTA_S_43750	14.68	3.05	147 63 133 MTA_S_43482-MTA_L_43727 0.00	0.00		
98	92	93	MTA_S_43750-MTA_S_43751	14.68	3.04	148 59 134 MTA_S_43777-MTA_S_44518 13.54	2.79		
99	93	94	MTA_S_43751-MTA_S_37363	14.68	3.04	149 134 135 MTA_S_44518-MTA_S_43473 13.54	2.79		
100	94	95	MTA_5_37363-MTA_5_37364	14.68	3.04	150 135 136 MTA_S_43473-MTA_S_43474 13.54	2.79		
101	96	512	MTA_L_37364-TRAFO_18	14.61	2.76	151 137 521 MTA_L_43474-TRAF0_120 13.48	2.54		
102	95	96	MIA_5_3/364-MIA_L_3/364	14.68	3.04	152 136 137 MIA_5_43474-MIA_L_43474 13.54	2.79		
103	85	97	MIA_5_43/44-MIA_L_43/54	0.00	0.00	153 59 138 MIA_5_43///-MIA_5_4452/ 0.00	0.00		
104	04	98	MIA_5_43/52-MIA_L_43/43	0.00	0.00	154 138 139 MIA 5 44527-MIA 5 44528 0.00	0.00		
105	04	100	MIA_5_43/52-MIA_5_43/55	6.97	1.44	155 139 140 MIA_5 44528-MIA_5 3/386 0.00	0.00		
100	100	100	MTA C 2726E MTA C 42447	6.97	1.44	150 5/ 141 MIA_5_45/51-MIA_5_45409 15.00	3.25		
107	100	E12	MTA I 42447_TEARO 2412	6.97	1.44	15/ 141 142 MIA_5_43409-MIA_5_434/0 9.51	1.94		
100	101	102	MTA S 43447-INFL I 43447	6 97	1.31	150 143 522 MIA_L 454/0-IRAPO_1101 5.47	1.04		
110	78	102	MTA S 43762_MTA S 43759	0.00	0.00	159 142 145 MIR_5_434/0-MIR_L_434/0 9.51	1.94		
111	78	104	MTA S 43762-MTA S 43764	8 65	1.81	161 144 MIA 5 43730_MIA 5 43730 6 20	1 31		
112	104	105	MTA S 43764-MTA S 43452	8 65	1.81	162 145 146 MTA S 43730_MTA I 43730 0.00	0.00		
113	105	106	MTA S 43452-MTA S 43453	8,65	1.81	163 145 147 MTA S 43730-MTA S 43472 6 29	1 31		
114	107	514	MTA L 43453-TRAFO 141	8,61	1.64	163 147 148 MTA S 43472-MTA S 43471 6 29	1 31		
115	106	107	MTA S 43453-MTA L 43453	8,65	1.81	165 149 523 MTA I. 43471-TRAFO 2008 6 26	1 19		
116	75	108	MTA S 43737-MTA S 43766	6.12	1.26	166 148 149 MTA S 43471-MTA I. 43471 6.29	1.31		
117	108	109	MTA S 43766-MTA S 43451	6.12	1.26	167 145 150 MTA S 43730-MTA L 44520 0.00	0.00		
118	109	110	MTA S 43451-MTA S 43450	6.12	1.26	168 36 151 MTA S 37378-MTA S 44544 10.05	2.07		
119	111	515	MTA L 43450-TRAFO 1989	6.09	1.15	169 152 524 MTA L 44544-TRAFO 2202 10.00	1.89		
120	110	111	MTA S 43450-MTA L 43450	6.12	1.26	170 151 152 MTA S 44544-MTA L 44544 10.05	2.07		
121	75	112	MTA S 43737-MTA S 43449	8.38	1.74	171 33 153 MTA S 37396-MTA S 44529 6.04	1.22		
122	112	113	MTA_S_43449-MTA_S_43448	6.53	1.37	172 153 154 MTA S 44529-MTS S 2633 6.04	1.22		
123	114	516	MTA_L_43448-TRAF0_640	6.49	1.24	173 154 155 MTS S 2633-MTS S 2634 6.04	1.22		
124	113	114	MTA_S_43448-MTA_L_43448	6.53	1.37	174 156 525 MTS L 2634-TRAFO 1814 6.02	1.13		
125	112	115	MTA_S_43449-MTA_S_43476	1.85	0.38	175 155 156 MTS_S_2634-MTS_L_2634 6.04	1.22		
126	115	116	MTA_S_43476-MTA_S_43477	1.85	0.38	176 153 157 MTA_S_44529-MTS_S_2632 0.00	0.00		
127	116	117	MTA_S_43477-MTA_S_37359	1.85	0.38	177 157 158 MTS_S_2632-MTS_L_37519 0.00	0.00		
128	117	118	MTA_S_37359-MTA_S_37360	1.85	0.38	178 24 159 MTA_S_37103-MTA_S_37383 18.83	3.91		
129	119	517	MTA_L_37360-TRAF0_13233	1.84	0.35	179 159 160 MTA_S_37383-MTA_S_37384 18.82	3.90		
130	118	119	MTA_S_37360-MTA_L_37360	1.85	0.38	180 160 161 MTA_S_37384-MTA_S_37385 18.82	3.90		
131	69	120	MTA_S_43767-MTA_S_57676	12.44	2.58	181 161 162 MTA_S_37385-MTA_S_36507 18.82	3.90		
132	120	121	MTA_S_57676-MTA_S_57677	12.44	2.58	182 162 163 MTA_S_36507-MTA_L_36507 0.00	0.00		
133	121	122	MTA_S_57677-MTA_S_57674	12.44	2.58	183 162 164 MTA_S_36507-MTA_S_44546 8.24	1.70		
134	122	123	MTA_S_57674-MTA_S_57673	6.53	1.37	184 164 165 MTA_S_44546-MTA_S_44545 8.24	1.70		
135	124	518	MTA_L_57673-TRAF0_1963	6.50	1.24	185 166 526 MTA_L_44545-TRAF0_515 8.20	1.55		
136	123	124	MTA_S_57673-MTA_L_57673	6.53	1.37	186 165 166 MTA_S_44545-MTA_L_44545 8.24	1.70		
137	122	125	MIA_S_57674-MTA_S_57679	5.91	1.22	187 162 167 MTA_S_36507-MTA_S_40264 10.58	2.20		
138	125	126	MIA 5 57679-MTA 5 57680	5.91	1.22	188 167 168 MTA_S_40264-MTA_S_40265 10.58	2.20		
139	126	127	MIA_S_57680-MTA_S_57681	5.91	1.22	189 168 169 MTA_S_40265-MTA_S_45227 10.58	2.20		
140	127	128	MIA 5 57681-MTA 5 53278	5.91	1.22	190 169 170 MTA_S_45227-MTA_S_45228 10.58	2.20		
141	129	519	MIA_L_53278-TRAF0_14976	5.89	1.11	191 170 171 MTA_S_45228-MTA_S_44536 10.58	2.20		
142	128	129	MIA_5_53278-MIA_L_53278	5.91	1.22	192 171 172 MTA_S_44536-MTA_S_44535 10.58	2.20		

ACTIVE AND REACTIVE POWER F	LOW SOLUTIO	NS	ACTIVE AND REACTIVE POWER FLOW SOLUTIONS				
l k m NAME	Pkm [kW]	Qkm[kVAr]	1 k m NAME Pkm[kW] Qkm[k	[VAr]			
193 173 527 MTA_L_44535-TRAFO_2784	10.53	2.00	243 214 215 MTA_S_37006-MTA_S_37007 315.86 66	.92			
194 172 173 MTA_S_44535-MTA_L_44535	10.58	2.20	244 215 216 MTA_S_37007-MTA_S_37008 315.73 66	.79			
195 20 174 MTA_S_37104-MTA_S_44549	8.37	1.74	245 216 217 MTA_S_37008-MTA_S_37004 315.58 66	.65			
196 175 528 MTA_L_44549-TRAFO_45	8.33	1.58	246 217 218 MTA_S_37004-MTA_S_37005 8.65 1	.81			
197 174 175 MTA_S_44549-MTA_L_44549	8.37	1.74	247 218 219 MTA_S_37005-MTA_S_44763 8.65 1	.81			
198 13 176 MTA_S_163508-MTA_S_37106	29.66	6.10	248 220 535 MTA_L_44763-TRAF0_70 8.61 1	.64			
199 176 177 MTA_S_37106-MTA_S_45201	29.66	6.10	249 219 220 MTA_S_44763-MTA_L_44763 8.65 1	.81			
200 177 178 MTA_S_45201-MTA_S_134029	19.11	3.90	250 217 221 MTA_S_37004-MTA_S_37202 306.79 64	.71			
201 178 179 MTA_S_134029-MTA_S_43128	10.05	2.07	251 221 222 MTA_S_37202-MTA_S_37203 306.69 64	.61			
202 180 529 MTA_L_43128-TRAF0_2534	10.01	1.89	252 222 223 MTA_S_37203-MTA_S_37204 306.68 64	.60			
203 179 180 MTA_S_43128-MTA_L_43128	10.05	2.07	253 223 224 MTA_S_37204-MTA_S_37205 306.68 64	.60			
204 178 181 MTA_S_134029-MTA_S_134031	9.06	1.83	254 224 225 MTA_S_37205-MTA_S_37206 306.65 64	.57			
205 181 182 MTA_S_134031-MTS_S_45176	9.06	1.83	255 225 226 MTA_S_37206-MTA_S_37207 306.53 64	.46			
206 182 183 MTS_S_45176-MTS_S_45177	9.06	1.83	256 226 227 MTA_S_37207-MTA_S_37002 306.49 64	.42			
207 183 184 MTS_S_45177-MTS_S_45178	9.06	1.83	257 227 228 MTA_S_37002-MTA_S_45215 306.45 64	.38			
208 185 530 MTS_L_45178-TRAF0_29536	9.03	1.69	258 228 229 MTA_S_45215-MTA_S_45216 306.31 64	.22			
209 184 185 MTS_S_45178-MTS_L_45178	9.06	1.83	259 229 230 MTA_S_45216-MTA_S_37191 306.26 64	.15			
210 177 186 MTA_S_45201-MTA_S_45200	10.54	2.19	260 230 231 MTA_S_37191-MTA_L_37191 0.00 0	.00			
211 187 531 MTA_L_45200-TRAF0_4438	10.49	2.00	261 230 232 MTA_S_37191-MTA_S_45219 292.70 61	.33			
212 186 187 MTA_S_45200-MTA_L_45200	10.54	2.19	262 232 233 MTA_S_45219-MTA_S_45220 292.59 61	.20			
213 13 188 MTA_S_163508-MTA_S_97012	3.63	0.73	263 233 234 MTA S 45220-MTA S 45221 292.47 61	.06			
214 188 189 MTA_S_97012-MTA_S_97013	3.63	0.73	264 234 235 MTA_S_45221-MTA_S_37394 292.44 61	.03			
215 190 532 MTA_L_97013-TRAFO_26080	3.61	0.68	265 236 235 MTA S 37231-MTA S 37394 190.10 39	.94			
216 189 190 MTA_S_97013-MTA_L_97013	3.63	0.73	266 237 236 MIA 5 37230 -MIA 5 37231 190.06 39	.90			
217 10 191 MTA S 37000-MTA S 45203	9.90	2.03	267 238 237 MIA 5 37229-MIA 5 37230 189.99 39	.84			
218 192 533 MTA L 45203-TRAFO 2820	9.85	1.86	200 239 230 MIA 5 15050/-MIA 5 3/229 109.93 39	. /8			
219 191 192 MIA_5_45203-MIA_L_45203	9.90	2.03	209 240 239 MIA_5_130300-MIA_5_13030/ 109.93 39	. /0			
220 3 193 MTS_S_2475-MTA_S_37020	392.37	84.20	270 241 240 MIA 5 37395-MIA 5 155566 169.93 39	. 10			
221 193 194 MIA_5_3/020-MIA_5_6904/	392.08	83.92	271 241 242 MIR_5 3/395-MIR_5 3/220 30.22 0	.20			
222 194 195 MIA_5_0904/-MIA_5_120200	9.00	1.03	272 243 242 HIS_S 132070-HIR_S 7220 30.22 0	26			
223 195 196 MIA_5_126260-MIA_5_126250	9.00	1.03	277 245 244 HIS_S132070-HIS_S132075 30.22 0	26			
224 190 19/ MIA_5_120250-MI5_5_355/4	9.00	1.03	275 245 245 MTS S 132890_MTS S 132881 30 22 6	26			
225 19/ 190 MTS 5 355/4-MTS 5 355/5	9.00	1.03	275 245 240 MTS S 132881_MTS S 132882 30 22 6	26			
220 190 199 MIS_5_555/5-MIS_5_555/6	9.00	1.03	277 247 248 MTS S 132882-MTS S 132883 30 22 6	26			
227 200 334 HIS_L_33370-IRAPO_19380	9.05	1.03	278 248 249 MTS S 132883-MTS S 132884 30 21 6	26			
220 199 200 MIS_53570-MIS_53570	393 02	92.09	279 249 250 MTS S 132884-MTS S 132885 30.21 6	.26			
229 194 201 MIA 5 0904/-MIA 5 11505	202.02	02.09	280 251 536 MTS T. 132885-TRAFO 35458 30.05 5	.63			
230 201 202 MIA 5 11505-MIA 5 11504	392.00	91 94	281 250 251 MTS S 132885-MTS I 132885 30.21 6	.26			
231 202 203 MIA 5 11304-MIA 5 37019	222 02	60 60	282 241 252 MTA S 37395-MTA S 136838 159.68 33	48			
232 203 204 MIA_5_3/015-MIA_5_13443/	323.55	69.03	283 252 253 MTA S 136838-MTA S 136839 159.64 33	.44			
233 204 205 MIA_5_134437-MIA_5_134430	323.75	69.34	284 253 254 MTA S 136839-MTA S 136840 159.62 33	.40			
235 205 200 MIA_5_134430-MIA_5_134439 235 206 207 MTA_5_134430-MTA_5_134439	323.30	69.34	285 254 255 MTA S 136840-MTA S 37388 155.08 32	.48			
236 207 208 MTA S 134440-MTA S 134440	316 64	67 67	286 255 256 MTA S 37388-MTA S 37389 144.82 30	.33			
237 208 209 MTA S 134441_MTA S 134441	316 48	67 51	287 256 257 MTA S 37389-MTA S 37390 144.79 30	.29			
238 209 210 MTA S 134442-MTA S 0469	316 34	67 37	288 257 258 MTA S 37390-MTA S 37391 144.76 30	.26			
239 210 211 MTA S 9468-MTA S 9469	316.23	67.27	289 258 259 MTA S 37391-MTA S 45226 144.73 30	.22			
240 211 212 MTA 5 9469-MTA 5 9470	316.09	67.14	290 259 260 MTA S 45226-MTA S 37387 144.70 30	.19			
241 212 213 MTA S 9470-MTA S 9471	315.97	67.02	291 260 261 MTA S 37387-MTA S 37232 138.58 28	.91			
242 213 214 MTA_S_9471-MTA_S_37006	315.91	66.97	292 261 262 MTA_S_37232-MTA_S_37233 118.99 24	.85			

ACTIVE AND REACTIVE POWER H	LOW SOLUTI	ONS	ACTIVE AND REACTIVE POWER FLOW SOLUTIONS			
l k m NAME	Pkm [kW]	Qkm[kVAr]	l k m NAME	Pkm[kW]	Qkm[kVAr]	
293 262 263 MTA_S_37233-MTA_S_37234	118.97	24.82	343 309 310 MTA_S_156003-MTA_S_155979	72.12	14.95	
294 263 264 MTA_S_37234-MTA_S_44522	118.97	24.81	344 310 311 MTA_S_155979-MTS_S_87134	72.12	14.95	
295 265 264 MTS_S_248-MTA_S_44522	0.00	0.00	345 311 312 MTS_S_87134-MTS_S_86815	72.12	14.95	
296 264 266 MTA_S_44522-MTA_S_44523	118.95	24.79	346 313 312 MTS_S_86814-MTS_S_86815	63.41	13.07	
297 266 267 MTA_S_44523-MTA_S_44524	118.93	24.77	347 314 313 MTS_S_86798-MTS_S_86814	63.41	13.07	
298 267 268 MTA_S_44524-MTA_S_44525	118.90	24.74	348 315 314 MTS_S_86541-MTS_S_86798	63.41	13.07	
299 268 269 MTA_S_44525-MTA_S_155993	118.88	24.72	349 316 315 MTA_S_156001-MTS_S_86541	63.41	13.07	
300 269 270 MTA_S_155993-MTA_S_155994	118.86	24.70	350 317 316 MTA_S_174242-MTA_S_156001	63.41	13.07	
301 270 271 MTA_S_155994-MTA_S_156000	118.86	24.69	351 318 317 MTS_S_108689-MTA_S_174242	56.69	11.68	
302 271 272 MTA_S_156000-MTA_S_155986	118.86	24.69	352 319 318 MTS_S_108690-MTS_S_108689	56.69	11.68	
303 272 273 MTA_S_155986-MTS_S_86530	118.86	24.69	353 320 319 MTS_S_108688-MTS_S_108690	56.68	11.68	
304 273 274 MTS_S_86530-MTS_S_86531	118.86	24.69	354 321 320 MTS_S_108691-MTS_S_108688	56.68	11.68	
305 274 275 MTS_S_86531-MTS_S_86816	118.85	24.68	355 322 321 MTS_S_108694-MTS_S_108691	56.68	11.68	
306 276 275 MTS_S_2438-MTS_S_86816	112.81	23.46	356 323 322 MTS_S_108692-MTS_S_108694	56.68	11.68	
307 276 277 MTS_S_2438-MTS_L_2438	0.00	0.00	357 324 323 MTA_S_163761-MTS_S_108692	56.68	11.68	
308 278 276 MTS_S_86533-MTS_S_2438	112.81	23.46	358 325 324 MTS_S_108687-MTA_S_163761	14.50	2.94	
309 279 278 MTA_S_155999-MTS_S_86533	112.81	23.46	359 325 326 MTS_S_108687-MTS_S_108682	14.50	2.94	
310 280 279 MTA_S_44515-MTA_S_155999	112.81	23.46	360 326 327 MTS_S_108682-MTS_S_108686	14.50	2.94	
311 280 281 MTA_S_44515-MTA_S_44516	112.81	23.45	361 327 328 MTS_S_108686-MTS_S_108685	14.50	2.94	
312 281 282 MTA_S_44516-MTA_S_80763	112.79	23.44	362 328 329 MTS_S_108685-MTS_S_108684	0.00	0.00	
313 282 283 MTA_S_80763-MTA_S_80764	112.78	23.42	363 329 330 MTS_S_108684-MTS_S_108683	0.00	0.00	
314 283 284 MTA_S_80764-MTA_S_39865	112.78	23.42	364 330 331 MTS_S_108683-MTS_L_108683	0.00	0.00	
315 284 285 MTA_S_39865-MTS_S_3846	6.07	1.23	365 328 332 MTS_S_108685-MTS_S_2486	14.50	2.94	
316 285 286 MTS_S_3846-MTS_S_3847	6.07	1.23	366 332 333 MTS_S_2486-MTS_S_2485	7.25	1.47	
317 287 537 MTS_L_3847-TRAF0_14344	6.04	1.13	367 334 540 MTS_L_2485-TRAF0_2929	7.22	1.35	
318 286 287 MTS_S_3847-MTS_L_3847	6.07	1.23	368 333 334 MTS_S_2485-MTS_L_2485	7.25	1.47	
319 284 288 MTA_S_39865-MTA_S_43463	19.88	4.12	369 332 335 MTS_S_2486-MTS_S_2484	7.25	1.47	
320 289 538 MTA_L_43463-TRAF0_2690	19.78	3.73	370 336 541 MTS_L_2484-TRAF0_2928	7.22	1.35	
321 288 289 MTA_S_43463-MTA_L_43463	19.88	4.12	371 335 336 MTS_S_2484-MTS_L_2484	7.25	1.47	
322 284 290 MTA_S_39865-MTA_S_43733	86.83	18.07	372 324 337 MTA_S_163761-MTA_S_163763	0.00	0.00	
323 290 291 MTA_S_43733-MTA_S_43734	86.81	18.05	373 337 338 MTA_S_163763-MTS_S_20	0.00	0.00	
324 291 292 MTA_S_43734-MTA_S_43735	86.80	18.04	374 324 339 MTA_S_163761-MTA_S_44511	42.18	8.73	
325 292 293 MTA_S_43735-MTA_S_43736	86.79	18.03	375 339 340 MTA_S_44511-MTA_S_44512	42.18	8.73	
326 293 294 MTA_S_43736-MTA_S_155983	86.78	18.01	376 340 341 MTA_S_44512-MTA_S_142382	42.18	8.73	
327 294 295 MTA_S_155983-MTA_S_155984	14.64	3.03	377 341 342 MTA_S_142382-MTA_S_188450	37.73	7.79	
328 295 296 MTA_S_155984-MTS_L_86540	14.64	3.03	378 343 342 MTA_S_188449-MTA_S_188450	3.02	0.61	
329 297 296 MTS_S_86540-MTS_L_86540	14.64	3.03	379 343 344 MTA_S_188449-MTS_S_128835	3.02	0.61	
330 298 297 MTS_S_86539-MTS_S_86540	14.64	3.03	380 344 345 MTS_S_128835-MTS_S_128836	3.02	0.61	
331 299 298 MTS_S_86538-MTS_S_86539	14.64	3.03	381 345 346 MTS_S_128836-MTS_S_128837	3.02	0.61	
332 300 299 MTA_S_155982-MTS_S_86538	14.64	3.03	382 346 347 MTS_S_128837-MTS_S_128839	3.02	0.61	
333 301 300 MTA_S_44513-MTA_S_155982	14.64	3.03	383 347 348 MTS_S_128839-MTS_S_128838	3.02	0.61	
334 301 302 MTA_S_44513-MTA_S_44514	14.64	3.03	384 349 542 MTS_L_128838-TRAFO_34606	3.01	0.56	
335 302 303 MTA_S_44514-MTA_S_43465	14.64	3.03	385 348 349 MTS_S_128838-MTS_L_128838	3.02	0.61	
336 303 304 MTA_S_43465-MTA_S_43464	14.64	3.03	386 342 350 MTA_S_188450-MTA_S_164346	34.71	7.18	
337 305 539 MTA_L_43464-TRAFO_885	14.57	2.74	387 350 351 MTA_S_164346-MTA_S_142383	34.71	7.18	
338 304 305 MTA_S_43464-MTA_L_43464	14.64	3.03	388 351 352 MTA_S_142383-MTA_S_160172	34.70	7.18	
339 294 306 MTA_S_155983-MTA_S_155996	72.13	14.97	389 352 353 MTA_S_160172-MTA_S_43456	28.66	5.95	
340 306 307 MTA_S_155996-MTA_S_155997	72.13	14.96	390 353 354 MTA_S_43456-MTA_S_43457	10.58	2.20	
341 307 308 MTA_S_155997-MTA_S_155998	72.12	14.95	391 355 543 MTA_L_43457-TRAFO_18819	10.52	2.00	
342 308 309 MTA_S_155998-MTA_S_156003	72.12	14.95	392 354 355 MTA_S_43457-MTA_L_43457	10.58	2.20	

