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A B S T R A C T

Multivariate statistics -Soft Independent Modelling of Class Analogies (SIMCA), Principal Components Analysis
(PCA), Multiple Regression (MR)- were used to search for key biotic and water quality (WQ) variables within a
dataset/matrix collected over a five-year period in the Paute River Basin (Ecuador). Benthic macroinvertebrates
and 27 descriptive physical, chemical, microbiological, hydrological and geomorphological variables were
collected from 64 monitoring sites across the basin. Nine macroinvertebrate biotic indices were calculated. The
SIMCA method was applied to find the most accurate biotic index that best discriminated among less polluted
(C1), moderately polluted (C2) and highly polluted (C3) sites. A cross-validation scheme was applied to evaluate
the performance of the modelling process. Within the PCA that was further refined using a Kruskal-Wallis test,
the key WQ variables that mostly contributed to the macroinvertebrate-based WQ classification were identified.
The results showed that the Elmidae-Plecoptera-Trichoptera (ElmPT) index was the most accurate biotic clas-
sifier. Riparian vegetation and streambed heterogeneity were the best predictors of the C1 class, while the
concentration of faecal coliforms, pH, temperature and dissolved oxygen, best predicted the C3 class. The re-
duction of the field monitored parameters could help designing more cost-effective but equally accurate future
WQ monitoring schemes in the basin.

1. Introduction

Surface water quality (WQ) is affected by many interacting pro-
cesses (Lischeid and Bittersohl, 2008). Commonly, these are a combi-
nation of natural and anthropogenic factors whose relative influence
changes in both time and space (Baker, 2005; Barnett et al., 2008;
Harper et al., 2008). Good quality water is a crucial component for
sustainable socio-economic development (Bartram and Ballance, 1996).
Consequently, monitoring programmes that provide spatiotemporal
representations and reliable WQ estimations are necessary (Simeonov
et al., 2003).

In this context, the use of variables measuring different physical,
chemical and biological properties of surface water bodies is a useful
way to assess their health. From an ecohydrological perspective, it is
necessary to understand the links between physicochemical stressors
(that cause pollution/contamination) and biological receptors (such as
benthic macroinvertebrates) to support policies for the sustainable

management of natural resources (Loinaz, 2012). To this end, im-
plementation of control, as well as protection policies, should be based
on indices of proven reliability, that is, on indices that correctly detect
the health status of the assessed environments (Dos Santos et al., 2011),
contributing decisively to define which and how much improvement is
needed in a given ecosystem (Feio et al., 2014).

Worldwide experience has demonstrated that the most useful bio-
logical assessment methods for freshwater monitoring are based on
benthic macroinvertebrates. Thereby, many indices have been devel-
oped using them for evaluating the ecological status of lotic systems
(Herman and Nejadhashemi, 2015).

Biomonitoring with the use of these indices aims at solving the
problem of determining if a given stream should be considered de-
graded or not, as a result of any anthropic impact. This problem cor-
responds to a classification process using only two classes, namely,
“degraded” or “not degraded” (Dos Santos et al., 2011). Hence, multi-
variate-statistics methods are increasingly in use for tackling
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classification problems in WQ assessments based on large data sets
(Einax et al., 1997; Kannel et al., 2007). In this regard, supervised
pattern recognition, a set of multivariate-statistics techniques, has been
developed to solve class membership problems (Brereton, 2007; Lavine
and Rayens, 2009; Sotomayor et al., 2018).

Various WQ monitoring efforts by local and national Ecuadorian
governments have been carried out in the past at some particular lo-
cations of the country as well as nationwide (SENAGUA, 2016). How-
ever, the resulting data cannot be used for research or management
purposes as it is not publicly available. As an exception, the Ecuadorian
National Secretary of Water (SENAGUA) – Santiago River Hydrographic
Demarcation (DHS), provided the current study with an extensive da-
tabase developed from the records of 64 monitoring sites located in the
Paute River Basin. The database includes 8127 observations, within a 5-
year monitoring program (2008, 2010–2013), containing information
about physical, chemical, hydrological, geomorphological and micro-
biological WQ descriptive variables, as well as, about benthic macro-
invertebrates.

The purpose of this study was (i) to identify and select a benthic
macroinvertebrate index that best reflects the status of the aquatic
ecosystem in the Paute River Basin; and (ii) to identify relationships
between physicochemical, hydromorphological and microbiological
descriptors-variables and the benthic macroinvertebrates. Multivariate
pattern recognition methods, mainly the Soft Independent Modelling of
Class Analogy (SIMCA) method (Wold, 1976; Wold and Sjöström, 1977)
were used. To the best of our knowledge, this is the first ecohy-
drological application of the SIMCA method worldwide.