ACTIVE AND REACTIVE POWER	FLOW SOLUTIO	DNS	ACTIVE AND REACTIVE POWER FLOW SOLUTIONS			
l k m NAME	Pkm[kW]		l k m NAME	Pkm[kW]		
393 353 356 MTA_S_43456-MTA_S_40065	18.09	3.74	443 275 400 MTS_S_86816-MTS_S_86817	6.04	1.22	
394 356 357 MTA_S_40065-MTS_S_3718	0.00	0.00	444 400 401 MTS_S_86817-MTS_S_86532	6.04	1.22	
395 357 358 MTS_S_3718-MTS_L_3718	0.00	0.00	445 401 402 MTS_S_86532-MTS_L_86532	6.04	1.22	
396 356 359 MTA_S_40065-MTA_S_43484	18.09	3.74	446 403 402 MTA_S_137875-MTS_L_86532	6.04	1.22	
397 359 360 MTA_S_43484-MTA_S_43485	9.03	1.91	447 403 404 MTA_S_137875-MTS_S_50290	6.04	1.22	
398 360 361 MTA_S_43485-MTA_S_43486	9.03	1.91	448 404 405 MTS_S_50290-MTS_S_50291	6.04	1.22	
399 361 362 MTA_S_43486-MTA_S_43455	9.03	1.91	449 405 406 MTS_S_50291-MTS_S_50292	6.04	1.22	
400 362 363 MTA_S_43455-MTA_S_43454	9.03	1.91	450 407 550 MTS_L_50292-TRAF0_30125	6.01	1.13	
401 364 544 MTA_L_43454-TRAFO_16	8.98	1.72	451 406 407 MTS_S_50292-MTS_L_50292	6.04	1.22	
402 363 364 MTA_S_43454-MTA_L_43454	9.03	1.91	452 264 408 MTA_S_44522-MTA_L_45229	0.00	0.00	
403 359 365 MTA_S_43484-MTA_L_43487	0.00	0.00	453 261 409 MTA_S_37232-MTA_S_44537	19.57	4.05	
404 359 366 MTA_S_43484-MTA_S_43726	9.05	1.84	454 410 551 MTA_L_44537-TRAF0_2774	19.47	3.66	
405 366 367 MTA_S_43726-MTA_S_150538	9.05	1.84	455 409 410 MTA_S_44537-MTA_L_44537	19.57	4.05	
406 367 368 MTA_S_150538-MTS_S_69863	9.05	1.84	456 260 411 MTA_S_37387-MTA_S_44533	6.10	1.24	
407 368 369 MTS_S_69863-MTS_S_69864	9.05	1.84	457 412 552 MTA_L_44533-TRAF0_4682	6.07	1.14	
408 369 370 MTS_S_69864-MTS_S_69865	9.05	1.84	458 411 412 MTA_S_44533-MTA_L_44533	6.10	1.24	
409 370 371 MTS_S_69865-MTS_S_69866	9.05	1.84	459 255 413 MTA_S_37388-MTA_L_37392	0.00	0.00	
410 372 545 MTS_L_69866-TRAF0_31566	9.02	1.69	460 255 414 MTA_S_37388-MTA_S_80762	10.23	2.11	
411 371 372 MTS_S_69866-MTS_L_69866	9.05	1.84	461 414 415 MTA_S_80762-MTA_S_44541	10.23	2.11	
412 352 373 MTA_S_160172-MTS_S_96750	6.04	1.23	462 415 416 MTA_S_44541-MTA_S_44542	10.23	2.11	
413 373 374 MTS_S_96750-MTS_S_96751	6.04	1.23	463 417 553 MTA_L_44542-TRAF0_158	10.18	1.93	
414 374 375 MTS_S_96751-MTS_S_96752	6.04	1.23	464 416 417 MTA_S_44542-MTA_L_44542	10.23	2.11	
415 375 376 MTS_S_96752-MTS_S_96753	6.04	1.23	465 415 418 MTA_S_44541-MTA_L_80760	0.00	0.00	
416 377 546 MTS_L_96753-TRAF0_32617	6.01	1.13	466 254 419 MTA_S_136840-MTS_S_49357	4.53	0.92	
417 376 377 MTS_S_96753-MTS_L_96753	6.04	1.23	467 419 420 MTS_S_49357-MTS_S_49361	4.53	0.92	
418 378 351 MTA_S_164004-MTA_S_142383	0.00	0.00	468 420 421 MTS_S_49361-MTS_S_49362	4.53	0.92	
419 342 379 MTA_S_188450-MTA_L_188451	0.00	0.00	469 422 554 MTS_L_49362-TRAF0_29687	4.51	0.84	
420 341 380 MTA_S_142382-MTA_S_43458	4.45	0.94	470 421 422 MTS_S_49362-MTS_L_49362	4.53	0.92	
421 381 547 MTA_L_43458-TRAF0_519	4.43	0.85	471 423 241 MTA 5 45230-MTA 5 37395	-0.00	-0.00	
422 380 381 MTA_S_43458-MTA_L_43458	4.45	0.94	472 235 424 MTA 5 37394-MTA 5 37393	41.90	8.57	
423 382 322 MTS_S_108693-MTS_S_108694	0.00	0.00	473 424 425 MTA 5 37393-MTS 5 2482	31.66	6.45	
424 317 383 MTA 5 174242-MTA 5 156033	6.72	1.39	474 425 426 MIS_5_2482-MIA_5_22048	19.58	4.00	
425 384 548 MTA_L_156033-TRAF0_964	6.69	1.26	475 426 427 MIA_5_22048-MIA_5_22049	19.58	4.00	
426 383 384 MIA_5_156033-MIA_L_156033	6.72	1.39	476 427 428 MIA_5_22049-MIA_5_22050	9.92	2.04	
42/ 312 385 MIS_5_86815-MIS_5_86535	8.71	1.89	477 420 429 MIA_5_22050-MIA_5_44759	9.92	2.04	
428 385 386 MI5_5_86535-MI5_5_86536	8.71	1.88	470 429 430 MIA 5 44759-MIA 5 44760	9.92	2.04	
429 386 387 MIS_5_86536-MIS_L_86536	8.71	1.88	4/9 431 555 MIA_L_44/00-IRAPO_1595	9.00	2.04	
430 388 38/ MIA_5_156002-MI5_L_86536	0.71	1.88	400 400 401 MIA 5 44/00-MIA L 44/00	9.92	2.04	
431 389 388 MIA_5_80/66-MIA_5_156002	0.71	1.00	401 427 432 MIA 5 22049-MIA 5 22051	0.00	1.06	
432 309 390 MIA_5_00/00-MIA_5_00/0/	0.71	1.00	402 427 433 MIR_5 22045-MIR_5 22033	9.00	1.96	
435 390 391 MIA_5_00/0/-MIA_5_43461	0.71	1.00	405 455 454 MIR_5 22055-MIR_5 22054	6.04	1.90	
434 341 342 MIN 1 434401-MIN 2 43400	0.11	1.00	485 436 556 MTA I. 22054-MIA 5 22055	6.01	1 13	
435 355 345 MIL _ 43460-IKATU 2421	0.00	1.00	486 435 436 MTA S 22055-MTA T. 22055	6.04	1 22	
430 352 353 MIR_3_43400-MIR_5_43400	0.00	0.00	487 434 437 MTA S 22055-MIR S 22057	3 62	0.73	
437 354 351 MIR_5_434/0-MIR_5_43401	0.00	0.00	488 438 557 MTA L 22057-TRAFO 18811	3 61	0.68	
439 394 396 MTA 5 43470-MTA 1 43470	0.00	0.00	489 437 438 MTA S 22057-MTA L 22057	3.62	0.73	
440 397 394 MTA S 43761-MTA S 43478	0.00	0.00	490 425 439 MTS S 2482-MTS S 2483	12.08	2.45	
441 398 397 MTA S 43760-MTA S 43761	0.00	0.00	491 440 558 MTS L 2483-TRAFO 3570	12.03	2.25	
442 399 398 MTS S 247-MTA S 43760	0.00	0.00	492 439 440 MTS_S_2483-MTS_L_2483	12.08	2.45	

	ACTIVE AND REACTIVE POWER	FLOW SOLUTIO	NS
1 1-	m NAME	Plan [ldW]	Olm [kWar]
100 A04	M NATE	10.04	VAL [XVAF]
493 424	441 MIA 5 3/393-MIA 5 44/58	10.24	2.11
494 442	559 MIA_L_44/58-IRAF0_125	10.19	1.93
495 441	442 MIA_5_44/58-MIA_L_44/58	10.24	2.11
496 235	443 MIA_5_37394-MI5_5_25337	60.43	12.52
497 443	444 MTS_S_25337-MTS_S_29517	60.43	12.52
498 444	445 MTS_S_29517-MTS_S_29806	60.43	12.52
499 445	446 MTS_S_29806-MTS_S_25340	60.43	12.52
500 446	447 MTS_S_25340-MTS_S_2480	60.43	12.52
501 447	448 MTS_S_2480-MTS_S_2479	24.17	5.01
502 449	560 MTS_L_2479-TRAF0_3163	24.05	4.50
503 448	449 MTS_S_2479-MTS_L_2479	24.17	5.01
504 447	450 MTS_S_2480-MTS_S_2481	36.26	7.51
505 451	561 MTS_L_2481-TRAF0_9104	36.07	6.75
506 450	451 MTS_S_2481-MTS_L_2481	36.26	7.51
507 230	452 MTA_S_37191-MTA_S_44762	13.52	2.78
508 452	453 MTA_S_44762-MTA_S_44761	4.46	0.94
509 454	562 MTA_L_44761-TRAF0_3686	4.44	0.85
510 453	454 MTA S 44761-MTA L 44761	4.46	0.94
511 452	455 MTA S 44762-MTA S 94686	9.06	1.84
512 455	456 MTA S 94686-MTA S 94687	9.06	1.84
513 456	457 MTA S 94687-MTS S 9072	9.06	1.84
514 457	458 MTS S 9072-MTS S 9073	9.06	1.84
515 458	459 MTS S 9073-MTS S 9074	9.06	1.84
516 459	460 MTS S 9074-MTS S 9075	9.06	1.84
517 461	563 MTS L 9075-TRAFO 25020	9.02	1.69
518 460	461 MTS S 9075-MTS L 9075	9.06	1.84
519 227	462 MTA 5 37002-MTA L 37003	0.00	0.00
520 227	463 MTA 5 37002-MTA L 37208	0.00	0.00
521 214	464 MTA S 37006-MTA L 37018	0.00	0.00
522 214	465 MTA S 37006-MTA L 37200	0.00	0.00
523 207	466 MTA S 134440-MTA S 134444	6.58	1.35
524 467	564 MTA L 134444-TRAFO 18824	6.55	1.24
525 466	467 MTA S 134444-MTA T. 134444	6.58	1.35
526 203	468 MTA 5 37019-MTA 1 37019	0.00	0.00
527 203	469 MTA S 37019-MTA S 43723	58.79	12.11
528 469	470 MTA S 43723-MTA S 40262	58 79	12 10
529 470	471 MTA S 40262-MTA S 37015	58 78	12.10
530 471	472 MTA S 37015_MTA S 37016	5 94	1 22
531 472	472 MTA S 37016-MTA S 37017	5.94	1 22
532 472	475 MIR_5_57010-MIR_5_57017	5 94	1 22
522 473	474 HIR_5_57017-HIR_5_45207	5.94	1.22
533 474	475 HIA_5_45207-HIA_5_45200	5.94	1.12
534 470	176 MTA S 45206 MTA I 45206	5.91	1.12
535 4/5	470 MIA_2_40200-MIA_L_40200	5.94	10.00
530 4/1	477 MIA_3_37013-MIA_3_37193	52.04	10.00
53/ 4/7	410 MIA_3_3/193-MIA_3_3/194	52.84	10.88
535 4/8	4/5 MIA_3_3/154-MIA_3_3/195	52.04	10.87
539 479	400 MIA 5 3/195-MIA 5 3/196	52.83	10.87
540 480	401 MIA 5 3/196-MIA 5 3/197	52.83	10.86
541 481	482 MIA 5_37197-MIA 5_37198	52.83	10.86
542 482	483 MTA_S_37198-MTA_S_37199	52.83	10.86

 			ACTIVE AND REACTIVE POWER	FLOW SOLUTIO	NS
1	k	m	NAME	Pkm [kW]	
543	483	484	MTA_S_37199-MTA_S_45208	52.82	10.85
544	484	485	MTA_S_45208-MTA_S_45209	2.05	0.42
545	486	566	MTA_L_45209-TRAF0_18818	2.04	0.39
546	485	486	MTA_S_45209-MTA_L_45209	2.05	0.42
547	484	487	MTA_S_45208-MTA_S_45225	50.77	10.42
548	487	488	MTA_S_45225-MTS_S_2368	50.77	10.42
549	488	489	MTS_S_2368-MTS_S_2669	18.13	3.70
550	490	567	MTS_L_2669-TRAF0_2360	18.05	3.38
551	489	490	MTS_S_2669-MTS_L_2669	18.13	3.70
552	488	491	MTS_S_2368-MTA_S_44530	32.64	6.72
553	491	492	MTA_S_44530-MTA_S_44531	32.64	6.72
554	492	493	MTA_S_44531-MTA_S_6368	32.64	6.72
555	493	494	MTA_S_6368-MTA_S_37009	32.63	6.72
556	494	495	MTA_S_37009-MTA_S_37010	19.13	3.94
557	495	496	MTA_S_37010-MTA_S_37011	19.13	3.94
558	496	497	MTA_S_37011-MTA_S_37012	19.13	3.94
559	497	498	MTA_S_37012-MTA_S_37013	19.12	3.94
560	498	499	MTA_S_37013-MTA_S_45210	19.12	3.94
561	499	500	MTA_S_45210-MTA_S_45213	19.12	3.94
562	501	568	MTA_L_45213-TRAF0_2773	19.03	3.58
563	500	501	MTA_S_45213-MTA_L_45213	19.12	3.94
564	494	502	MTA_S_37009-MTA_S_45211	13.50	2.78
565	503	569	MTA_L_45211-TRAF0_66	13.44	2.54
566	502	503	MTA_S_45211-MTA_L_45211	13.50	2.78
567	493	504	MTA_S_6368-MTA_S_6369	0.00	0.00
568	504	505	MTA_S_6369-MTA_L_6369	0.00	0.00

CURRENT MAGNITUDE BY LINES SOLUTIONS					CURRENT MAGNITUDE BY LINES SOLUTIONS				
1	k	m	NAME	Ikm [A]	1	k	m	NAME	Ikm[A]
1	V	m	NAME	Tlom [A]	48	45	46	MTS S 136294-MTS T 136294	1.13
1	1	2	0500010504-MTS 5 21174	172.64	49	38	47	MTS S 136290-MTA S 37381	35.46
2	2	3	MTS S 21174-MTS S 2475	172.47	50	47	48	MTA S 37381-MTA S 76529	35.46
3	3	4	MTS S 2475-MTA S 37021	64.07	51	48	49	MTA S 76529-MTA S 44540	35.46
4	4	5	MTA S 37021-MTA S 45205	1 72	52	49	50	MTA S 44540-MTA S 44539	5.31
5	5	6	MTA S 45205-MTA S 45204	1 81	53	51	509	MTA L 44539-TRAFO 275	3.32
6	7	506	MTA I 45204-TRAFO 1110	1 72	54	50	51	MTA S 44539-MTA L 44539	4.90
7	6	7	MTA S 45204-MTA I. 45204	2 69	55	49	52	MTA_S_44540-MTA_S_76102	32.14
8	4	8	MTA S 37021-MTA S 37190	63 16	56	52	53	MTA_S_76102-MTA_S_76103	32.14
9	8	g	MTA S 37190-MTA S 44532	62 36	57	53	54	MTA_S_76103-MTA_S_76104	32.14
10	9	10	MTA S 44532-MTA S 37000	62.36	58	54	55	MTA_S_76104-MTA_S_76105	32.14
11	10	11	MTA S 37000-MTA S 37001	59 63	59	55	56	MTA_S_76105-MTA_S_37358	32.14
12	11	12	MTA S 37001-MTA S 12639	59.63	60	56	57	MTA_S_37358-MTA_S_43731	32.14
13	12	13	MTA S 12630-MTA S 163508	59.63	61	57	58	MTA_S_43731-MTA_S_43732	27.75
14	13	14	MTA S 163508_MTA S 37209	50.44	62	58	59	MTA_S_43732-MTA_S_43777	27.75
15	14	15	MTA S 27200-MTA S 27210	50.44	63	59	60	MTA_S_43777-MTA_S_43778	23.99
16	15	16	MTA S 27210_MTA S 27211	50.44	64	60	61	MTA_S_43778-MTA_S_43779	23.98
17	16	17	MTA S 37211-MTA S 37212	50.44	65	61	62	MTA_S_43779-MTA_S_43780	23.98
10	17	10	MTA S 27212-MTA S 27212	50.44	66	62	63	MTA_S_43780-MTA_S_43482	23.99
10	10	10	MTA S 27212-MTA S 27214	50.44	67	63	64	MTA_S_43482-MTA_S_43468	23.61
20	10	20	MTA 5 27214 MTA 5 27104	50.44	68	64	65	MTA_S_43468-MTA_S_43467	3.76
20	19	20	MIA_5_3/214-MIA_5_3/104	50.44	69	66	510	MTA_L_43467-TRAF0_1009	3.62
21	20	21	MIA_5_3/104-MIA_5_3/216	40.12	70	65	66	MTA_5_43467-MTA_L_43467	3.80
22	21	22	MIA_5_3/210-MIA_5_3/21/	40.12	71	64	67	MTA_5_43468-MTA_5_43775	20.00
23	22	23	MIA_5_3/21/-MIA_5_3/210	40.12	12	67	68	MIA_5_43//5-MIA_5_43//6	20.00
24	23	24	MIA_5_3/210-MIA_5_3/103	40.12	73	60	70	MIA_5_43//0-MIA_5_43/0/	20.00
25	24	25	MIA_5_3/103-MIA_5_4454/	2.15	74	70	70	MTA S 43/0/-MIA 5 434/5	0.30
20	20	20	MIA_5_4454/-MIA_5_44540	4.53	76	69	72	MTA S 43767-MTA S 43771	16 53
21	21	27	MIA_L_44546-IRAF0_990	2.15	77	72	73	MTA S 43771-MTA S 43772	16.53
20	20	21	MIA_5_44540-MIA_L_44540	40.70	78	73	74	MTA S 43772-MTA S 43773	16.53
29	24	20	MIA_5_3/103-MIA_5_3/220	40.76	79	74	75	MTA S 43773-MTA S 43737	16.53
30	28	29	MIA_5_3/220-MIA_5_3/221	40.76	80	75	76	MTA S 43737-MTA S 43738	12.50
31	29	30	MIA_5_3/221-MIA_5_3/222	40.76	81	76	77	MTA S 43738-MTA S 43483	12.50
32	30	31	MIA_5_3/222-MIA_5_3/223	40.76	82	77	78	MTA S 43483-MTA S 43762	12.50
33	31	32	MTA_5_37223-MTA_5_37224	40.76	83	78	79	MTA S 43762-MTA S 43756	10.10
34	32	33	MTA_5_37224-MTA_5_37396	40.76	84	79	80	MTA S 43756-MTA S 43757	10.09
35	33	34	MTA_5_37396-MTA_5_37226	0.21	85	80	81	MTA S 43757-MTA S 43758	10.09
30	34	35	MIA_5_3/226-MIS_5_21	0.19	86	81	82	MTA S 43758-MTA S 43752	10.09
31	33	30	MIA_5_3/396-MIA_5_3/3/8	39.08	87	82	83	MTA_S_43752-MTA_S_43741	8.15
38	36	37	MTA_5_37378-MTA_5_37379	36.29	88	83	84	MTA_S_43741-MTA_S_43742	8.15
39	31	38	MIA 5 37379-MIS 5 136290	36.29	89	84	85	MTA_S_43742-MTA_S_43744	8.15
40	38	39	MIS_5_136290-MIS_5_136287	1.63	90	85	86	MTA_S_43744-MTA_S_37362	4.07
41	39	40	MI5_5_136287-MT5_5_136288	0.87	91	86	87	MTA_S_37362-MTA_S_37361	5.08
42	40	41	MTS_S_136288-MTS_S_136289	0.88	92	88	511	MTA_L_37361-TRAF0_182	4.06
43	41	42	MTS_S_136289-MTS_S_136286	0.86	93	87	88	MTA_S_37361-MTA_L_37361	4.09
44	42	43	MTS_S_136286-MTS_S_136292	0.86	94	86	89	MTA_S_37362-MTA_S_43746	0.17
45	43	44	MTS_S_136292-MTS_S_136293	0.88	95	89	90	MTA_S_43746-MTA_L_43746	0.18
46	44	45	MTS_S_136293-MTS_S_136294	1.08	96	85	91	MTA_S_43744-MTA_S_43749	4.09

0.84

97 91 92 MTA_S_43749-MTA_S_43750

ANEXO 16. Corriente por las líneas – Alimentador 0104.

47 46 508 MTS_L_136294-TRAF0_35558

4.09

CURRENT MAGNITUDE BY LIN	ES SOLUTIONS	CURRENT MAGNITUDE BY LINES SOLUTIONS			
l k m NAME	Ikm[A]	l k m NAME	Ikm[A]		
98 92 93 MTA_S_43750-MTA_S_43751	4.09	148 59 134 MTA_S_43777-MTA_S_44518	3.77		
99 93 94 MTA_S_43751-MTA_S_37363	4.09	149 134 135 MTA_S_44518-MTA_S_43473	3.77		
100 94 95 MTA_S_37363-MTA_S_37364	5.09	150 135 136 MTA_S_43473-MTA_S_43474	5.44		
101 96 512 MTA_L_37364-TRAFO_18	4.09	151 137 521 MTA_L_43474-TRAF0_120	3.76		
102 95 96 MTA_S_37364-MTA_L_37364	4.12	152 136 137 MTA_S_43474-MTA_L_43474	3.91		
103 85 97 MTA_S_43744-MTA_L_43754	0.60	153 59 138 MTA_S_43777-MTA_S_44527	0.26		
104 82 98 MTA_S_43752-MTA_L_43743	0.20	154 138 139 MTA_S_44527-MTA_S_44528	0.23		
105 82 99 MTA_S_43752-MTA_S_43753	1.94	155 139 140 MTA_S_44528-MTA_S_37386	0.23		
106 99 100 MTA_S_43753-MTA_S_37365	1.94	156 57 141 MTA_S_43731-MTA_S_43469	4.39		
107 100 101 MTA_S_37365-MTA_S_43447	2.92	157 141 142 MTA_S_43469-MTA_S_43470	5.16		
108 102 513 MTA_L_43447-TRAF0_2412	1.94	158 143 522 MTA_L_43470-TRAF0_1161	2.64		
109 101 102 MTA_S_43447-MTA_L_43447	2.07	159 142 143 MTA_S_43470-MTA_L_43470	3.26		
110 78 103 MTA_S_43762-MTA_S_43759	0.21	160 141 144 MTA_S_43469-MTA_S_43729	1.75		
111 78 104 MTA_S_43762-MTA_S_43764	2.43	161 144 145 MTA_S_43729-MTA_S_43730	1.75		
112 104 105 MTA_S_43764-MTA_S_43452	2.41	162 145 146 MTA_S_43730-MTA_L_43730	0.16		
113 105 106 MTA_S_43452-MTA_S_43453	5.10	163 145 147 MTA_S_43730-MTA_S_43472	1.75		
114 107 514 MTA_L_43453-TRAFO_141	2.41	164 147 148 MTA_S_43472-MTA_S_43471	2.87		
115 106 107 MTA_S_43453-MTA_L_43453	3.16	165 149 523 MTA_L_43471-TRAF0_2008	1.75		
116 75 108 MTA_S_43737-MTA_S_43766	1.71	166 148 149 MTA_S_43471-MTA_L_43471	1.95		
117 108 109 MTA_S_43766-MTA_S_43451	1.71	167 145 150 MTA_S_43730-MTA_L_44520	0.18		
118 109 110 MTA_S_43451-MTA_S_43450	5.00	168 36 151 MTA_S_37378-MTA_S_44544	4.66		
119 111 515 MTA_L_43450-TRAF0_1989	1.70	169 152 524 MTA_L_44544-TRAF0_2202	2.79		
120 110 111 MTA_S_43450-MTA_L_43450	2.93	170 151 152 MTA_S_44544-MTA_L_44544	3.12		
121 75 112 MTA_S_43737-MTA_S_43449	2.35	171 33 153 MTA_S_37396-MTA_S_44529	1.69		
122 112 113 MTA_S_43449-MTA_S_43448	5.00	172 153 154 MTA_S_44529-MTS_S_2633	2.47		
123 114 516 MTA_L_43448-TRAFO_640	1.82	173 154 155 MTS_S_2633-MTS_S_2634	1.68		
124 113 114 MTA_S_43448-MTA_L_43448	2.98	174 156 525 MTS_L_2634-TRAF0_1814	1.67		
125 112 115 MTA 5 43449-MTA 5 43476	0.52	175 155 156 MTS_S_2634-MTS_L_2634	2.86		
126 115 116 MTA 5 43476-MTA 5 43477	0.52	176 153 157 MTA S 44529-MTS S 2632	2.05		
127 116 117 MIA_5_43477-MIA_5_37359	0.52	177 157 158 MTS_S_2632-MTS_L_37519	0.14		
128 117 118 MIA_S_37359-MIA_S_37360	3.39	178 24 159 MTA S 37103-MTA S 37383	5.23		
129 119 51/ MIA_L_3/360-IRAF0_13233	0.51	179 159 160 MTA_S_37383-MTA_S_37384	5.22		
130 118 119 MIA_5_3/360-MIA_L_3/360	1.95	180 160 161 MTA_S_37384-MTA_S_37385	5.22		
131 69 120 MIA_5_43/6/-MIA_5_5/6/6	3.47	181 161 162 MIA_5_3/385-MIA_5_36507	5.22		
132 120 121 MIA_5_5/0/0-MIA_5_5/0//	2.47	102 102 103 MIA_5_30507-MIA_L_30507	0.15		
133 121 122 MIN S 57674_MIN S 57672	2.22	103 102 104 MIA_5_30507-MIA_5_44540	2.29		
134 122 123 MIA_5_57074-MIA_5_57075	1 92	104 104 105 MIA_5_44546-MIA_5_44545	3.04		
136 123 124 MTA S 57673-MTA I 57673	2.06	105 166 326 MTA C 44545-TRATO 515	2.20		
137 122 125 MTA S 57674-MTA S 57679	1 68	100 103 100 MIA_5_44345-MIA_L_44345	2.54		
138 125 126 MTA S 57679-MTA S 57680	1.65	100 167 160 MTA S 40264_MTA S 40264	2.50		
139 126 127 MTA S 57680-MTA S 57681	1.65	180 167 160 MTA S 40265-MTA S 40265	3.08		
140 127 128 MTA S 57681-MTA S 53278	1.81	190 169 170 MTA S 45227-MTA S 45229	2.93		
141 129 519 MTA L 53278-TRAFO 14976	1.64	191 170 171 MTA S 45228-MTA S 45226	2.55		
142 128 129 MTA S 53278-MTA I. 53278	1.81	192 171 172 MTA S 44536-MTA S 44535	3.73		
143 63 130 MTA S 43482-MTA S 3247	0.38	193 173 527 MTA L 44535-TRAFO 2784	2.93		
144 130 131 MTA S 3247-MTA S 43466	2.66	194 172 173 MTA S 44535-MTA I. 44535	3.48		
145 132 520 MTA L 43466-TRAFO 5939	0.37	195 20 174 MTA S 37104-MTA S 44549	4.59		
146 131 132 MTA S 43466-MTA L 43466	1.54	196 175 528 MTA L 44549-TRAFO 45	2.32		
147 63 133 MTA_S_43482-MTA_L_43727	0.21	197 174 175 MTA_S_44549-MTA_L_44549	2.89		

CURRENT MAGNITUDE BY LINE	S SOLUTIONS	CURRENT MAGNITUDE BY LINES	SOLUTIONS
l k m NAME	Ikm[A]	l k m NAME	Ikm[A]
198 13 176 MTA_S_163508-MTA_S_37106	8.19	248 220 535 MTA_L_44763-TRAF0_70	2.41
199 176 177 MTA_S_37106-MTA_S_45201	8.19	249 219 220 MTA_S_44763-MTA_L_44763	3.85
200 177 178 MTA_S_45201-MTA_S_134029	5.28	250 217 221 MTA_S_37004-MTA_S_37202	85.41
201 178 179 MTA_S_134029-MTA_S_43128	2.78	251 221 222 MTA_S_37202-MTA_S_37203	85.41
202 180 529 MTA_L_43128-TRAF0_2534	2.78	252 222 223 MTA_S_37203-MTA_S_37204	85.42
203 179 180 MTA_S_43128-MTA_L_43128	3.06	253 223 224 MTA_S_37204-MTA_S_37205	85.42
204 178 181 MTA_S_134029-MTA_S_134031	2.55	254 224 225 MTA_S_37205-MTA_S_37206	85.42
205 181 182 MTA_S_134031-MTS_S_45176	2.55	255 225 226 MTA_S_37206-MTA_S_37207	85.41
206 182 183 MTS_S_45176-MTS_S_45177	2.51	256 226 227 MTA_S_37207-MTA_S_37002	85.42
207 183 184 MTS_S_45177-MTS_S_45178	2.80	257 227 228 MTA_S_37002-MTA_S_45215	85.42
208 185 530 MTS_L_45178-TRAF0_29536	2.50	258 228 229 MTA_S_45215-MTA_S_45216	85.41
209 184 185 MTS_S_45178-MTS_L_45178	2.80	259 229 230 MTA_S_45216-MTA_S_37191	85.41
210 177 186 MTA_S_45201-MTA_S_45200	3.14	260 230 231 MTA_S_37191-MTA_L_37191	0.19
211 187 531 MTA_L_45200-TRAFO_4438	2.91	261 230 232 MTA_S_37191-MTA_S_45219	81.65
212 186 187 MTA_S_45200-MTA_L_45200	2.96	262 232 233 MTA_S_45219-MTA_S_45220	81.65
213 13 188 MTA_S_163508-MTA_S_97012	1.01	263 233 234 MTA_S_45220-MTA_S_45221	81.65
214 188 189 MTA_S_97012-MTA_S_97013	1.29	264 234 235 MTA_S_45221-MTA_S_37394	81.65
215 190 532 MTA_L_97013-TRAF0_26080	1.00	265 236 235 MTA_S_37231-MTA_S_37394	53.09
216 189 190 MTA_S_97013-MTA_L_97013	1.29	266 237 236 MTA_S_37230-MTA_S_37231	53.09
217 10 191 MTA_S_37000-MTA_S_45203	4.69	267 238 237 MTA_S_37229-MTA_S_37230	53.09
218 192 533 MTA_L_45203-TRAF0_2820	2.73	268 239 238 MTA_S_158567-MTA_S_37229	53.10
219 191 192 MTA_S_45203-MTA_L_45203	3.09	269 240 239 MTA_S_158568-MTA_S_158567	53.10
220 3 193 MTS_S_2475-MTA_S_37020	108.38	270 241 240 MTA_S_37395-MTA_S_158568	53.09
221 193 194 MTA_S_37020-MTA_S_69047	108.38	271 241 242 MTA_S_37395-MTA_L_37228	8.45
222 194 195 MTA_S_69047-MTA_S_126260	2.70	272 243 242 MTS_S_132878-MTA_L_37228	8.50
223 195 196 MTA_S_126260-MTA_S_126258	2.50	273 243 244 MTS_S_132878-MTS_S_132879	8.45
224 196 197 MTA_S_126258-MTS_S_35574	2.62	274 244 245 MTS_S_132879-MTS_S_132880	8.45
225 197 198 MTS_S_35574-MTS_S_35575	2.50	275 245 246 MTS_S_132880-MTS_S_132881	8.45
226 198 199 MTS_S_35575-MTS_S_35576	2.56	276 246 247 MTS_S_132881-MTS_S_132882	8.45
227 200 534 MTS_L_35576-TRAF0_19586	2.50	277 247 248 MTS_5_132882-MTS_5_132883	8.45
228 199 200 MTS_S_35576-MTS_L_35576	2.56	278 248 249 MTS_5_132883-MTS_5_132884	8.44
229 194 201 MTA_S_69047-MTA_S_11583	105.90	279 249 250 MTS_5_132884-MTS_5_132885	8.49
230 201 202 MTA_S_11583-MTA_S_11584	105.88	280 251 536 MTS_L_132885-TRAF0_35458	8.44
231 202 203 MTA_S_11584-MTA_S_37019	105.88	281 250 251 MTS_S_132885-MTS_L_132885	8.49
232 203 204 MTA_S_37019-MTA_S_134437	89.64	282 241 252 MTA_S_37395-MTA_S_136838	44.65
233 204 205 MTA_S_134437-MTA_S_134438	89.64	283 252 253 MTA_S_136838-MTA_S_136839	44.65
234 205 206 MTA_S_134438-MTA_S_134439	89.64	284 253 254 MTA_S_136839-MTA_S_136840	44.65
235 206 207 MTA_S_134439-MTA_S_134440	89.64	285 254 255 MTA_S_136840-MTA_S_37388	43.38
236 207 208 MTA_S_134440-MTA_S_134441	87.82	286 255 256 MTA_S_37388-MTA_S_37389	40.52
237 208 209 MTA_S_134441-MTA_S_134442	87.82	287 256 257 MTA_S_37389-MTA_S_37390	40.52
238 209 210 MTA_S_134442-MTA_S_9468	87.82	288 257 258 MTA_S_37390-MTA_S_37391	40.52
239 210 211 MTA_S_9468-MTA_S_9469	87.82	289 258 259 MTA_S_37391-MTA_S_45226	40.52
240 211 212 MTA_S_9469-MTA_S_9470	87.82	290 259 260 MTA_S_45226-MTA_S_37387	40.52
241 212 213 MTA_S_9470-MTA_S_9471	87.82	291 260 261 MTA_S_37387-MTA_S_37232	38.82
242 213 214 MTA_S_9471-MTA_S_37006	87.82	292 261 262 MTA_S_37232-MTA_S_37233	33.34
243 214 215 MTA_S_37006-MTA_S_37007	87.82	293 262 263 MTA_S_37233-MTA_S_37234	33.34
244 215 216 MTA_S_37007-MTA_S_37008	87.82	294 263 264 MTA_S_37234-MTA_S_44522	33.34
245 216 217 MTA_S_37008-MTA_S_37004	87.82	295 265 264 MTS_S_248-MTA_S_44522	0.29
246 217 218 MTA_S_37004-MTA_S_37005	2.41	296 264 266 MTA_S_44522-MTA_S_44523	33.34
247 218 219 MTA_S_37005-MTA_S_44763	3.17	297 266 267 MTA_S_44523-MTA_S_44524	33.34

CURRENT MAGNITUDE BY LINE	S SOLUTIONS	CURRENT MAGNITUDE BY LINES	SOLUTIONS
1 k m NAME	Ikm[A]	l k m NAME	Ikm[A]
298 267 268 MTA S 44524-MTA S 44525	33.34	348 315 314 MTS S 86541-MTS S 86798	17.85
299 268 269 MTA S 44525-MTA S 155993	33.34	349 316 315 MTA S 156001-MTS S 86541	17.84
300 269 270 MTA S 155993-MTA S 155994	33.34	350 317 316 MTA S 174242-MTA S 156001	17.81
301 270 271 MTA S 155994-MTA S 156000	33.34	351 318 317 MTS S 108689-MTA S 174242	15.94
302 271 272 MTA S 156000-MTA S 155986	33.36	352 319 318 MTS S 108690-MTS S 108689	15.92
303 272 273 MTA S 155986-MTS S 86530	33.36	353 320 319 MTS S 108688-MTS S 108690	15.92
304 273 274 MTS S 86530-MTS S 86531	33.34	354 321 320 MTS S 108691-MTS S 108688	15.92
305 274 275 MTS S 86531-MTS S 86816	33.34	355 322 321 MTS S 108694-MTS S 108691	15.92
306 276 275 MTS S 2438-MTS S 86816	31.65	356 323 322 MTS S 108692-MTS S 108694	16.01
307 276 277 MTS S 2438-MTS L 2438	0.16	357 324 323 MTA 5 163761-MTS 5 108692	15.98
308 278 276 MTS 5 86533-MTS 5 2438	31.69	358 325 324 MTS S 108687-MTA S 163761	4.23
309 279 278 MTA S 155999-MTS S 86533	31.67	359 325 326 MTS S 108687-MTS S 108682	4.08
310 280 279 MTA S 44515-MTA S 155999	31.67	360 326 327 MTS S 108682-MTS S 108686	4.07
311 280 281 MTA S 44515-MTA S 44516	31.65	361 327 328 MTS S 108686-MTS S 108685	4.07
312 281 282 MTA S 44516-MTA S 80763	31.65	362 328 329 MTS S 108685-MTS S 108684	0.26
313 282 283 MTA S 80763-MTA S 80764	31.65	363 329 330 MTS S 108684-MTS S 108683	0.38
314 283 284 MTA S 80764-MTA S 39865	31.65	364 330 331 MTS S 108683-MTS L 108683	0.27
315 284 285 MTA S_39865-MTS_S_3846	1.82	365 328 332 MTS S 108685-MTS S 2486	4.08
316 285 286 MTS_S_3846-MTS_S_3847	1.70	366 332 333 MTS S 2486-MTS S 2485	2.06
317 287 537 MTS_L_3847-TRAF0_14344	1.70	367 334 540 MTS L 2485-TRAFO 2929	2.03
318 286 287 MTS_S_3847-MTS_L_3847	2.23	368 333 334 MTS_S_2485-MTS_L_2485	2.12
319 284 288 MTA_S_39865-MTA_S_43463	6.21	369 332 335 MTS_S_2486-MTS_S_2484	2.12
320 289 538 MTA_L_43463-TRAF0_2690	5.58	370 336 541 MTS_L_2484-TRAF0_2928	2.03
321 288 289 MTA_S_43463-MTA_L_43463	5.68	371 335 336 MTS_S_2484-MTS_L_2484	2.10
322 284 290 MTA_S_39865-MTA_S_43733	24.37	372 324 337 MTA_S_163761-MTA_S_163763	2.56
323 290 291 MTA_S_43733-MTA_S_43734	24.37	373 337 338 MTA_S_163763-MTS_S_20	2.56
324 291 292 MTA_S_43734-MTA_S_43735	24.37	374 324 339 MTA_S_163761-MTA_S_44511	11.86
325 292 293 MTA_S_43735-MTA_S_43736	24.37	375 339 340 MTA_S_44511-MTA_S_44512	11.85
326 293 294 MTA_S_43736-MTA_S_155983	24.37	376 340 341 MTA_S_44512-MTA_S_142382	11.85
327 294 295 MTA_S_155983-MTA_S_155984	4.24	377 341 342 MTA_S_142382-MTA_S_188450	10.60
328 295 296 MTA_S_155984-MTS_L_86540	4.24	378 343 342 MTA_S_188449-MTA_S_188450	0.86
329 297 296 MTS_S_86540-MTS_L_86540	4.16	379 343 344 MTA_S_188449-MTS_S_128835	1.87
330 298 297 MTS_S_86539-MTS_S_86540	4.12	380 344 345 MTS_S_128835-MTS_S_128836	1.18
331 299 298 MTS_S_86538-MTS_S_86539	4.14	381 345 346 MTS_S_128836-MTS_S_128837	0.89
332 300 299 MTA_S_155982-MTS_S_86538	4.24	382 346 347 MTS_S_128837-MTS_S_128839	0.89
333 301 300 MTA_S_44513-MTA_S_155982	4.24	383 347 348 MTS_S_128839-MTS_S_128838	2.17
334 301 302 MTA_S_44513-MTA_S_44514	4.11	384 349 542 MTS_L_128838-TRAF0_34606	0.85
335 302 303 MTA_S_44514-MTA_S_43465	4.15	385 348 349 MTS_S_128838-MTS_L_128838	2.48
336 303 304 MTA_S_43465-MTA_S_43464	5.53	386 342 350 MTA_S_188450-MTA_S_164346	9.76
337 305 539 MTA_L_43464-TRAFO_885	4.11	387 350 351 MTA_S_164346-MTA_S_142383	9.75
338 304 305 MTA_S_43464-MTA_L_43464	4.17	388 351 352 MTA_S_142383-MTA_S_160172	9.75
339 294 306 MTA_S_155983-MTA_S_155996	20.26	389 352 353 MTA_S_160172-MTA_S_43456	8.06
340 306 307 MTA_S_155996-MTA_S_155997	20.26	390 353 354 MTA 5 43456-MTA 5 43457	3.05
341 307 308 MTA_S_155997-MTA_S_155998	20.26	391 355 543 MTA_L_43457-TRAF0_18819	2.97
342 308 309 MTA_S_155998-MTA_S_156003	20.26	392 354 355 MIA 5 43457-MIA L 43457	3.18
343 309 310 MTA S 156003-MTA S 155979	20.30	393 353 356 MIA 5 43456-MIA 5 40065	5.08
344 310 311 MTA 5 155979-MTS 5 87134	20.30	394 356 35/ MIA 5 40065-MIS 5 3/18	0.70
345 311 312 MIS_5 87134-MIS_5 86815	20.26	393 337 330 MI3_3_3/10-MI3_L_3/10	U.3U
340 313 312 MIS 5 86814-MIS 5 86815	17.81	390 330 339 MIA_5_40005-MIA_5_43464	5.08
34/ 314 313 MI5_5_86798-MI5_5_86814	17.87	35/ 359 300 MIA_5_43484-MIA_5_43485	2.35

CURRENT MAGNITUDE BY LINES	SOLUTIONS	CURRENT MAGNITUDE BY LINES SOLUTIONS			
l k m NAME	Ikm[A]	l k m NAME	Ikm[A]		
398 360 361 MTA_S_43485-MTA_S_43486	2.55	448 404 405 MTS_S_50290-MTS_S_50291	1.70		
399 361 362 MTA_S_43486-MTA_S_43455	2.55	449 405 406 MTS_S_50291-MTS_S_50292	2.42		
400 362 363 MTA_S_43455-MTA_S_43454	4.56	450 407 550 MTS_L_50292-TRAF0_30125	1.69		
401 364 544 MTA_L_43454-TRAFO_16	2.54	451 406 407 MTS_S_50292-MTS_L_50292	2.42		
402 363 364 MTA_S_43454-MTA_L_43454	2.96	452 264 408 MTA_S_44522-MTA_L_45229	0.96		
403 359 365 MTA_S_43484-MTA_L_43487	0.28	453 261 409 MTA_S_37232-MTA_S_44537	6.15		
404 359 366 MTA_S_43484-MTA_S_43726	2.55	454 410 551 MTA_L_44537-TRAF0_2774	5.48		
405 366 367 MTA_S_43726-MTA_S_150538	2.55	455 409 410 MTA_S_44537-MTA_L_44537	5.56		
406 367 368 MTA_S_150538-MTS_S_69863	2.65	456 260 411 MTA_S_37387-MTA_S_44533	4.96		
407 368 369 MTS_S_69863-MTS_S_69864	2.67	457 412 552 MTA_L_44533-TRAF0_4682	1.71		
408 369 370 MTS_S_69864-MTS_S_69865	2.55	458 411 412 MTA_S_44533-MTA_L_44533	2.91		
409 370 371 MTS_S_69865-MTS_S_69866	2.70	459 255 413 MTA_S_37388-MTA_L_37392	0.38		
410 372 545 MTS_L_69866-TRAF0_31566	2.54	460 255 414 MTA_S_37388-MTA_S_80762	2.89		
411 371 372 MTS_S_69866-MTS_L_69866	3.05	461 414 415 MTA_S_80762-MTA_S_44541	3.00		
412 352 373 MTA_S_160172-MTS_S_96750	1.77	462 415 416 MTA_S_44541-MTA_S_44542	4.66		
413 373 374 MTS_S_96750-MTS_S_96751	1.79	463 417 553 MTA_L_44542-TRAF0_158	2.86		
414 374 375 MTS_S_96751-MTS_S_96752	1.71	464 416 417 MTA_S_44542-MTA_L_44542	3.14		
415 375 376 MTS_S_96752-MTS_S_96753	1.94	465 415 418 MTA_S_44541-MTA_L_80760	0.96		
416 377 546 MTS_L_96753-TRAF0_32617	1.70	466 254 419 MTA_S_136840-MTS_S_49357	1.50		
417 376 377 MTS_S_96753-MTS_L_96753	2.17	467 419 420 MTS_S_49357-MTS_S_49361	1.27		
418 378 351 MTA_S_164004-MTA_S_142383	0.89	468 420 421 MTS_S_49361-MTS_S_49362	1.97		
419 342 379 MTA_S_188450-MTA_L_188451	0.32	469 422 554 MTS_L_49362-TRAF0_29687	1.27		
420 341 380 MTA_S_142382-MTA_S_43458	4.90	470 421 422 MTS_S_49362-MTS_L_49362	2.31		
421 381 547 MTA_L_43458-TRAF0_519	1.25	471 423 241 MTA_S_45230-MTA_S_37395	0.19		
422 380 381 MTA_S_43458-MTA_L_43458	2.83	472 235 424 MTA_S_37394-MTA_S_37393	11.69		
423 382 322 MTS_S_108693-MTS_S_108694	2.34	473 424 425 MTA_S_37393-MTS_S_2482	8.83		
424 317 383 MTA_S_174242-MTA_S_156033	1.93	474 425 426 MTS_S_2482-MTA_S_22048	5.47		
425 384 548 MTA_L_156033-TRAFO_964	1.89	475 426 427 MTA_S_22048-MTA_S_22049	5.47		
426 383 384 MTA_S_156033-MTA_L_156033	4.09	476 427 428 MTA_S_22049-MTA_S_22050	2.78		
427 312 385 MTS_S_86815-MTS_S_86535	2.48	477 428 429 MTA_S_22050-MTA_S_44759	2.77		
428 385 386 MTS_S_86535-MTS_S_86536	2.48	478 429 430 MTA_S_44759-MTA_S_44760	4.65		
429 386 387 MTS_S_86536-MTS_L_86536	2.52	479 431 555 MTA_L_44760-TRAF0_1595	2.77		
430 388 387 MTA_S_156002-MTS_L_86536	2.63	480 430 431 MTA_S_44760-MTA_L_44760	4.30		
431 389 388 MTA_S_80766-MTA_S_156002	2.58	481 427 432 MTA_S_22049-MTA_L_22051	0.17		
432 389 390 MTA_S_80766-MTA_S_80767	2.46	482 427 433 MTA_S_22049-MTA_S_22053	2.70		
433 390 391 MTA_S_80767-MTA_S_43461	2.46	483 433 434 MTA_S_22053-MTA_S_22054	2.70		
434 391 392 MTA_S_43461-MTA_S_43460	5.06	484 434 435 MTA_S_22054-MTA_S_22055	1.86		
435 393 549 MTA_L_43460-TRAF0_2421	2.45	485 436 556 MTA_L_22055-TRAF0_18605	1.68		
436 392 393 MTA_S_43460-MTA_L_43460	3.16	486 435 436 MTA_S_22055-MTA_L_22055	1.86		
437 394 391 MTA_S_43478-MTA_S_43461	0.73	487 434 437 MTA_S_22054-MTA_S_22057	1.56		
438 394 395 MTA 5 43478-MTA L 43478	0.21	488 438 557 MTA_L_22057-TRAF0_18811	1.01		
439 394 396 MTA 5 43478-MTA L 43739	0.36	489 437 438 MTA_S_22057-MTA_L_22057	1.56		
440 397 394 MTA 5 43761-MTA 5 43478	0.37	490 425 439 MTS_S_2482-MTS_S_2483	3.38		
441 398 397 MTA_S_43760-MTA_S_43761	0.25	491 440 558 MTS_L_2483-TRAF0_3570	3.37		
442 399 398 MIS 5 247-MIA 5 43760	0.23	492 439 440 MTS 5 2483-MTS L 2483	3.47		
445 2/5 400 MIS_5 86816-MIS_5 86817	1.76	493 424 441 MTA 5 37393-MTA 5 44758	4.68		
444 400 401 MIS_5_06817-MIS_5_06532	1.97	494 442 559 MTA L 44758-TRAFO 125	2.86		
445 401 402 MTD C 197975 MTC I 66532	2.09	495 441 442 MIA 5 44/58-MIA L 44/58	3.14		
440 403 402 MIA_5_13/8/5-MI5_L_80532	2.40	496 235 443 MIA 5 3/394-MIS 5 25337	16.87		
44/ 403 404 MIA_5_137875-MIS_5_50290	2.03	497 443 444 MIS_S_25337-MIS_S_29517	16.88		

	CURRENT MAGNITUDE BY LINE:	S SOLUTIONS
l k m	NAME	Ikm[A]
498 444 445	5 MTS_S_29517-MTS_S_29806	16.88
499 445 446	5 MTS_S_29806-MTS_S_25340	16.88
500 446 447	MTS_S_25340-MTS_S_2480	16.87
501 447 448	MTS_S_2480-MTS_S_2479	6.76
502 449 560	MTS_L_2479-TRAF0_3163	6.75
503 448 449	MTS_S_2479-MTS_L_2479	6.94
504 447 450	MTS_S_2480-MTS_S_2481	10.17
505 451 561	MTS_L_2481-TRAF0_9104	10.12
506 450 451	MTS_S_2481-MTS_L_2481	10.16
507 230 452	MTA_S_37191-MTA_S_44762	3.77
508 452 453	MTA_S_44762-MTA_S_44761	2.75
509 454 562	MTA_L_44761-TRAF0_3686	1.24
510 453 454	MTA_S_44761-MTA_L_44761	1.72
511 452 455	MTA_S_44762-MTA_S_94686	2.53
512 455 456	MTA_S_94686-MTA_S_94687	2.56
513 456 457	MTA_S_94687-MTS_S_9072	2.64
514 457 458	MTS_S_9072-MTS_S_9073	2.54
515 458 459	MTS_S_9073-MTS_S_9074	2.55
516 459 460	MTS S 9074-MTS S 9075	2.58
517 461 563	MTS L 9075-TRAFO 25020	2.52
518 460 461	MTS S 9075-MTS L 9075	2.58
519 227 462	MTA S 37002-MTA L 37003	0.17
520 227 463	MTA S 37002-MTA L 37208	0.28
521 214 464	MTA S 37006-MTA L 37018	0.40
522 214 465	MTA S 37006-MTA L 37200	0.25
523 207 466	MTA S 134440-MTA S 134444	2.19
524 467 564	MTA L 134444-TRAF0 18824	1.82
525 466 467	MTA S 134444-MTA L 134444	2.19
526 203 468	MTA S 37019-MTA L 37019	0.22
527 203 469	MTA S 37019-MTA S 43723	16.24
528 469 470	MTA S 43723-MTA S 40262	16.24
529 470 471	MTA S 40262-MTA S 37015	16.24
530 471 472	MTA S 37015-MTA S 37016	1.65
531 472 473	MTA S 37016-MTA S 37017	1.66
532 473 474	MTA S 37017-MTA S 45207	1.66
533 474 475	MTA S 45207-MTA S 45206	5.66
534 476 565	MTA L 45206-TRAFO 2043	1.64
535 475 476	MTA S 45206-MTA L 45206	3.30
536 471 477	MTA S 37015-MTA S 37193	14.60
537 477 478	MTA S 37193-MTA S 37194	14.60
538 478 479	MTA S 37194-MTA S 37195	14.60
539 479 480	MTA S 37195-MTA S 37196	14.60
540 480 481	MTA S 37196-MTA S 37197	14.60
541 481 482	MTA S 37197-MTA S 37198	14.60
542 482 483	MTA S 37198-MTA S 37199	14.60
543 483 484	MTA S 37199-MTA S 45208	14.60
544 484 485	MTA S 45208-MTA S 45209	5.58
545 486 566	MTA L 45209-TRAFO 18818	0.57
546 485 486	MTA S 45209-MTA L 45209	2.52
547 484 487	MTA_S_45208-MTA_S_45225	14.03

1	k	m	NAME	Ikm[A]
548	487	488	MTA_S_45225-MTS_S_2368	14.04
549	488	489	MTS_S_2368-MTS_S_2669	5.01
550	490	567	MTS_L_2669-TRAF0_2360	5.01
551	489	490	MTS_S_2669-MTS_L_2669	5.13
552	488	491	MTS_S_2368-MTA_S_44530	9.04
553	491	492	MTA_S_44530-MTA_S_44531	9.03
554	492	493	MTA_S_44531-MTA_S_6368	9.02
555	493	494	MTA_S_6368-MTA_S_37009	9.02
556	494	495	MTA_S_37009-MTA_S_37010	5.29
557	495	496	MTA_S_37010-MTA_S_37011	5.29
558	496	497	MTA_S_37011-MTA_S_37012	5.29
559	497	498	MTA S 37012-MTA S 37013	5.29
560	498	499	MTA_S_37013-MTA_S_45210	5.29
561	499	500	MTA S 45210-MTA S 45213	5.46
562	501	568	MTA_L_45213-TRAF0_2773	5.29
563	500	501	MTA_S_45213-MTA_L_45213	5.53
564	494	502	MTA_S_37009-MTA_S_45211	3.85
565	503	569	MTA_L_45211-TRAF0_66	3.73
566	502	503	MTA_S_45211-MTA_L_45211	3.84
567	493	504	MTA_S_6368-MTA_S_6369	0.14
568	504	505	MTA S 6369-MTA L 6369	0.14

ANEXO 17. Pérdidas de potencia activa por las líneas – Alimentador 0421.

TOTA	L LOS	S NET	WORK [kW]: 39.250935		47	41	43	MTA S 29195-MTS S 3619	0.00015
0.0000					48	43	44	MTS S 3619-MTS S 3620	0.00001
	LOSS NETWORK BY LINE						45	MTS S 3620-MTS S 3615	0.00001
3					50	45	46	MTS S 3615_MTS S 55118	0.00043
3	1 k	m	NAME	PLossKM[kW]	51	16	17	MTS S EE110 MTS S EE116	0.00005
	1 1	2	0500040V01-MTS S 2855	0.00900	52	40	40	MTC C EE116 MTC C EE117	0.00003
	2 2	3	MTS S 2855-MTA S 69311	0.17982	52	19	10	MTS S 55117_MTS S 4011	0.00001
	3 3	4	MTA S 69311-MTA S 47951	0.00213	55	40	207	MTS I 4011 TENED 21420	0.00001
	4 4	5	MTA S 47951-MTA S 43852	0.36049	54	10	50	MTS S AG11_MTS T AG11	0.00001
	5 5	6	MTA S 43852-MTS S 8526	0.00000	55	45	50	MTC C EE110 MTC C EE110	0.00001
	6 6	7	MTS S 8526-MTS S 8527	0.00006	50	40 E1	51	MTG G EE110 MTG G 2617	0.00000
	7 7	8	MTS S 8527-MTS S 8528	0.00000	50	52	200	MTS I 2617_TDAE0 172	0.20001
1	8 9	29	2 MTS L 8528-TRAFO 21909	0.21558	50	50	52	MTS S 2617_MTS I 2617	0.20001
	9 8	9	MTS S 8528-MTS L 8528	0.00000	60	41	54	MTA S 20105_MTA S 47052	0.00000
	10 5	10	MTA S 43852-MTA S 47949	0.41249	61	54	55	MTA S 47652_MTA S 1020	0.00700
	11 1	0 11	MTA 5 47949-MTA 5 47948	0.06880	62	55	56	MTA S 1026_MTA I 1026	0.00001
	12 1	1 12	MTA S 47948-MTA S 122159	0.04117	62	57	56	MTR S 20206 MTR I 1029	0.00000
	13 1	2 13	MTA_S_122159-MTA_S_31570	0.00044	64	59	57	MTA S 20205-MTA S 20206	0.00000
	14 1	3 14	MTA_S_31570-MTA_S_178369	0.07026	65	57	50	MTA S 20205-MTA S 20214	0.00000
	15 1	4 15	MTA_S_178369-MTA_S_31176	0.02155	66	50	60	MTA S 20200-MIA S 20214	0.00000
	16 1	5 16	MTA_S_31176-MTA_S_129783	0.00000	67	61	200	MTA I 20215_TEAFO 20178	0.06557
	17 1	7 29	3 MTA_L_129783-TRAF0_29561	0.01309	69	60	61	MTA S 20215-MTA I 20215	0.00000
	18 1	6 17	MTA_S_129783-MTA_L_129783	0.00000	60	57	62	MTA S 20206_MTA I 20213	0.00000
	19 1	5 18	MTA_S_31176-MTA_S_31177	0.00000	70	57	62	MTA S 1026_MTA S 171252	0.00000
	20 1	9 29	4 MTA_L_31177-TRAF0_20072	0.04362	70	63	64	MTA S 171253_MTA S 112741	0.00205
	21 1	8 19	MTA_S_31177-MTA_L_31177	0.00000	72	64	65	MTA S 112741_MTA S 112203	0.00005
	22 1	5 20	MTA_S_31176-MTA_S_45330	0.08245	72	65	66	MTA S 110202_MTA S 45222	0.00210
	23 2	0 21	MTA_S_45330-MTA_S_125657	0.09211	74	66	67	MTA S 45332_MTA S 20073	0.00035
	24 2	1 22	MTA_S_125657-MTA_S_125658	0.08406	75	67	69	MTA S 20072_MTA S 50428	0.01139
	25 2	2 23	MTA_S_125658-MTA_S_125659	0.07586	76	69	69	MTA S 50428-MTA S 50426	0.00073
	26 2	3 24	MTA_S_125659-MTA_S_63951	0.06525	77	69	70	MTA S 50436-MTS S 2362	0.00076
	27 2	4 25	MTA_S_63951-MTA_L_63951	0.00000	78	70	71	MTS S 2362-MTS S 2363	0.00024
	28 2	4 26	MTA_S_63951-MTA_S_73433	0.06993	70	71	72	MTS S 2362-MTS S 3/61	0.00713
	29 2	6 27	MTA_S_73433-MTA_S_46166	0.00447	80	72	73	MTS S 3461_MTS S 2733	0.00021
	30 2	7 28	MTA_S_46166-MTA_S_50170	0.00000	81	73	74	MTS S 2733_MTS S 3/63	0.00001
	31 2	9 29	5 MTA_L_50170-TRAF0_2467	0.06550	82	75	300	MTS L 3463-TRAFO 20235	0.56912
	32 2	8 29	MTA_S_50170-MTA_L_50170	0.00000	83	74	75	MTS S 3463_MTS I 3463	0.00004
	33 2	7 30	MTA_S_46166-MTA_S_47947	0.00438	84	73	76	MTS S 2733_MTS S 3769	0.00002
	34 3	0 31	MTA_S_47947-MTA_S_43907	0.06516	85	76	77	MTS S 3769-MTS S 3770	0.00002
	35 3	1 32	MTA_S_43907-MTA_S_43908	0.00045	86	78	301	MTS L 3770-TRAFO 6626	0.22479
	36 3	2 33	MTA_S_43908-MTA_S_43909	0.00015	87	77	78	MTS S 3770-MTS I 3770	0.00000
	37 3	3 34	MTA_S_43909-MTS_S_124257	0.00001	88	76	79	MTS S 3760_MTS S 3772	0.00000
	38 3	4 35	MTS_S_124257-MTS_S_3407	0.00010	00	70	00	MTC C 2772_MTC C 2772	0.00000
	39 3	6 29	6 MIS_L_3407-TRAF0_9991	0.44908	90	91	302	MTS I 3773_TENEO 16401	0.22479
	40 3	5 36	MIS_S_3407-MIS_L_3407	0.00111	90	90	91	MTS S 2772_MTS I 2772	0.22479
	41 3	1 37	MIA 5 43907-MIA 5 50178	0.06952	91	66	82	MTA S 45332_MTA S 46600	0.00000
	42 3	1 30	MTA C 157002 MTA C 00100	0.00065	92	82	82	MTA S 46608_MTA S 41151	0.00000
	40 3	0 35	MIN 2 10/203 MIN 2 20104	0.00084	53	84	303	MTA I 41151_TDAFO 4696	0.03035
	44 3	9 40	MTA 5 20104 MTA 5 20105	0.00350	54 0F	92	84	MTA S A1151_MTA T A1151	0.03935
	45 4	1 41	MTA 5 29194-MIA 5 29195	0.07706	95	03	04	MTA S ACCOS_MTA T ACCOS	0.00000
	40 4	1 42	MIA_5_29195-MIA_L_29195	0.00000	96	62	05	MIA_5_40090-MIA_L_40098	0.00000

LOSS NETWORK BY LINE					LOSS NETWORK BY LINE			
1	k	m	NAME	PLossKM[kW]	l k m NAME PLossKM[kW]			
97	65	86	MTA_S_118303-MTS_S_21493	0.00000	147 129 130 MTA_S_43260-MTA_S_43916 0.00000			
98	87	304	MTS_L_21493-TRAF0_28087	0.21574	148 130 131 MTA_S_43916-MTA_S_43917 0.00000			
99	86	87	MTS_S_21493-MTS_L_21493	0.00000	149 132 310 MTA_L_43917-TRAFO_2867 0.06567			
100	55	88	MTA_S_1029-MTA_S_43910	0.02170	150 131 132 MTA_S_43917-MTA_L_43917 0.00000			
101	88	89	MTA_S_43910-MTA_S_47959	0.03505	151 125 133 MTA_S_43259-MTA_S_43262 0.00006			
102	89	90	MTA_S_47959-MTA_S_28494	0.03657	152 133 134 MTA_S_43262-MTA_S_43914 0.00001			
103	90	91	MTA_S_28494-MTA_S_28493	0.00001	153 134 135 MTA_S_43914-MTA_S_43915 0.00001			
104	91	92	MTA_S_28493-MTS_S_3958	0.00124	154 136 311 MTA_L_43915-TRAF0_356 0.14628			
105	92	93	MTS_S_3958-MTS_S_3078	0.00011	155 135 136 MTA_S_43915-MTA_L_43915 0.00001			
106	93	94	MTS_S_3078-MTS_S_3079	0.00064	156 123 137 MTA_S_43257-MTA_S_43264 0.00038			
107	94	95	MTS_S_3079-MTS_S_3085	0.00002	157 137 138 MTA_S_43264-MTA_S_44181 0.00000			
108	95	96	MTS_S_3085-MTS_S_3086	0.00001	158 138 139 MTA_S_44181-MTA_L_44181 0.00000			
109	97	305	MTS_L_3086-TRAF0_20133	0.39342	159 137 140 MTA_S_43264-MTS_S_3413 0.00002			
110	96	97	MTS_S_3086-MTS_L_3086	0.00001	160 141 312 MTS_L_3413-TRAF0_20063 0.45014			
111	94	98	MTS S 3079-MTS S 3081	0.00018	161 140 141 MTS_S_3413-MTS_L_3413 0.00066			
112	98	99	MTS S 3081-MTS S 3082	0.00013	162 117 142 MTA_S_43253-MTA_S_85484 0.00007			
113	99	100	MTS S 3082-MTS S 3083	0.00018	163 142 143 MTA S 85484-MTA S 85485 0.00007			
114	100	101	MTS S 3083-MTS S 3084	0.00001	164 143 144 MTA S 85485-MTA S 151833 0.00515			
115	102	306	MTS L 3084-TRAFO 20407	0.20695	165 144 145 MTA S 151833-MTA S 151834 0.00020			
116	101	102	MTS S 3084-MTS L 3084	0.00000	166 145 146 MTA S 151834-MTA S 85486 0.00023			
117	90	103	MTA S 28494-MTA S 50177	0.02777	167 146 147 MTA S 85486-MTA S 85487 0.00027			
118	103	104	MTA S 50177-MTA S 47966	0.00111	168 147 148 MTA S 85487-MTA S 85483 0.00116			
119	104	105	MTA S 47966-MTA S 47967	0.02839	169 148 149 MTA S 85483-MTS S 5111 0.00019			
120	105	106	MTA S 47967-MTA S 44716	0.03376	170 149 150 MTS S 5111-MTS S 5099 0.00121			
121	106	107	MTA S 44716-MTA S 44717	0.03831	171 150 151 MTS S 5099-MTS S 5106 0.00030			
122	107	108	MTA S 44717-MTA S 122165	0.00000	172 151 152 MTS S 5106-MTS S 5110 0.00014			
123	107	109	MTA S 44717-MTA S 47971	0.00113	173 153 313 MTS L 5110-TRAFO 21410 0.89016			
124	109	110	MTA S 47971-MTA S 43913	0.02141	174 152 153 MTS S 5110-MTS L 5110 0.00003			
125	110	111	MTA S 43913-MTA S 84120	0.00000	175 151 154 MTS S 5106-MTS S 5108 0.00000			
126	112	307	MTA L 84120-TRAFO 21098	0.21596	176 155 314 MTS L 5108-TRAFO 21409 0.22506			
127	111	112	MTA S 84120-MTA L 84120	0.00000	177 154 155 MTS S 5108-MTS L 5108 0.00000			
128	110	113	MTA S 43913-MTA S 47973	0.02087	178 151 156 MTS S 5106-MTS S 5109 0.00000			
129	113	114	MTA S 47973-MTA S 42447	0.01189	179 157 315 MTS L 5109-TRAFO 21411 0.28132			
130	114	115	MTA S 42447-MTA S 108788	0.01451	180 156 157 MTS S 5109-MTS L 5109 0.00000			
131	115	116	MTA S 108788-MTA S 108763	0.00005	181 114 158 MTA 5 42447-MTA 5 44183 0.00066			
132	116	117	MTA S 108763-MTA S 43253	0.03002	182 158 159 MTA S 44183-MTA S 117430 0.00021			
133	117	118	MTA S 43253-MTA S 43256	0.00571	183 159 160 MTA S 117430-MTA S 117431 0.00011			
134	118	119	MTA S 43256-MTA S 181313	0.00002	184 160 161 MTA S 117431-MTA S 117432 0.00005			
135	119	120	MTA S 181313-MTA S 43254	0.00007	185 161 162 MTA S 117432-MTA S 42449 0.00006			
136	120	121	MTA S 43254-MTA S 43255	0.00049	186 162 163 MTA S 42449-MTA S 42450 0.00005			
137	122	308	MTA I. 43255-TRAFO 29454	0.45014	187 163 164 MTA S 42450-MTS S 5507 0.00285			
138	121	122	MTA S 43255-MTA L 43255	0.00076	188 164 165 MTS S 5507-MTS S 5509 0.00013			
139	118	123	MTA S 43256-MTA S 43257	0.00103	189 165 166 MTS S 5509-MTS S 5510 0.00003			
140	123	124	MTA S 43257-MTA S 43258	0.00089	190 167 316 MTS L 5510-TRAFO 2819 0.36002			
141	124	125	MTA S 43258-MTA S 43259	0.00055	191 166 167 MTS S 5510-MTS L 5510 0.00002			
142	125	126	MTA S 43259-MTS S 52537	0.00001	192 165 168 MTS S 5509-MTS S 5512 0.00008			
143	126	127	MTS S 52537-MTS S 52578	0.00000	193 169 317 MTS L 5512-TRAFO 13301 0.28127			
144	128	309	MTS L 52578-TRAFO 18018	0.12190	194 168 169 MTS S 5512-MTS L 5512 0.00003			
145	127	128	MTS S 52578-MTS L 52578	0.00000	195 158 170 MTA S 44183-MTA S 94284 0.00000			
146	125	129	MTA S 43259-MTA S 43260	0.00002	196 170 171 MTA S 94284-MTA S 94285 0.00000			

LOSS NETWORK BY LINE		LOSS NETWORK BY LINE			
1 k m NAME	PLossKM[kW]	l k m NAME	PLossKM[kW]		
197 171 172 MTA_S_94285-MTA_S_94286	0.00000	247 215 325 MTA_L_80663-TRAF0_33490	0.08721		
198 172 173 MTA_S_94286-MTA_S_94287	0.00001	248 214 215 MTA_S_80663-MTA_L_80663	0.00000		
199 173 174 MTA_S_94287-MTA_S_94288	0.00000	249 211 216 MTS_S_2865-MTA_S_45327	0.00000		
200 175 318 MTA_L_94288-TRAF0_25262	0.06565	250 217 326 MTA_L_45327-TRAF0_18084	0.02616		
201 174 175 MTA_S_94288-MTA_L_94288	0.00000	251 216 217 MTA_S_45327-MTA_L_45327	0.00000		
202 158 176 MTA_S_44183-MTA_S_44213	0.00000	252 10 218 MTA_S_47949-MTA_S_46164	0.01185		
203 176 177 MTA_S_44213-MTA_S_43920	0.00001	253 218 219 MTA_S_46164-MTS_S_3451	0.00000		
204 177 178 MTA_S_43920-MTA_S_43921	0.00000	254 220 327 MTS_L_3451-TRAF0_15209	0.08720		
205 179 319 MTA_L_43921-TRAF0_4764	0.02805	255 219 220 MTS_S_3451-MTS_L_3451	0.00002		
206 178 179 MTA_S_43921-MTA_L_43921	0.00000	256 218 221 MTA_S_46164-MTA_S_85752	0.00048		
207 176 180 MTA_S_44213-MTA_S_94628	0.00000	257 221 222 MTA_S_85752-MTA_S_85753	0.03848		
208 180 181 MTA_S_94628-MTA_S_94626	0.00000	258 222 223 MTA_S_85753-MTA_S_85754	0.00226		
209 181 182 MTA_S_94626-MTA_L_94625	0.00000	259 223 224 MTA_S_85754-MTA_S_166775	0.03373		
210 114 183 MTA_S_42447-MTA_L_42448	0.00000	260 224 225 MTA_S_166775-MTS_S_115742	0.04780		
211 106 184 MTA_S_44716-MTA_S_47968	0.00001	261 225 226 MTS_S_115742-MTS_S_26608	0.00000		
212 184 185 MTA_S_47968-MTA_S_47969	0.00005	262 226 227 MTS_S_26608-MTS_S_2339	0.00002		
213 185 186 MTA_S_47969-MTA_S_47970	0.00012	263 228 328 MTS_L_2339-TRAF0_20504	0.21586		
214 187 320 MTA_L_47970-TRAF0_15176	0.10962	264 227 228 MTS_S_2339-MTS_L_2339	0.00000		
215 186 187 MTA_S_47970-MTA_L_47970	0.00001	265 225 229 MTS_S_115742-MTA_S_45338	0.00202		
216 54 188 MTA_S_47952-MTA_S_50172	0.00000	266 229 230 MTA_S_45338-MTS_S_89187	0.03329		
217 189 321 MTA_L_50172-TRAF0_4623	0.08742	267 230 231 MTS_S_89187-MTA_S_45340	0.01354		
218 188 189 MTA_S_50172-MTA_L_50172	0.00000	268 231 232 MTA_S_45340-MTA_S_44718	0.00089		
219 31 190 MTA_S_43907-MTA_L_47946	0.00000	269 232 233 MTA_S_44718-MTA_S_11676	0.00007		
220 23 191 MTA_S_125659-MTA_S_125661	0.00000	270 233 234 MTA_S_11676-MTS_S_3230	0.00000		
221 191 192 MTA_S_125661-MTA_L_125661	0.00000	271 235 329 MTS_L_3230-TRAF0_18126	0.14580		
222 20 193 MTA_S_45330-MTA_S_45331	0.00000	272 234 235 MTS_S_3230-MTS_L_3230	0.00000		
223 194 322 MTA_L_45331-TRAFO_2378	0.00235	273 232 236 MTA_S_44718-MTA_S_130180	0.01405		
224 193 194 MTA_S_45331-MTA_L_45331	0.00000	274 236 237 MTA_S_130180-MTA_S_145835	0.00036		
225 14 195 MTA_S_178369-MTS_S_122995	0.00000	275 237 238 MTA_S_145835-MTS_S_59256	0.00512		
226 195 196 MTS_S_122995-MTS_S_122996	0.00000	276 238 239 MTS_S_59256-MTA_S_43927	0.00102		
227 196 197 MTS_S_122996-MTS_S_122997	0.00001	277 239 240 MTA_S_43927-MTA_S_37847	0.00132		
228 197 198 MTS_S_122997-MTS_S_122998	0.00000	278 240 241 MTA_S_37847-MTA_S_37848	0.00028		
229 199 323 MTS_L_122998-TRAF0_34616	0.08723	279 241 242 MTA_S_37848-MTA_S_96973	0.00075		
230 198 199 MTS_S_122998-MTS_L_122998	0.00000	280 242 243 MTA_S_96973-MTA_S_42722	0.00008		
231 11 200 MTA_S_47948-MTA_S_136638	0.00001	281 243 244 MTA_S_42722-MTA_S_104148	0.00002		
232 200 201 MTA_S_136638-MTA_S_50173	0.00000	282 244 245 MTA_S_104148-MTA_S_104149	0.00004		
233 201 202 MTA_S_50173-MTA_S_122160	0.00000	283 245 246 MTA_S_104149-MTA_S_104150	0.00000		
234 202 203 MTA_S_122160-MTA_S_122161	0.00000	284 247 330 MTA_L_104150-TRAF0_21994	0.15556		
235 203 204 MTA_S_122161-MTA_S_122162	0.00000	285 246 247 MTA_S_104150-MTA_L_104150	0.00000		
236 204 205 MTA_S_122162-MTA_S_122163	0.00000	286 242 248 MTA_S_96973-MTA_S_43929	0.00000		
237 205 206 MTA_S_122163-MTA_S_50174	0.00000	287 248 249 MTA_S_43929-MTA_S_43930	0.00000		
238 200 207 MTA_S_136638-MTS_S_49058	0.00000	288 250 331 MTA_L_43930-TRAFO_6488	0.06547		
239 207 208 MTS_S_49058-MTS_S_49059	0.00000	289 249 250 MTA_S_43930-MTA_L_43930	0.00000		
240 208 209 MTS_S_49059-MTS_S_49060	0.00000	290 242 251 MTA_S_96973-MTA_S_96974	0.00013		
241 210 324 MTS_L_49060-TRAF0_2397	0.10926	291 251 252 MTA_S_96974-MTA_S_96975	0.00004		
242 209 210 MTS_S_49060-MTS_L_49060	0.00000	292 252 253 MTA_S_96975-MTA_S_47936	0.00004		
243 11 211 MTA_S_47948-MTS_S_2865	0.00001	293 253 254 MTA_S_47936-MTA_S_47937	0.00000		
244 211 212 MTS_S_2865-MTS_S_2866	0.00000	294 255 332 MTA_L_47937-TRAFO_8018	0.08730		
245 212 213 MTS_S_2866-MTA_S_80662	0.00005	295 254 255 MTA_S_47937-MTA_L_47937	0.00000		
246 213 214 MTA_S_80662-MTA_S_80663	0.00000	296 251 256 MTA_S_96974-MTA_S_96977	0.00005		

 	-	200.00	LOSS NETWORK BY LINE	
1	k	m	NAME	PLossKM[kW]
297	256	257	MTA_S_96977-MTA_S_96978	0.00000
298	258	333	MTA_L_96978-TRAF0_21967	0.15556
299	257	258	MTA_S_96978-MTA_L_96978	0.00000
300	241	259	MTA_S_37848-MTA_S_37851	0.00000
301	259	260	MTA_S_37851-MTA_S_37852	0.00005
302	260	261	MTA_S_37852-MTA_S_37854	0.00000
303	262	334	MTA_L_37854-TRAF0_30887	0.21598
304	261	262	MTA_S_37854-MTA_L_37854	0.00000
305	239	263	MTA_S_43927-MTA_S_43928	0.00000
306	264	335	MTA_L_43928-TRAF0_27639	0.03747
307	263	264	MTA_S_43928-MTA_L_43928	0.00000
308	238	265	MTS_S_59256-MTS_S_59257	0.00001
309	265	266	MTS_S_59257-MTS_S_59261	0.00001
310	266	267	MTS_S_59261-MTS_S_59566	0.00001
311	267	268	MTS_S_59566-MTS_S_59259	0.00024
312	268	269	MTS_S_59259-MTS_S_59260	0.00000
313	270	336	MTS_L_59260-TRAF0_31246	0.28048
314	269	270	MTS_S_59260-MTS_L_59260	0.00000
315	237	271	MTA_S_145835-MTA_S_43926	0.00000
316	272	337	MTA_L_43926-TRAF0_4698	0.08729
317	271	272	MTA_S_43926-MTA_L_43926	0.00000
318	236	273	MTA_S_130180-MTA_S_130182	0.00001
319	273	274	MTA_S_130182-MTA_S_130183	0.00037
320	274	275	MTA_S_130183-MTS_S_42935	0.00002
321	275	276	MTS_S_42935-MTS_S_42936	0.00002
322	276	277	MTS_S_42936-MTS_S_42937	0.00003
323	277	278	MTS_S_42937-MTS_S_42938	0.00001
324	279	338	MTS_L_42938-TRAF0_29089	0.45249
325	278	279	MTS_S_42938-MTS_L_42938	0.00001
326	232	280	MTA_S_44718-MTA_S_43924	0.00000
327	281	339	MTA_L_43924-TRAF0_4695	0.08727
328	280	281	MTA_S_43924-MTA_L_43924	0.00000
329	230	282	MTS_S_89187-MTS_S_89188	0.00014
330	282	283	MTS_S_89188-MTS_S_89189	0.00009
331	283	284	MTS_S_89189-MTS_S_5469	0.00006
332	284	285	MTS_S_5469-MTS_S_102494	0.00042
333	285	286	MTS_S_102494-MTS_S_5472	0.00004
334	286	287	MTS_S_5472-MTS_S_5474	0.00003
335	287	288	MTS_S_5474-MTS_S_5475	0.00001
336	289	340	MTS_L_5475-TRAF0_28130	0.39255
337	288	289	MTS_S_5475-MTS_L_5475	0.00001
338	286	290	MTS_S_5472-MTS_S_5477	0.00002
339	291	341	MIS_L_5477-TRAF0_33382	0.45239
340	290	291	MTS S 5477-MTS L 5477	0.00002

		-BUS SOLUTIONS-			BUS SOLUTIO	NS
BUS	NAME	V[PU]	V[kV]	BUS NAME	C V[PU]	V[kV]
1	0500040V01	1.015	12.89	50 MTS_L_49	11 1.013	12.87
2	MTS_S_2855	1.015	12.89	51 MTS_S_55	119 1.013	12.87
3	MTA_S_69311	1.015	12.89	52 MTS_S_36	17 1.013	12.87
4	MTA_S_47951	1.015	12.89	53 MTS_L_36	17 1.013	12.87
5	MTA_S_43852	1.015	12.89	54 MTA_S_47	952 1.013	12.86
6	MTS_S_8526	1.015	12.89	55 MTA_S_10	29 1.013	12.86
7	MTS_S_8527	1.015	12.89	56 MTA_L_10	29 1.013	12.86
8	MTS_S_8528	1.015	12.89	57 MTA_S_20	206 1.013	12.86
9	MTS_L_8528	1.015	12.89	58 MTA_S_20	205 1.013	12.86
10	MTA_S_47949	1.014	12.88	59 MTA_S_20	214 1.013	12.86
11	MTA S 47948	1.014	12.88	60 MTA_S_20	215 1.013	12.86
12	MTA S 122159	1.014	12.88	61 MTA_L_20	215 1.013	12.86
13	MTA S 31570	1.014	12.88	62 MTA_L_20	213 1.013	12.86
14	MTA S 178369	1.014	12.88	63 MTA_S_17	1253 1.013	12.86
15	MTA 5 31176	1.014	12.88	64 MTA_S_11	2741 1.013	12.86
16	MTA 5 129783	1.014	12.88	65 MTA_S_11	8303 1.013	12.86
17	MTA L 129783	1.014	12.88	66 MTA_S_45	333 1.013	12.86
18	MTA S 31177	1.014	12.88	67 MTA_S_29	073 1.013	12.86
19	MTA L 31177	1 014	12.88	68 MTA_S_50	428 1.013	12.86
20	MTA S 45330	1 014	12.00	69 MTA_5_50	436 1.013	12.86
21	MTA S 125657	1.014	12.00	70 MTS_S_23	62 1.013	12.86
21	MTA S 125657	1.014	12.00	71 MTS_S_23	63 1.013	12.86
22	MTA_5_125656	1.014	12.07	72 MTS_S_34	61 1.013	12.86
23	MIA_5_125659	1.014	12.87	73 MIS_S_27	33 1.013	12.86
24	MIA_5_63951	1.013	12.87	74 MIS_5_34	63 1.013	12.86
25	MTA_L_63951	1.013	12.87	75 MIS_L_34	63 1.013	12.86
26	MIA_5_73433	1.013	12.87	70 MTS 5 37	09 1.013	12.00
27	MTA_S_46166	1.013	12.87	70 MTG 1 27	70 1.013	12.00
28	MTA_S_50170	1.013	12.87	70 MTS C 27	70 1.013	12.00
29	MTA_L_50170	1.013	12.87	19 MIS_5_5/	72 1.013	12.00
30	MTA_S_47947	1.013	12.87	00 MTS 1 37	73 1.013	12.00
31	MTA_S_43907	1.013	12.87	01 MID_L_J/	FG9 1.013	12.00
32	MTA_S_43908	1.013	12.87	83 MTA 5 41	151 1.013	12.00
33	MTA_S_43909	1.013	12.87	84 MTA L 41	151 1.013	12.00
34	MTS_S_124257	1.013	12.87	85 MTA L 46	698 1 013	12.86
35	MTS_S_3407	1.013	12.87	86 MTS S 21	493 1.013	12.86
36	MTS_L_3407	1.013	12.87	87 MTS L 21	493 1.013	12.86
37	MTA_S_50178	1.013	12.87	88 MTA 5 43	910 1.013	12.86
38	MTA_S_157983	1.013	12.87	89 MTA 5 47	959 1.013	12.86
39	MTA_S_29193	1.013	12.87	90 MTA 5 28	494 1.013	12.86
40	MTA S 29194	1.013	12.87	91 MTA 5 28	493 1.013	12.86
41	MTA S 29195	1.013	12.87	92 MTS 5 39	58 1.013	12.86
42	MTA L 29195	1.013	12.87	93 MTS S 30	78 1.013	12.86
43	MTS S 3619	1.013	12.87	94 MTS S 30	79 1.013	12.86
44	MTS S 3620	1.013	12.87	95 MTS S 30	85 1.013	12.86
45	MTS S 3615	1.013	12.87	96 MTS S 30	86 1.013	12.86
46	MTS S 55118	1.013	12.87	97 MTS L 30	86 1.013	12.86
47	MTS S 55116	1.013	12.87	98 MTS S 30	81 1.013	12.86
48	MTS S 55117	1.013	12.87	99 MTS S 30	82 1.013	12.86
49	MTS_S_4911	1.013	12.87	100 MTS_S_30	83 1.013	12.86

ANEXO 18. Tensión en nodos – Alimentador 0421.

UN	Iniversidad de Cuenca										
		BUS SOLUTION	S	BUS SOLUTIONS							
BUS	NAME	V[PU]	V[kV]	BUS	NAME	V[PU]	V[kV]				
101	MTS S 3094	1 013	12.86	152 MTS	\$ 5110	1 012	12.95				
102	MTS I 3084	1 013	12.00	153 MTS		1 012	12.05				
102	MTA S 50177	1.013	12.00	155 HIS		1 012	12.05				
103	MTA S 47066	1.013	12.00	154 MTC		1.012	12.05				
104	MTA 5 47960	1.013	12.00	155 MTC	_L_5108	1.012	12.05				
105	MIA_5_4/90/	1.012	12.00	150 MIS	_5_5109	1.012	12.05				
107	MTA S 44710	1.012	12.00	157 MTA	_L_3109	1.012	12.05				
107	MIA_5_44/1/	1.012	12.00	150 MIA	_5_44105	1.012	12.00				
108	MIA_5_122105	1.012	12.00	159 MIA	5_11/430	1.012	12.80				
1109	MIA_5_4/9/1	1.012	12.00	160 MIA	5_11/431	1.012	12.86				
110	MIA_5_43913	1.012	12.86	161 MIA	5_11/432	1.012	12.86				
111	MIA_5_84120	1.012	12.86	162 MIA	5_42449	1.012	12.86				
112	MTA_L_84120	1.012	12.86	163 MTA	5_42450	1.012	12.86				
113	MTA_S_47973	1.012	12.86	164 MTS	_S_5507	1.012	12.86				
114	MTA_S_42447	1.012	12.86	165 MTS	_S_5509	1.012	12.86				
115	MTA_S_108788	1.012	12.86	166 MTS	_S_5510	1.012	12.86				
116	MTA_S_108763	1.012	12.86	167 MTS	_L_5510	1.012	12.86				
117	MTA_S_43253	1.012	12.85	168 MTS	_S_5512	1.012	12.86				
118	MTA_S_43256	1.012	12.85	169 MTS	_L_5512	1.012	12.86				
119	MTA_S_181313	1.012	12.85	170 MTA	_S_94284	1.012	12.86				
120	MTA_S_43254	1.012	12.85	171 MTA	_S_94285	1.012	12.86				
121	MTA_S_43255	1.012	12.85	172 MTA	_S_94286	1.012	12.86				
122	MTA_L_43255	1.012	12.85	173 MTA	_S_94287	1.012	12.86				
123	MTA_S_43257	1.012	12.85	174 MTA	_S_94288	1.012	12.86				
124	MTA_S_43258	1.012	12.85	175 MTA	L_94288	1.012	12.86				
125	MTA_S_43259	1.012	12.85	176 MTA	S 44213	1.012	12.86				
126	MTS_S_52537	1.012	12.85	177 MTA	S 43920	1.012	12.86				
127	MTS_S_52578	1.012	12.85	178 MTA	S 43921	1.012	12.86				
128	MTS_L_52578	1.012	12.85	179 MTA	L 43921	1.012	12.86				
129	MTA S 43260	1.012	12.85	180 MTA	S 94628	1.012	12.86				
130	MTA S 43916	1.012	12.85	181 MTA	S 94626	1.012	12.86				
131	MTA S 43917	1.012	12.85	182 MTA	L 94625	1.012	12.86				
132	MTA L 43917	1.012	12.85	183 MTA	L 42448	1.012	12.86				
133	MTA S 43262	1.012	12.85	184 MTA	S 47968	1.012	12.86				
134	MTA 5 43914	1.012	12.85	185 MTA	5 47969	1.012	12.86				
135	MTA 5 43915	1.012	12.85	186 MTA	5 47970	1.012	12.86				
136	MTA L 43915	1.012	12.85	187 MTA	T. 47970	1.012	12.86				
137	MTA 5 43264	1.012	12.85	188 MTA	5 50172	1.013	12.86				
138	MTA S 44181	1.012	12.85	189 MTA	T. 50172	1 013	12.86				
139	MTA L 44181	1.012	12.85	190 MTA	1. 47946	1 013	12.87				
140	MTS S 3413	1.012	12.85	191 MTA	5 125661	1 014	12.07				
141	MTS L 3413	1.012	12.85	102 MTA	T 125661	1 014	12.07				
142	MTA 5 85484	1 012	12.85	102 MTA	G /E221	1 014	12.07				
143	MTA 5 85485	1 012	12.85	104 MTA	T 45221	1 014	12.00				
144	MTA S 151833	1 012	12.05	105 MTC	E 10000E	1.014	12.00				
145	MTA S 151934	1 012	12.05	195 MIS	5 122995	1.014	12.00				
145	MTA S OFAGE	1 012	12.00	190 MIS	_3_122996	1.014	12.88				
147	MTA C 05400	1 012	12.00	197 MIS	_5_122997	1.014	12.88				
140	MTA C 05407	1.012	12.00	198 MTS	_5_122998	1.014	12.88				
140	MTC C 5111	1.012	12.85	199 MTS	_L_122998	1.014	12.88				
149	MTG G 5000	1.012	12.85	200 MTA	5_136638	1.014	12.88				
150	MTG C 5100	1.012	12.85	201 MTA	_S_50173	1.014	12.88				
151	MIS_S_5106	1.012	12.85	202 MTA	_S_122160	1.014	12.88				

		BUS SOLUTION	IS		BUS SOLUTION	NS
BUS	NAME	V[PU]	V[kV]	BUS NAME	V[PU]	V[kV]
203	MTA_S_122161	1.014	12.88	254 MTA_S_47937	1.014	12.87
204	MTA_S_122162	1.014	12.88	255 MTA_L_47937	1.014	12.87
205	MTA_S_122163	1.014	12.88	256 MTA_S_96977	1.014	12.87
206	MTA_S_50174	1.014	12.88	257 MTA_S_96978	1.014	12.87
207	MTS_S_49058	1.014	12.88	258 MTA L 96978	1.014	12.87
208	MTS S 49059	1.014	12.88	259 MTA S 37851	1.014	12.87
209	MTS S 49060	1.014	12.88	260 MTA S 37852	1.014	12.87
210	MTS L 49060	1.014	12.88	261 MTA S 37854	1.014	12.87
211	MTS S 2865	1.014	12.88	262 MTA L 37854	1.014	12.87
212	MTS S 2866	1.014	12.88	263 MTA 5 43928	1.014	12.87
213	MTA S 80662	1.014	12.88	264 MTA L 43928	1.014	12.87
214	MTA S 80663	1.014	12.88	265 MTS S 59257	1.014	12.87
215	MTA L 80663	1.014	12.88	266 MTS S 59261	1.014	12.87
216	MTA S 45327	1.014	12.88	267 MTS S 59566	1.014	12.87
217	MTA L 45327	1.014	12.88	268 MTS S 59259	1.014	12.87
218	MTA 5 46164	1.014	12.88	269 MTS S 59260	1.014	12.87
219	MTS S 3451	1.014	12.88	270 MTS L 59260	1.014	12.87
220	MTS L 3451	1.014	12.88	271 MTA 5 43926	1.014	12.87
221	MTA S 85752	1.014	12.88	272 MTA L 43926	1.014	12.87
222	MTA S 85753	1.014	12.88	273 MTA 5 130182	1.014	12.87
223	MTA S 85754	1.014	12.88	274 MTA 5 130183	1.014	12.87
224	MTA S 166775	1.014	12.88	275 MTS S 42935	1.014	12.87
225	MTS S 115742	1.014	12.88	276 MTS 5 42936	1.014	12.87
226	MTS S 26608	1.014	12.88	277 MTS 5 42937	1.014	12.87
227	MTS 5 2339	1.014	12.88	278 MTS 5 42938	1.014	12.87
228	MTS L 2339	1.014	12.88	279 MTS L 42938	1.014	12.87
229	MTA S 45338	1.014	12.88	280 MTA 5 43924	1.014	12.88
230	MTS 5 89187	1.014	12.88	281 MTA L 43924	1.014	12.88
231	MTA S 45340	1.014	12.88	282 MTS S 89188	1.014	12.88
232	MTA S 44718	1.014	12.88	283 MTS S 89189	1.014	12.88
233	MTA S 11676	1.014	12.88	284 MTS S 5469	1.014	12.88
234	MTS S 3230	1.014	12.88	285 MTS S 102494	1.014	12.88
235	MTS L 3230	1.014	12.88	286 MTS S 5472	1.014	12.88
236	MTA S 130180	1.014	12.87	287 MTS S 5474	1.014	12.88
237	MTA S 145835	1.014	12.87	288 MTS S 5475	1.014	12.88
238	MTS S 59256	1.014	12.87	289 MTS L 5475	1.014	12.88
239	MTA_S_43927	1.014	12.87	290 MTS_S_5477	1.014	12.88
240	MTA_S_37847	1.014	12.87	291 MTS_L_5477	1.014	12.88
241	MTA S 37848	1.014	12.87	292 TRAFO 21909	1.000	12.70
242	MTA S 96973	1.014	12.87	293 TRAFO 29561	1.003	12.74
243	MTA_S_42722	1.014	12.87	294 TRAF0_20072	1.003	12.74
244	MTA S 104148	1.014	12.87	295 TRAFO 2467	1.002	12.73
245	MTA_S_104149	1.014	12.87	296 TRAFO 9991	0.999	12.69
246	MTA_S_104150	1.014	12.87	297 TRAFO_21429	0.998	12.68
247	MTA_L_104150	1.014	12.87	298 TRAF0_173	0.998	12.68
248	MTA_5_43929	1.014	12.87	299 TRAF0_20178	1.002	12.72
249	MTA_S_43930	1.014	12.87	300 TRAF0_20235	1.000	12.70
250	MTA_L_43930	1.014	12.87	301 TRAF0_6626	0.998	12.68
251	MTA_S_96974	1.014	12.87	302 TRAF0_16491	0.998	12.68
252	MTA_S_96975	1.014	12.87	303 TRAF0_4686	1.001	12.72
253	MTA_S_47936	1.014	12.87	304 TRAF0_28087	0.998	12.68

	BUS SOLUTION	S
BUS NAME	V[PU]	V[kV]
305 TRAF0_20133	0.998	12.68
306 TRAF0_20407	0.999	12.68
307 TRAF0_21098	0.998	12.67
308 TRAF0_29454	0.997	12.67
309 TRAF0_18018	0.999	12.69
310 TRAF0_2867	1.001	12.71
311 TRAF0_356	0.999	12.69
312 TRAF0_20063	0.997	12.67
313 TRAF0_21410	0.998	12.68
314 TRAF0_21409	0.997	12.67
315 TRAF0_21411	0.997	12.67
316 TRAF0_2819	0.998	12.67
317 TRAF0_13301	0.998	12.67
318 TRAF0_25262	1.001	12.71
319 TRAF0_4764	1.001	12.71
320 TRAF0_15176	1.000	12.70
321 TRAF0_4623	1.002	12.72
322 TRAF0_2378	1.010	12.83
323 TRAF0_34616	1.003	12.74
324 TRAF0_2397	1.002	12.72
325 TRAF0_33490	1.003	12.74
326 TRAF0_18084	1.003	12.74
327 TRAF0_15209	1.003	12.74
328 TRAF0_20504	0.999	12.69
329 TRAF0_18126	1.001	12.72
330 TRAF0_21994	1.001	12.71
331 TRAF0_6488	1.002	12.73
332 TRAF0_8018	1.002	12.73
333 TRAF0_21967	1.001	12.71
334 TRAF0_30887	0.999	12.69
335 TRAF0_27639	1.001	12.71
336 TRAF0_31246	0.999	12.69
337 TRAF0_4698	1.002	12.73
338 TRAF0_29089	1.000	12.71
339 TRAF0_4695	1.002	12.73
340 TRAF0_28130	0.999	12.69
341 TRAF0_33382	1.000	12.71

ANEXO 19. Potencia de paso activa y reactiva – Alimentador 0421.

	TRANSFORMER CAPACITY SOLUTION							38	3	39	MTA_S_157983-MTA_S_29193	1034.55	326.51
							4	39	4	40	MTA_S_29193-MTA_S_29194	1034.49	326.40
BU	5	NAME	Pss[kW]	Qss[kV	Ar]	S[kVA]	4	5 40	4	41	MTA_S_29194-MTA_S_29195	1034.41	326.26
1	050	00400	701 5030.99	1588.	82 5	275.91	4	5 41	. 4	42	MTA S 29195-MTA L 29195	0.00	0.00
							4	41	. 4	43	MTA_S_29195-MTS_S_3619	102.92	32.35
	ACTIVE AND REACTIVE POWER FLOW SOLUTIONS						4	43	4	44	MTS S 3619-MTS S 3620	102.92	32.35
22							4	44	4	45	MTS S 3620-MTS S 3615	102.92	32.35
1	k	m	NAME		Pkm [kW]	Qkm[kVAr]	5	45	4	46	MTS S 3615-MTS S 55118	102.92	32.35
1	1	2	0500040V01-MTS_S	2855	1676.99	529.59	5.	46	4	47	MTS S 55118-MTS S 55116	63.34	19.91
2	2	3	MTS_S_2855-MTA_S	69311	1676.81	529.46	5	47	4	48	MTS_S_55116-MTS_S_55117	63.34	19.91
3	3	4	MTA S 69311-MTA	S 47951	1676.81	529.46	5:	3 48	4	49	MTS S 55117-MTS S 4911	63.34	19.91
4	4	5	MTA S 47951-MTA	S 43852	1676.44	528.83	5	50	2	297	MTS L 4911-TRAFO 21429	62.89	18.11
5	5	6	MTA S 43852-MTS	S 8526	30.48	9.58	5	5 49	5	50	MTS S 4911-MTS L 4911	63.34	19.91
6	6	7	MTS_S_8526-MTS_S	8527	30.48	9.58	5	5 46	5	51	MTS S 55118-MTS S 55119	39.58	12.44
7	7	8	MTS S 8527-MTS S	8528	30.48	9.58	5	51	5	52	MTS S 55119-MTS S 3617	39.58	12.44
8	9	292	MTS L 8528-TRAFO	21909	30.27	8.72	5	53	2	298	MTS L 3617-TRAFO 173	39.30	11.32
9	8	9	MTS S 8528-MTS L	8528	30.48	9.58	5	52	5	53	MTS S 3617-MTS L 3617	39.58	12.44
10	5	10	MTA S 43852-MTA	S 47949	1645.55	518.53	6) 41	5	54	MTA S 29195-MTA S 47952	931.40	293.76
11	10	11	MTA S 47949-MTA	S 47948	1175.98	371.52	6	54	5	55	MTA S 47952-MTA S 1029	915.57	288.85
12	11	12	MTA S 47948-MTA	S 122159	1137.58	359.58	6	55	5	56	MTA 5 1029-MTA L 1029	11.86	3.66
13	12	13	MTA S 122159-MTA	S 31570	1137.58	359.58	6	57	5	56	MTA 5 20206-MTA L 1029	11.86	3.66
14	13	14	MTA S 31570-MTA	S 178369	1137.51	359.45	6	58	5	57	MTA S 20205-MTA S 20206	0.00	0.00
15	14	15	MTA S 178369-MTA	5 31176	1121.67	354.54	6	5 57	5	59	MTA 5 20206-MTA 5 20214	11.86	3.66
16	15	16	MTA S 31176-MTA	S 129783	2.37	0.73	6	5 59	6	60	MTA S 20214-MTA S 20215	11.86	3.66
17	17	293	MTA L 129783-TRA	FO 29561	2.36	0.68	6	61	2	299	MTA L 20215-TRAFO 20178	11.79	3.40
18	16	17	MTA 5 129783-MTA	L 129783	2.37	0.73	6	60	6	61	MTA S 20215-MTA L 20215	11.86	3.66
19	15	18	MTA S 31176-MTA	S 31177	7,91	2.44	6	57	6	62	MTA 5 20206-MTA L 20213	0.00	0.00
20	19	294	MTA L 31177-TRAF	0 20072	7.86	2.26	7	55	6	63	MTA 5 1029-MTA 5 171253	219.35	69.05
21	18	19	MTA S 31177-MTA	L 31177	7,91	2.44	7	63	6	64	MTA S 171253-MTA S 112741	219.35	69.05
22	15	20	MTA S 31176-MTA	S 45330	1111.31	351.22	7:	64	6	65	MTA S 112741-MTA S 118303	219.35	69.05
23	20	21	MTA S 45330-MTA	S 125657	1110.19	350.84	7:	65	6	66	MTA S 118303-MTA S 45333	188.95	59.49
24	21	22	MTA S 125657-MTA	S 125658	1110.10	350.70	7	66	6	67	MTA S 45333-MTA S 29073	181.83	57.29
25	22	23	MTA S 125658-MTA	S 125659	1110.03	350.57	7	67	6	68	MTA 5 29073-MTA 5 50428	181.82	57.29
26	23	24	MTA S 125659-MTA	S 63951	1109.96	350.45	7	68	6	69	MTA S 50428-MTA S 50436	181.82	57.29
27	24	25	MTA 5 63951-MTA	L 63951	0.00	0.00	7	69	7	70	MTA S 50436-MTS S 2362	181.82	57.29
28	24	26	MTA S 63951-MTA	5 73433	1109.89	350.33	7	70	1	71	MTS S 2362-MTS S 2363	181.82	57.29
29	26	27	MTA S 73433-MTA	5 46166	1109.89	350.32	7	71	7	72	MTS S 2363-MTS S 3461	181.81	57.28
30	27	28	MTA 5 46166-MTA	S 50170	11.86	3.66	8	72	-	73	MTS S 3461-MTS S 2733	181.81	57.28
31	29	295	MTA L 50170-TRAF	0 2467	11.79	3.40	8	73	-	74	MTS S 2733-MTS S 3463	118.48	37.37
32	28	29	MTA S 50170-MTA	L 50170	11.86	3.66	8	75	-	300	MTS L 3463-TRAFO 20235	117.91	33.96
33	27	30	MTA S 46166-MTA	5 47947	1098.02	346.66	8	3 74	7	75	MTS S 3463-MTS L 3463	118.48	37.37
34	30	31	MTA S 47947-MTA	5 43907	1097 96	346.54	8	73	7	76	MTS S 2733-MTS S 3769	63.33	19.91
35	31	32	MTA S 43907-MTA	5 43908	63 34	19 91	8	76		77	MTS S 3769-MTS S 3770	31.67	9.96
36	32	33	MTA 5 43908-MTA	5 43909	63 34	19 91	8	78	-	301	MTS L 3770-TRAFO 6626	31.44	9.06
37	33	34	MTA S 43909-MTA	5 124257	63 34	19.91	8	77	7	78	MTS S 3770-MTS L 3770	31.67	9.96
30	34	35	MTS S 124257_MTS	5 3407	63 34	19 91	81	76	-	79	MTS S 3769-MTS S 3772	31.67	9,96
30	36	206	MTS I. 3407_TDAFO	9991	62 80	19.91	8	70		10	MTS S 3772-MTS S 3773	31 67	9 96
10	35	36	MTS S 3407-MTS I	3407	63 22	19 01	9	81	-	302	MTS I. 3773-TRAFO 16491	31.44	9.06
41	21	37	MTA S 43607_MTA	5 50178	1034 55	326 51	9	80		81	MTS S 3773-MTS L 3773	31 67	9.00
42	37	3.9	MTA S 50178_MTA	5 157083	1034 55	326 51	9	66		12	MTA S 45333-MTA S 46698	7.12	2.20
44	31	30	IIIA 5 50170-FIIA	5 13/303	1024.02	020.01	11 3			-		1.14	2.20

ACTIVE AND REACTIVE POWER	FLOW SOLUT	IONS	ACTIVE AND REACTIVE POWER FLOW SOLUTIONS						
l k m NAME	Pkm[kW]	Qkm[kVAr]	l k m NAME	Pkm[kW]	Qkm[kVAr]				
93 82 83 MTA_S_46698-MTA_S_41151	7.12	2.20	143 126 127 MTS_S_52537-MTS_S_52578	19.78	6.15				
94 84 303 MTA_L_41151-TRAFO_4686	7.08	2.04	144 128 309 MTS_L_52578-TRAF0_18018	19.65	5.66				
95 83 84 MTA_S_41151-MTA_L_41151	7.12	2.20	145 127 128 MTS_S_52578-MTS_L_52578	19.78	6.15				
96 82 85 MTA_S_46698-MTA_L_46698	0.00	0.00	146 125 129 MTA_S_43259-MTA_S_43260	11.86	3.66				
97 65 86 MTA_S_118303-MTS_S_21493	30.40	9.56	147 129 130 MTA_S_43260-MTA_S_43916	11.86	3.66				
98 87 304 MT5_L_21493-TRAF0_28087	30.18	8.69	148 130 131 MTA_S_43916-MTA_S_43917	11.86	3.66				
99 86 87 MTS_S_21493-MTS_L_21493	30.40	9.56	149 132 310 MTA_L_43917-TRAF0_2867	11.79	3.40				
100 55 88 MTA_S_1029-MTA_S_43910	684.34	216.09	150 131 132 MTA_S_43917-MTA_L_43917	11.86	3.66				
101 88 89 MTA_S_43910-MTA_S_47959	684.30	216.03	151 125 133 MTA_S_43259-MTA_S_43262	23.73	7.38				
102 89 90 MTA_S_47959-MTA_S_28494	684.27	215.97	152 133 134 MTA_S_43262-MTA_S_43914	23.73	7.38				
103 90 91 MTA_S_28494-MTA_S_28493	85.81	26.94	153 134 135 MTA_S_43914-MTA_S_43915	23.73	7.38				
104 91 92 MTA_S_28493-MTS_S_3958	85.81	26.94	154 136 311 MTA_L_43915-TRAFO_356	23.58	6.79				
105 92 93 MTS_S_3958-MTS_S_3078	85.81	26.94	155 135 136 MTA_S_43915-MTA_L_43915	23.73	7.38				
106 93 94 MTS_S_3078-MTS_S_3079	85.81	26.94	156 123 137 MTA_S_43257-MTA_S_43264	63.33	19.91				
107 94 95 MTS_S_3079-MTS_S_3085	55.42	17.42	157 137 138 MTA_S_43264-MTA_S_44181	0.00	0.00				
108 95 96 MTS_S_3085-MTS_S_3086	55.42	17.42	158 138 139 MTA_S_44181-MTA_L_44181	0.00	0.00				
109 97 305 MTS_L_3086-TRAF0_20133	55.02	15.85	159 137 140 MTA_S_43264-MTS_S_3413	63.33	19.91				
110 96 97 MTS_S_3086-MTS_L_3086	55.42	17.42	160 141 312 MTS_L_3413-TRAF0_20063	62.88	18.11				
111 94 98 MTS_S_3079-MTS_S_3081	30.39	9.52	161 140 141 MTS_S_3413-MTS_L_3413	63.33	19.91				
112 98 99 MTS_S_3081-MTS_S_3082	30.39	9.52	162 117 142 MTA_S_43253-MTA_S_85484	260.97	83.02				
113 99 100 MTS_S_3082-MTS_S_3083	30.39	9.52	163 142 143 MTA_S_85484-MTA_S_85485	260.97	83.02				
114 100 101 MTS_S_3083-MTS_S_3084	30.39	9.52	164 143 144 MTA_S_85485-MTA_S_151833	260.97	83.02				
115 102 306 MTS_L_3084-TRAF0_20407	30.18	8.69	165 144 145 MTA_S_151833-MTA_S_151834	260.97	83.02				
116 101 102 MTS_S_3084-MTS_L_3084	30.39	9.52	166 145 146 MTA_S_151834-MTA_S_85486	260.97	83.02				
117 90 103 MTA_S_28494-MTA_S_50177	598.43	188.98	167 146 147 MTA_S_85486-MTA_S_85487	260.97	83.02				
118 103 104 MTA_S_50177-MTA_S_47966	598.43	188.97	168 147 148 MTA_S_85487-MTA_S_85483	260.97	83.02				
119 104 105 MTA_S_47966-MTA_S_47967	598.40	188.92	169 148 149 MTA_S_85483-MTS_S_5111	260.97	83.02				
120 105 106 MTA_S_47967-MTA_S_44716	598.36	188.87	170 149 150 MTS_S_5111-MTS_S_5099	260.96	83.02				
121 106 107 MTA_S_44716-MTA_S_44717	580.53	183.27	171 150 151 MTS_S_5099-MTS_S_5106	260.96	83.02				
122 107 108 MTA_S_44717-MTA_S_122165	0.00	0.00	172 151 152 MTS_S_5106-MTS_S_5110	189.72	60.62				
123 107 109 MTA_S_44717-MTA_S_47971	580.53	183.26	173 153 313 MTS_L_5110-TRAF0_21410	188.83	54.39				
124 109 110 MTA_S_47971-MTA_S_43913	580.51	183.23	174 152 153 MTS_S_5110-MTS_L_5110	189.72	60.62				
125 110 111 MTA_S_43913-MTA_S_84120	30.40	9.56	175 151 154 MTS_S_5106-MTS_S_5108	31.66	9.96				
126 112 307 MTA_L_84120-TRAF0_21098	30.18	8.69	176 155 314 MTS_L_5108-TRAF0_21409	31.44	9.06				
127 111 112 MTA_S_84120-MTA_L_84120	30.40	9.56	177 154 155 MTS_S_5108-MTS_L_5108	31.66	9.96				
128 110 113 MTA_S_43913-MTA_S_47973	550.09	173.63	178 151 156 MTS_S_5106-MTS_S_5109	39.58	12.44				
129 113 114 MTA_S_47973-MTA_S_42447	550.07	173.61	179 157 315 MTS_L_5109-TRAF0_21411	39.30	11.32				
130 114 115 MTA_S_42447-MTA_S_108788	443.04	140.07	180 156 157 MTS_S_5109-MTS_L_5109	39.58	12.44				
131 115 116 MTA_S_108788-MTA_S_108763	443.04	140.07	181 114 158 MTA_S_42447-MTA_S_44183	107.02	33.53				
132 116 117 MTA_S_108763-MTA_S_43253	443.01	140.04	182 158 159 MTA_S_44183-MTA_S_117430	90.25	28.37				
133 117 118 MTA_S_43253-MTA_S_43256	182.03	57.01	183 159 160 MTA_S_117430-MTA_S_117431	90.25	28.37				
134 118 119 MTA_S_43256-MTA_S_181313	63.33	19.91	184 160 161 MTA_S_117431-MTA_S_117432	90.25	28.37				
135 119 120 MTA_S_181313-MTA_S_43254	63.33	19.91	185 161 162 MTA_S_117432-MTA_S_42449	90.25	28.37				
136 120 121 MTA_S_43254-MTA_S_43255	63.33	19.91	186 162 163 MTA_S_42449-MTA_S_42450	90.25	28.37				
137 122 308 MTA_L_43255-TRAFO_29454	62.88	18.11	187 163 164 MTA_S_42450-MTS_S_5507	90.25	28.37				
138 121 122 MTA_S_43255-MTA_L_43255	63.33	19.91	188 164 165 MTS_S_5507-MTS_S_5509	90.25	28.37				
139 118 123 MTA_S_43256-MTA_S_43257	118.70	37.10	189 165 166 MTS_S_5509-MTS_S_5510	50.66	15.93				
140 123 124 MTA_S_43257-MTA_S_43258	55.37	17.19	190 167 316 MTS_L_5510-TRAF0_2819	50.30	14.49				
141 124 125 MTA_S_43258-MTA_S_43259	55.37	17.19	191 166 167 MTS_S_5510-MTS_L_5510	50.66	15.93				
142 125 126 MTA_S_43259-MTS_S_52537	19.78	6.15	192 165 168 MTS_S_5509-MTS_S_5512	39.58	12.44				

ACTIVE AND REACTIVE POWER	FLOW SOLUTI	ONS	ACTIVE AND REACTIVE POWER FLOW SOLUTIONS						
l k m NAME	Pkm [kW]		l k m NAME Pkm[kW]	Qkm[kVAr]					
193 169 317 MTS_L_5512-TRAF0_13301	39.30	11.32	243 11 211 MTA_S_47948-MTS_S_2865 20.56	6.34					
194 168 169 MTS_S_5512-MTS_L_5512	39.58	12.44	244 211 212 MTS_S_2865-MTS_S_2866 15.81	4.88					
195 158 170 MTA_S_44183-MTA_S_94284	11.86	3.66	245 212 213 MTS_S_2866-MTA_S_80662 15.81	4.88					
196 170 171 MTA_S_94284-MTA_S_94285	11.86	3.66	246 213 214 MTA_S_80662-MTA_S_80663 15.81	4.88					
197 171 172 MTA_S_94285-MTA_S_94286	11.86	3.66	247 215 325 MTA_L_80663-TRAF0_33490 15.73	4.53					
198 172 173 MTA_S_94286-MTA_S_94287	11.86	3.66	248 214 215 MTA_S_80663-MTA_L_80663 15.81	4.88					
199 173 174 MTA_S_94287-MTA_S_94288	11.86	3.66	249 211 216 MTS_S_2865-MTA_S_45327 4.74	1.46					
200 175 318 MTA_L_94288-TRAF0_25262	11.79	3.40	250 217 326 MTA_L_45327-TRAF0_18084 4.72	1.36					
201 174 175 MTA_S_94288-MTA_L_94288	11.86	3.66	251 216 217 MTA_S_45327-MTA_L_45327 4.74	1.46					
202 158 176 MTA_S_44183-MTA_S_44213	4.91	1.49	252 10 218 MTA_S_47949-MTA_S_46164 469.49	146.87					
203 176 177 MTA_S_44213-MTA_S_43920	4.91	1.49	253 218 219 MTA_S_46164-MTS_S_3451 15.81	4.88					
204 177 178 MTA_S_43920-MTA_S_43921	4.91	1.49	254 220 327 MTS_L_3451-TRAF0_15209 15.73	4.53					
205 179 319 MTA_L_43921-TRAF0_4764	4.88	1.38	255 219 220 MTS_S_3451-MTS_L_3451 15.81	4.88					
206 178 179 MTA_S_43921-MTA_L_43921	4.91	1.49	256 218 221 MTA_S_46164-MTA_S_85752 453.68	141.99					
207 176 180 MTA_S_44213-MTA_S_94628	0.00	0.00	257 221 222 MTA_S_85752-MTA_S_85753 453.64	141.97					
208 180 181 MTA_S_94628-MTA_S_94626	0.00	0.00	258 222 223 MTA_S_85753-MTA_S_85754 453.64	141.97					
209 181 182 MTA_S_94626-MTA_L_94625	0.00	0.00	259 223 224 MTA_S_85754-MTA_S_166775 453.60	141.94					
210 114 183 MTA_S_42447-MTA_L_42448	0.00	0.00	260 224 225 MTA_S_166775-MTS_S_115742 453.55	141.92					
211 106 184 MTA_S_44716-MTA_S_47968	17.80	5.53	261 225 226 MTS_S_115742-MTS_S_26608 30.48	9.58					
212 184 185 MTA_S_47968-MTA_S_47969	17.80	5.53	262 226 227 MTS_S_26608-MTS_S_2339 30.48	9.58					
213 185 186 MTA_S_47969-MTA_S_47970	17.80	5.53	263 228 328 MTS_L_2339-TRAF0_20504 30.27	8.72					
214 187 320 MTA_L_47970-TRAF0_15176	17.69	5.09	264 227 228 MTS_S_2339-MTS_L_2339 30.48	9.58					
215 186 187 MTA_S_47970-MTA_L_47970	17.80	5.53	265 225 229 MTS_S_115742-MTA_S_45338 423.07	132.33					
216 54 188 MTA_S_47952-MTA_S_50172	15.81	4.88	266 229 230 MTA_S_45338-MTS_S_89187 423.04	132.31					
217 189 321 MTA_L_50172-TRAF0_4623	15.73	4.53	267 230 231 MTS_S_89187-MTA_S_45340 288.54	89.98					
218 188 189 MTA_S_50172-MTA_L_50172	15.81	4.88	268 231 232 MTA_S_45340-MTA_S_44718 288.54	89.98					
219 31 190 MTA_S_43907-MTA_L_47946	0.00	0.00	269 232 233 MTA_S_44718-MTA_S_11676 23.73	7.38					
220 23 191 MTA_S_125659-MTA_S_125661	0.00	0.00	270 233 234 MTA_S_11676-MTS_S_3230 23.73	7.38					
221 191 192 MTA_S_125661-MTA_L_125661	0.00	0.00	271 235 329 MTS_L_3230-TRAF0_18126 23.59	6.79					
222 20 193 MTA_S_45330-MTA_S_45331	1.03	0.22	272 234 235 MTS_S_3230-MTS_L_3230 23.73	7.38					
223 194 322 MTA_L_45331-TRAF0_2378	1.03	0.21	273 232 236 MTA_S_44718-MTA_S_130180 248.97	77.72					
224 193 194 MTA_S_45331-MTA_L_45331	1.03	0.22	274 236 237 MTA_S_130180-MTA_S_145835 169.91	52.81					
225 14 195 MTA_S_178369-MTS_S_122995	15.81	4.88	275 237 238 MTA_S_145835-MTS_S_59256 154.09	47.93					
226 195 196 MTS_S_122995-MTS_S_122996	15.81	4.88	276 238 239 MTS_S_59256-MTA_S_43927 114.50	35.49					
227 196 197 MTS_S_122996-MTS_S_122997	15.81	4.88	277 239 240 MTA_S_43927-MTA_S_37847 108.79	33.86					
228 197 198 MTS_S_122997-MTS_S_122998	15.81	4.88	278 240 241 MTA_S_37847-MTA_S_37848 108.79	33.86					
229 199 323 MTS_L_122998-TRAF0_34616	15.73	4.53	279 241 242 MTA_S_37848-MTA_S_96973 78.31	24.28					
230 198 199 MTS_S_122998-MTS_L_122998	15.81	4.88	280 242 243 MTA_S_96973-MTA_S_42722 25.32	7.87					
231 11 200 MTA_S_47948-MTA_S_136638	17.80	5.53	281 243 244 MTA_S_42722-MTA_S_104148 25.32	7.87					
232 200 201 MTA_S_136638-MTA_S_50173	0.00	0.00	282 244 245 MTA_S_104148-MTA_S_104149 25.32	7.87					
233 201 202 MTA_S_50173-MTA_S_122160	0.00	0.00	283 245 246 MTA_S_104149-MTA_S_104150 25.32	7.87					
234 202 203 MTA_S_122160-MTA_S_122161	0.00	0.00	284 247 330 MTA_L_104150-TRAF0_21994 25.16	7.25					
235 203 204 MTA S 122161-MTA S 122162	0.00	0.00	285 246 247 MTA_S_104150-MTA_L_104150 25.32	7.87					
236 204 205 MTA 5 122162-MTA 5 122163	0.00	0.00	286 242 248 MTA_S_96973-MTA_S_43929 11.86	3.66					
237 205 206 MTA 5 122163-MTA 5 50174	0.00	0.00	287 248 249 MTA_S_43929-MTA_S_43930 11.86	3.66					
238 200 207 MTA 5 136638-MTS 5 49058	17.80	5.53	288 250 331 MTA_L_43930-TRAFO_6488 11.80	3.40					
239 207 208 MTS_S_49058-MTS_S_49059	17.80	5.53	289 249 250 MTA_S_43930-MTA_L_43930 11.86	3.66					
240 208 209 MIS_5_49059-MIS_5_49060	17.80	5.53	290 242 251 MTA_S_96973-MTA_S_96974 41.13	12.75					
241 210 324 MTS_L_49060-TRAF0_2397	17.69	5.10	291 251 252 MTA_S_96974-MTA_S_96975 15.81	4.88					
242 209 210 MIS_S_49060-MIS_L_49060	17.80	5.53	292 252 253 MTA_S_96975-MTA_S_47936 15.81	4.88					

			-ACTIVE AND REACTIVE POWER	FLOW SOLUTI	DNS
1	k	m	NAME	Pkm[kW]	 Qkm[kVAr]
293	3 253	254	MTA S 47936-MTA S 47937	15.81	4.88
294	255	332	MTA L 47937-TRAFO 8018	15.73	4.53
295	254	255	MTA S 47937-MTA L 47937	15.81	4.88
296	5 251	256	MTA S 96974-MTA S 96977	25.32	7.87
29	256	257	MTA S 96977-MTA S 96978	25.32	7.87
298	258	333	MTA L 96978-TRAFO 21967	25.16	7.25
299	257	258	MTA S 96978-MTA L 96978	25.32	7.87
300	241	259	MTA S 37848-MTA S 37851	30.48	9.58
30	259	260	MTA S 37851-MTA S 37852	30.48	9.58
302	2 260	261	MTA S 37852-MTA S 37854	30.48	9.58
303	3 262	334	MTA L 37854-TRAFO 30887	30.27	8.72
304	261	262	MTA S 37854-MTA L 37854	30.48	9.58
305	5 239	263	MTA S 43927-MTA S 43928	5.71	1.63
30	5 264	335	MTA L 43928-TRAFO 27639	5.67	1.48
30	263	264	MTA 5 43928-MTA L 43928	5.71	1.63
308	238	265	MTS S 59256-MTS S 59257	39.59	12.44
30	265	266	MTS S 59257-MTS S 59261	39.59	12.44
310	266	267	MTS S 59261-MTS S 59566	39.59	12.44
31	267	268	MTS S 59566-MTS S 59259	39.59	12.44
312	268	269	MTS S 59259-MTS S 59260	39.59	12.44
31	3 270	336	MTS L 59260-TRAFO 31246	39.31	11.32
314	269	270	MTS S 59260-MTS L 59260	39.59	12.44
315	237	271	MTA S 145835-MTA S 43926	15.81	4.88
31	272	337	MTA L 43926-TRAFO 4698	15.73	4.53
31	271	272	MTA S 43926-MTA L 43926	15.81	4.88
318	236	273	MTA S 130180-MTA S 130182	79.06	24.90
31	273	274	MTA S 130182-MTA S 130183	79.06	24.90
320	274	275	MTA S 130183-MTS S 42935	79.06	24,90
32	275	276	MTS S 42935-MTS S 42936	79.06	24,90
323	276	277	MTS S 42936-MTS S 42937	79.06	24,90
32	277	278	MTS 5 42937-MTS 5 42938	79.06	24.90
324	279	338	MTS L 42938-TRAFO 29089	78,61	22.64
32	278	279	MTS S 42938-MTS L 42938	79.06	24.90
320	232	280	MTA S 44718-MTA S 43924	15.81	4.88
32	281	339	MTA L 43924-TRAFO 4695	15.73	4.53
325	280	281	MTA S 43924-MTA L 43924	15.81	4.88
320	230	282	MTS S 89187-MTS S 89188	134.49	42.32
330	282	283	MTS S 89188-MTS S 89189	134.49	42.32
33	283	284	MTS S 89189-MTS S 5469	134.49	42.32
333	284	285	MTS S 5469-MTS S 102494	134.49	42.32
33	285	286	MTS S 102494-MTS S 5472	134.48	42.32
33	286	287	MTS S 5472-MTS S 5474	55.42	17.42
33	287	288	MTS S 5474-MTS S 5475	55.42	17.42
33	289	340	MTS L 5475-TRAFO 28130	55.03	15.85
33	288	289	MTS S 5475-MTS L 5475	55.42	17.42
33	286	290	MTS S 5472-MTS S 5477	79.06	24.90
330	291	341	MTS L 5477-TRAFO 33382	78.61	22.64
340	290	291	MTS S 5477-MTS I. 5477	79.06	24.90
54				, , , , , , , , , , , , , , , , , , , ,	24.00

			CURRENT MAGNITUDE BY LI	NES SOLUTIONS				CURRENT MAGNITUDE BY LINES	5 SOLUTIONS
1	k	m	NAME	Ikm[A]	1	k	m	NAME	Ikm[A]
1	1	2	0500040V01-MTS S 2855	136.42	48	43	44	MTS_S_3619-MTS_S_3620	8.66
2	2	3	MTS S 2855-MTA S 69311	136.41	49	44	45	MTS_S_3620-MTS_S_3615	8.67
3	3	4	MTA S 69311-MTA S 47951	136.45	50	45	46	MTS_S_3615-MTS_S_55118	8.39
4	4	5	MTA S 47951-MTA S 43852	136.41	51	46	47	MTS_S_55118-MTS_S_55116	5.18
5	5	6	MTA 5 43852-MTS 5 8526	2.55	52	47	48	MTS_S_55116-MTS_S_55117	5.29
6	6	7	MTS S 8526-MTS S 8527	2.49	53	48	49	MTS_S_55117-MTS_S_4911	5.26
7	7	8	MTS S 8527-MTS S 8528	2.63	54	50	297	MTS_L_4911-TRAF0_21429	5.16
8	9	292	MTS L 8528-TRAFO 21909	2.48	55	49	50	MIS_S_4911-MIS_L_4911	5.34
9	8	9	MTS S 8528-MTS L 8528	2.63	50	40	51	MTS S EE110 MTS S 2517	2.20
10	5	10	MTA S 43852-MTA S 47949	133.93	58	53	209	MTS I 3617_TRAFO 173	3 23
11	10	11	MTA S 47949-MTA S 47948	95.75	59	52	53	MTS S 3617-MTS I. 3617	3 35
12	11	12	MTA S 47948-MTA S 122159	92.63	60	41	54	MTA S 29195-MTA S 47952	75.92
13	12	13	MTA S 122159-MTA S 31570	92.69	61	54	55	MTA S 47952-MTA S 1029	74.63
14	13	14	MTA S 31570-MTA S 178369	92.63	62	55	56	MTA S 1029-MTA L 1029	1.01
15	14	15	MTA S 178369-MTA S 31176	91.34	63	57	56	MTA S 20206-MTA L 1029	1.02
16	15	16	MTA S 31176-MTA S 129783	3.61	64	58	57	MTA S 20205-MTA S 20206	0.33
17	17	293	MTA L 129783-TRAFO 29561	0.19	65	57	59	MTA 5 20206-MTA 5 20214	1.00
18	16	17	MTA 5 129783-MTA L 129783	4.66	66	59	60	MTA_S_20214-MTA_S_20215	1.59
19	15	18	MTA S 31176-MTA S 31177	6.37	67	61	299	MTA_L_20215-TRAF0_20178	0.96
20	19	294	MTA L 31177-TRAFO 20072	0.64	68	60	61	MTA_S_20215-MTA_L_20215	1.63
21	18	19	MTA S 31177-MTA L 31177	6.20	69	57	62	MTA_S_20206-MTA_L_20213	0.51
22	15	20	MTA S 31176-MTA S 45330	90.51	70	55	63	MTA_S_1029-MTA_S_171253	17.88
23	20	21	MTA S 45330-MTA S 125657	90.43	71	63	64	MTA_S_171253-MTA_S_112741	17.94
24	21	22	MTA S 125657-MTA S 125658	90.43	72	64	65	MTA_S_112741-MTA_S_118303	17.88
25	22	23	MTA S 125658-MTA S 125659	90.43	73	65	66	MTA_S_118303-MTA_S_45333	15.40
26	23	24	MTA S 125659-MTA S 63951	90.43	74	66	67	MTA_5_45333-MTA_5_29073	14.83
27	24	25	MTA S 63951-MTA L 63951	2.08	75	60	60	MIA_5_29075-MIA_5_50426	14.02
28	24	26	MTA S 63951-MTA S 73433	90.43	70	60	70	MTA S 50426-MTA S 2362	14.02
29	26	27	MTA S 73433-MTA S 46166	90.43	78	70	71	MTS S 2362-MTS S 2363	14.83
30	27	28	MTA S 46166-MTA S 50170	1.66	79	71	72	MTS S 2363-MTS S 3461	14.82
31	29	295	MTA L 50170-TRAFO 2467	0.96	80	72	73	MTS S 3461-MTS S 2733	14.83
32	28	29	MTA S 50170-MTA L 50170	1.66	81	73	74	MTS S 2733-MTS S 3463	9.77
33	27	30	MTA S 46166-MTA S 47947	89.47	82	75	300	MTS L 3463-TRAFO 20235	9.66
34	30	31	MTA S 47947-MTA S 43907	89.46	83	74	75	MTS S 3463-MTS L 3463	9.70
35	31	32	MTA S 43907-MTA S 43908	5.16	84	73	76	MTS_S_2733-MTS_S_3769	5.22
36	32	33	MTA 5 43908-MTA 5 43909	5.17	85	76	77	MTS_S_3769-MTS_S_3770	4.31
37	33	34	MTA S 43909-MTS S 124257	5.26	86	78	301	MTS_L_3770-TRAF0_6626	2.58
38	34	35	MTS S 124257-MTS S 3407	5.17	87	77	78	MTS_S_3770-MTS_L_3770	2.67
39	36	296	MTS L 3407-TRAFO 9991	5.16	88	76	79	MTS_S_3769-MTS_S_3772	2.66
40	35	36	MTS S 3407-MTS L 3407	5.16	89	79	80	MTS_S_3772-MTS_S_3773	3.53
41	31	37	MTA S 43907-MTA S 50178	84.30	90	81	302	MTS_L_3773-TRAF0_16491	2.58
42	37	38	MTA S 50178-MTA S 157983	84.34	91	80	81	MTS_S_3773-MTS_L_3773	2.66
43	38	39	MTA S 157983-MTA S 29193	84,33	92	66	82	MTA_S_45333-MTA_S_46698	0.61
44	39	40	MTA S 29193-MTA S 29194	84.30	93	82	83	MTA_S_46698-MTA_S_41151	1.59
45	40	41	MTA S 29194-MTA S 29195	84.30	94	84	303	MIA_L_41151-TRAF0_4686	0.58
46	41	42	MTA S 29195-MTA L 29195	0.29	95	83	84	MTA_5_41151-MTA_L_41151	1.59
47	41	43	MTA S 29195-MTS S 3619	8,40	90	62	00	MTA 5 119303-MIA L 40098	0.29
-1/	41	10	ma 5 25155-m5 5 5015	0.10	97	05	20	MIA_5_118303-MI5_5_21493	2.00

ANEXO 20. Corriente por las líneas – Alimentador 0421.

	CURRENT MAGNITUDE BY LINES SOLUTIONS											
1	k	m	NAME	Ikm[A]	1	k	m	NAME	Ikm[A]			
98	87	304	MTS_L_21493-TRAF0_28087	2.48	14	8 130	131	MTA_S_43916-MTA_S_43917	1.27			
99	86	87	MTS_S_21493-MTS_L_21493	2.62	14	9 132	310	MTA_L_43917-TRAF0_2867	0.97			
100	55	88	MTA_S_1029-MTA_S_43910	55.79	15	0 131	132	MTA_S_43917-MTA_L_43917	1.21			
101	88	89	MTA_S_43910-MTA_S_47959	55.79	15	1 125	133	MTA_S_43259-MTA_S_43262	1.94			
102	89	90	MTA_S_47959-MTA_S_28494	55.79	15	2 133	134	MTA_S_43262-MTA_S_43914	2.03			
103	90	91	MTA_S_28494-MTA_S_28493	7.07	15	3 134	135	MTA_S_43914-MTA_S_43915	2.03			
104	91	92	MTA_S_28493-MTS_S_3958	6.99	15	4 136	311	MTA_L_43915-TRAF0_356	1.93			
105	92	93	MTS_S_3958-MTS_S_3078	7.01	15	5 135	136	MTA_S_43915-MTA_L_43915	2.03			
106	93	94	MTS_S_3078-MTS_S_3079	7.00	15	6 123	137	MTA_S_43257-MTA_S_43264	5.17			
107	94	95	MTS_S_3079-MTS_S_3085	4.57	15	7 137	138	MTA_S_43264-MTA_S_44181	0.21			
108	95	96	MTS_S_3085-MTS_S_3086	4.64	15	8 138	139	MTA_S_44181-MTA_L_44181	0.20			
109	97	305	MTS_L_3086-TRAF0_20133	4.52	15	9 137	140	MTA_S_43264-MTS_S_3413	5.23			
110	96	97	MTS_S_3086-MTS_L_3086	4.64	16	0 141	312	MTS_L_3413-TRAF0_20063	5.16			
111	94	98	MTS_S_3079-MTS_S_3081	2.48	16	1 140	141	MTS_S_3413-MTS_L_3413	5.17			
112	98	99	MTS_S_3081-MTS_S_3082	2.48	16	2 117	142	MTA_S_43253-MTA_S_85484	21.35			
113	99	100	MTS_S_3082-MTS_S_3083	2.48	16	3 142	143	MTA_S_85484-MTA_S_85485	21.36			
114	100	101	MTS_S_3083-MTS_S_3084	2.59	16	4 143	144	MTA S 85485-MTA S 151833	21.31			
115	102	306	MTS_L_3084-TRAF0_20407	2.48	16	5 144	145	MTA S 151833-MTA S 151834	21.32			
116	101	102	MTS S 3084-MTS L 3084	2.55	16	6 145	146	MTA S 151834-MTA S 85486	21.32			
117	90	103	MTA S 28494-MTA S 50177	48.80	16	7 146	147	MTA S 85486-MTA S 85487	21.32			
118	103	104	MTA S 50177-MTA S 47966	48.80	16	8 147	148	MTA S 85487-MTA S 85483	21.31			
119	104	105	MTA S 47966-MTA S 47967	48.80	16	9 148	149	MTA S 85483-MTS S 5111	21.32			
120	105	106	MTA S 47967-MTA S 44716	48.80	17	0 149	150	MTS S 5111-MTS S 5099	21.31			
121	106	107	MTA S 44716-MTA S 44717	47.35	17	1 150	151	MTS S 5099-MTS S 5106	21.32			
122	107	108	MTA S 44717-MTA S 122165	2.29	17	2 151	152	MTS S 5106-MTS S 5110	15.52			
123	107	109	MTA S 44717-MTA S 47971	47.35	17	3 153	313	MTS L 5110-TRAFO 21410	15.49			
124	109	110	MTA S 47971-MTA S 43913	47.35	17	4 152	153	MTS S 5110-MTS L 5110	15.58			
125	110	111	MTA S 43913-MTA S 84120	2.61	17	5 151	154	MTS S 5106-MTS S 5108	2.68			
126	112	307	MTA L 84120-TRAFO 21098	2.48	17	6 155	314	MTS L 5108-TRAFO 21409	2.58			
127	111	112	MTA S 84120-MTA L 84120	2.55	17	7 154	155	MTS S 5108-MTS L 5108	3.48			
128	110	113	MTA S 43913-MTA S 47973	44.87	17	8 151	156	MTS S 5106-MTS S 5109	3.32			
129	113	114	MTA S 47973-MTA S 42447	44.87	17	9 157	315	MTS L 5109-TRAFO 21411	3.23			
130	114	115	MTA S 42447-MTA S 108788	36.15	18	156	157	MTS S 5109-MTS L 5109	3.60			
131	115	116	MTA S 108788-MTA S 108763	36.28	18	1 114	158	MTA S 42447-MTA S 44183	8.73			
132	116	117	MTA S 108763-MTA S 43253	36.15	18	2 158	159	MTA S 44183-MTA S 117430	7.37			
133	117	118	MTA S 43253-MTA S 43256	14.84	18	3 159	160	MTA S 117430-MTA S 117431	7.38			
134	118	119	MTA S 43256-MTA S 181313	5.23	18	4 160	161	MTA S 117431-MTA S 117432	7.39			
135	119	120	MTA S 181313-MTA S 43254	5.18	18	5 161	162	MTA S 117432-MTA S 42449	7.38			
136	120	121	MTA S 43254-MTA S 43255	5.17	18	6 162	163	MTA S 42449-MTA S 42450	7.39			
137	122	308	MTA L 43255-TRAFO 29454	5.16	18	7 163	164	MTA S 42450-MTS S 5507	7.36			
138	121	122	MTA S 43255-MTA L 43255	5,17	19	R 164	165	MTS S 5507-MTS S 5509	7 38			
139	118	123	MTA S 43256-MTA S 43257	9.68	18	9 169	166	MTS S 5509-MTS S 5510	4.17			
140	123	124	MTA S 43257-MTA S 43258	4.51	19	167	316	MTS L 5510-TRAFO 2819	4 13			
141	124	125	MTA S 43258-MTA S 43259	4,51	10	1 164	167	MTS S 5510-MTS I. 5510	4 19			
142	125	126	MTA S 43259-MTS S 52537	1.69	10	2 165	168	MTS S 5509_MTS S 5512	3 24			
143	126	127	MTS S 52537-MTS S 52578	2,71	10	3 160	317	MTS I 5512_TDARG 13201	3 22			
144	128	309	MTS L 52578-TRAFO 18018	1,61	10	1 160	160	MTS S 5512_MTS T 5512	3 27			
145	127	128	MTS S 52578-MTS I 52578	2.71	19	5 150	170	MTA S AA182_MTA S 64204	1 26			
146	125	129	MTA S 43259-MTA S 43260	0,98	19	6 170	171	MTA S GADOALMTA S GADOE	1.30			
147	129	130	MTA S 43260-MTA S 43916	1.03	19	7 171	172	MTA C 04205 MTA C 04205	1.40			
141	149	100	III J 40200 III J 40010	1.05	19	1 1 1 1	112	MIA 5 94205-MIA 5 94286	1.12			

CURRENT MAGNITUDE BY LINE	S SOLUTIONS	CURRENT MAGNITUDE BY LINE	S SOLUTIONS
l k m NAME	Ikm[A]	l k m NAME	Ikm[A]
198 172 173 MTA_S_94286-MTA_S_94287	0.98	248 214 215 MTA_S_80663-MTA_L_80663	4.48
199 173 174 MTA_S_94287-MTA_S_94288	1.37	249 211 216 MTS_S_2865-MTA_S_45327	1.15
200 175 318 MTA_L_94288-TRAF0_25262	0.97	250 217 326 MTA_L_45327-TRAFO_18084	0.39
201 174 175 MTA_S_94288-MTA_L_94288	1.37	251 216 217 MTA_S_45327-MTA_L_45327	1.69
202 158 176 MTA_S_44183-MTA_S_44213	0.43	252 10 218 MTA_S_47949-MTA_S_46164	38.19
203 176 177 MTA_S_44213-MTA_S_43920	0.41	253 218 219 MTA_S_46164-MTS_S_3451	1.76
204 177 178 MTA_S_43920-MTA_S_43921	1.26	254 220 327 MTS_L_3451-TRAF0_15209	1.28
205 179 319 MTA_L_43921-TRAF0_4764	0.40	255 219 220 MTS_S_3451-MTS_L_3451	1.30
206 178 179 MTA_S_43921-MTA_L_43921	1.26	256 218 221 MTA_S_46164-MTA_S_85752	36.92
207 176 180 MTA_S_44213-MTA_S_94628	0.30	257 221 222 MTA_S_85752-MTA_S_85753	36.90
208 180 181 MTA_S_94628-MTA_S_94626	4.75	258 222 223 MTA_S_85753-MTA_S_85754	36.91
209 181 182 MTA_S_94626-MTA_L_94625	0.58	259 223 224 MTA_S_85754-MTA_S_166775	36.90
210 114 183 MTA_S_42447-MTA_L_42448	0.42	260 224 225 MTA_S_166775-MTS_S_115742	36.90
211 106 184 MTA_S_44716-MTA_S_47968	1.52	261 225 226 MTS_S_115742-MTS_S_26608	2.94
212 184 185 MTA_S_47968-MTA_S_47969	1.46	262 226 227 MTS_S_26608-MTS_S_2339	2.52
213 185 186 MTA_S_47969-MTA_S_47970	1.45	263 228 328 MTS_L_2339-TRAF0_20504	2.48
214 187 320 MTA_L_47970-TRAF0_15176	1.45	264 227 228 MTS_S_2339-MTS_L_2339	2.84
215 186 187 MTA_S_47970-MTA_L_47970	1.52	265 225 229 MTS_S_115742-MTA_S_45338	34.43
216 54 188 MTA_S_47952-MTA_S_50172	1.75	266 229 230 MTA_S_45338-MTS_S_89187	34.42
217 189 321 MTA_L_50172-TRAF0_4623	1.29	267 230 231 MTS_S_89187-MTA_S_45340	23.47
218 188 189 MTA_S_50172-MTA_L_50172	1.75	268 231 232 MTA_S_45340-MTA_S_44718	23.48
219 31 190 MTA_S_43907-MTA_L_47946	0.22	269 232 233 MTA_S_44718-MTA_S_11676	1.94
220 23 191 MTA_S_125659-MTA_S_125661	0.28	270 233 234 MTA_S_11676-MTS_S_3230	2.01
221 191 192 MTA_S_125661-MTA_L_125661	2.77	271 235 329 MTS_L_3230-TRAF0_18126	1.93
222 20 193 MTA_S_45330-MTA_S_45331	1.56	272 234 235 MTS_S_3230-MTS_L_3230	2.19
223 194 322 MTA_L_45331-TRAF0_2378	0.08	273 232 236 MTA_S_44718-MTA_S_130180	20.26
224 193 194 MTA_S_45331-MTA_L_45331	1.56	274 236 237 MTA_S_130180-MTA_S_145835	13.83
225 14 195 MTA_S_178369-MTS_S_122995	1.76	275 237 238 MTA_S_145835-MTS_S_59256	12.53
226 195 196 MTS_S_122995-MTS_S_122996	2.03	276 238 239 MTS_S_59256-MTA_S_43927	9.31
227 196 197 MTS_S_122996-MTS_S_122997	1.31	277 239 240 MTA_S_43927-MTA_S_37847	8.85
228 197 198 MTS_S_122997-MTS_S_122998	2.23	278 240 241 MTA_S_37847-MTA_S_37848	8.86
229 199 323 MTS_L_122998-TRAF0_34616	1.29	279 241 242 MTA_S_37848-MTA_S_96973	6.37
230 198 199 MTS_S_122998-MTS_L_122998	2.23	280 242 243 MTA_S_96973-MTA_S_42722	2.07
231 11 200 MTA_S_47948-MTA_S_136638	1.52	281 243 244 MTA_S_42722-MTA_S_104148	2.09
232 200 201 MTA_S_136638-MTA_S_50173	0.66	282 244 245 MTA_S_104148-MTA_S_104149	2.07
233 201 202 MTA_S_50173-MTA_S_122160	3.93	283 245 246 MTA_S_104149-MTA_S_104150	2.18
234 202 203 MTA_S_122160-MTA_S_12216	0.45	284 247 330 MTA_L_104150-TRAF0_21994	2.06
235 203 204 MTA_S_122161-MTA_S_122162	1.10	285 246 247 MTA_S_104150-MTA_L_104150	2.18
236 204 205 MTA_S_122162-MTA_S_122163	0.78	286 242 248 MTA_S_96973-MTA_S_43929	1.00
237 205 206 MTA_S_122163-MTA_S_50174	4.30	287 248 249 MTA_S_43929-MTA_S_43930	1.66
238 200 207 MTA_S_136638-MTS_S_49058	2.20	288 250 331 MTA_L_43930-TRAFO_6488	0.96
239 207 208 MTS_S_49058-MTS_S_49059	1.50	289 249 250 MTA_S_43930-MTA_L_43930	1.66
240 208 209 MTS_S_49059-MTS_S_49060	2.46	290 242 251 MTA_S_96973-MTA_S_96974	3.35
241 210 324 MTS_L_49060-TRAF0_2397	1.45	291 251 252 MTA_S_96974-MTA_S_96975	1.29
242 209 210 MTS_S_49060-MTS_L_49060	2.57	292 252 253 MTA_S_96975-MTA_S_47936	1.29
243 11 211 MTA_S_47948-MTS_S_2865	1.70	293 253 254 MTA_S_47936-MTA_S_47937	1.75
244 211 212 MTS_S_2865-MTS_S_2866	2.92	294 255 332 MTA_L_47937-TRAFO_8018	1.29
245 212 213 MTS_S_2866-MTA_S_80662	1.29	295 254 255 MTA_S_47937-MTA_L_47937	1.75
246 213 214 MTA_S_80662-MTA_S_80663	2.73	296 251 256 MTA_S_96974-MTA_S_96977	2.07
247 215 325 MTA_L_80663-TRAF0_33490	1.28	297 256 257 MTA_S_96977-MTA_S_96978	2.20

				CURRENT MAGNITUDE BY LINES	5 SOLUTIONS
- 1		k	m	NAME	Ikm[A]
2	98	258	333	MTA_L_96978-TRAF0_21967	2.06
2	99	257	258	MTA_S_96978-MTA_L_96978	2.20
3	00	241	259	MTA_S_37848-MTA_S_37851	2.56
3	01	259	260	MTA_S_37851-MTA_S_37852	2.49
3	02	260	261	MTA_S_37852-MTA_S_37854	2.56
3	03	262	334	MTA_L_37854-TRAF0_30887	2.48
3	04	261	262	MTA_S_37854-MTA_L_37854	2.56
3	05	239	263	MTA_S_43927-MTA_S_43928	1.59
3	06	264	335	MTA_L_43928-TRAF0_27639	0.46
3	07	263	264	MTA_S_43928-MTA_L_43928	1.59
3	08	238	265	MTS_S_59256-MTS_S_59257	3.39
3	09	265	266	MTS_S_59257-MTS_S_59261	3.32
3	10	266	267	MTS_S_59261-MTS_S_59566	3.28
3	11	267	268	MTS_S_59566-MTS_S_59259	3.23
3	12	268	269	MTS_S_59259-MTS_S_59260	3.31
3	13	270	336	MTS_L_59260-TRAF0_31246	3.22
3	14	269	270	MTS_S_59260-MTS_L_59260	3.33
3	15	237	271	MTA_S_145835-MTA_S_43926	1.75
3	16	272	337	MTA_L_43926-TRAF0_4698	1.29
3	17	271	272	MTA_5_43926-MTA_L_43926	1.75
3	18	236	273	MTA_S_130180-MTA_S_130182	6.55
3	19	273	274	MTA_S_130182-MTA_S_130183	6.44
3	20	274	275	MTA_S_130183-MTS_S_42935	6.51
3	21	275	276	MTS_S_42935-MTS_S_42936	6.51
3	22	276	277	MTS_S_42936-MTS_S_42937	6.50
3	23	277	278	MTS_S_42937-MTS_S_42938	6.68
3	24	279	338	MTS_L_42938-TRAF0_29089	6.44
3	25	278	279	MTS_S_42938-MTS_L_42938	6.68
3	26	232	280	MTA_S_44718-MTA_S_43924	1.77
3	27	281	339	MTA_L_43924-TRAF0_4695	1.29
3	28	280	281	MTA_S_43924-MTA_L_43924	1.76
3	29	230	282	MTS_S_89187-MTS_S_89188	10.97
3	30	282	283	MTS_S_89188-MTS_S_89189	10.97
3	31	283	284	MTS_S_89189-MTS_S_5469	10.98
3	32	284	285	MTS_S_5469-MTS_S_102494	10.96
3	33	285	286	MTS_S_102494-MTS_S_5472	11.00
3	34	286	287	MTS_S_5472-MTS_S_5474	4.56
3	35	287	288	MTS_S_5474-MTS_S_5475	4.59
3	36	289	340	MTS_L_5475-TRAF0_28130	4.51
3	37	288	289	MTS_S_5475-MTS_L_5475	4.58
3	38	286	290	MTS_S_5472-MTS_S_5477	6.51
3	39	291	341	MTS_L_5477-TRAF0_33382	6.44
3	40	290	291	MTS_S_5477-MTS_L_5477	6.51