2. Materials and methods

2.1. Study area and water quality (WQ) monitoring sites

The Paute River Basin (PRB) is located in the south of Ecuador
(Fig. 1) and covers an area of 6442 km2. The length of the river’s main
stem is approximately 120.4 km. The PRB is one of the most important
hydrographic systems of Ecuador due to the exploitation of its high
hydroelectric potential, which currently supports more than 40% of the
energy demand of the country (CONELEC, 2011). The annual average
discharge of the river is about 136 m3 s−1; its temporal variation is
strongly influenced by the presence of hydroelectricity generation
subsystems that are conforming the Integrated Paute System
(CONELEC, 2009). The Paute River provides water resources to agri-
cultural, rural, urban and industrial areas of an important part of the
southern Andes of Ecuador (Da Ros, 1995) and runs to the Upano River,

which belongs to the Amazon River system. Two major cities, namely
Cuenca and Azogues are located in the PRB with approximately
500,000 and 33,850 inhabitants, respectively (2010 census). Pollution
in the PRB comes from both point and non-point sources, including
domestic wastewaters, agricultural runoff, animal husbandry and in-
dustrial effluents (Da Ros, 1995).

The geological features of the basin are very complex, primarily due
to the processes leading to ground up-lift, slope sharpening and re-
sulting in large amounts of suspended sediments that are transported by
the river (Astudillo et al., 2010).

Altitudes range between 500 m and 4250 m above sea level (a.s.l.),
with the majority (61.3%) being in the 2550–3575 m range, 4.3% in the
500–1525 m range, 13.7% in the 1525–2550 m range, and 20.7% of the
basin is situated above 3575 m a.s.l. On average, slopes vary between
25% and 50%; in the upper part of the basin a mountainous relief is
dominant whilst a gentler relief is representative of the central and
lower parts.

Average air temperature varies between 4.4 °C and 18.6 °C. The
lower temperatures correspond to the western Andes range with an
average of 6 °C (Páramo), while the warmest areas are situated in the
valleys and subtropical zones (Amazonia region), with an average
fluctuating between 22 °C and 26 °C. Due to the wide elevation range,
rainfall oscillates in intensity and duration, with maximum annual
averages between 2500 mm and 3000 mm at higher elevations and
minimum annual averages between 600 mm and 800 mm in the valleys.

2.2. Sampling WQ descriptive variables

Twenty-seven WQ descriptive variables were sampled in 64 mon-
itoring sites (Fig. 1), representing the WQ distribution in the study basin
(SENAGUA, 2016). These variables were: aluminium (Al), ammonium-
nitrogen (N-NH4), cadmium (Cd), copper (Cu), chloride (CL), fluoride
(FL), iron (Fe), nickel (Ni), nitrate-nitrogen (N-NO3), lead (Pb), pH,
potassium (K), sodium (Na), total alkalinity (TALK), total hardness
(TH), total phosphorus (P-tot), dissolved oxygen (DO), 5-day bio-
chemical oxygen demand (BOD5), faecal coliforms (FC), river slope
(Slp), Shreve river order (Shreve), elevation (Elev.), electric con-
ductivity (EC), total solids (TS), turbidity (TU), water temperature (WT)
and the fluvial habitat index of the Environmental Protection Agency
(FHI-EPA) (Barbour et al; 1999). The FHI-EPA is focused on the visual
assessment of streambed and riparian habitat, the alteration of which is
considered one of the major stressors of aquatic systems (Barbour et al;
1999).

On average, the monitoring sites were visited five times per year.

Fig. 1. Study area: (a) The Paute River basin in the continental Ecuador, its two largest cities (Quito and Guayaquil) and the location of the 64 water sampling sites.
(b) A Digital Elevation Model of the basin.
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Some were sampled more frequently, because they were located either
at highly polluted sites or, on the contrary, at unaltered environmental
(i.e., reference) locations. As a result, a WQ database was developed for
the nsp = 64 monitoring sites with nrep = 301 sampling replicates of
nv = 27 WQ descriptive variables, resulting in a total of
nobs = nrep × nv = 8127 observations, represented as xi,j, where i = 1,
2, …., nv and j = 1, 2, …, nrep (Fig. 2). Table 1 lists the main statistics
for each of the studied WQ descriptive variables.

2.3. Sampling and analysis of benthic macroinvertebrates

Benthic macroinvertebrates were sampled at each of the 64 mon-
itoring sites (Fig. 1). At each monitoring site, a 20-m long reach was
selected. Three transects, evenly spaced across the transect (located at a
0 m, 10 m and 20 m distance, respectively) were delineated (Von
Ellenrieder, 2007). A macroinvertebrate sample was collected along
each transect. Sampling was carried out for three minutes, encom-
passing all existing microhabitats characterised by different depths,
substrates and water velocities. Samples were collected by following the
standardised ‘kick-sampling’ process, using a 25 × 25 cm2 nylon hand-
net (mesh opening size: 0.5 mm) placed vertically on the stream
bottom, in front of which (upstream) the substratum was vigorously
stirred by kicking it (Jacobsen et al., 1997). The three samples from
each transect were pooled together, and sampling continued by visually
inspecting (for about 20 min) the substrate and aquatic vegetation for
checking that tightly clinging taxa (e.g. Blephariceridae) that may have
not been dislodged by kick-sampling (Roldán, 2003) have also been
collected.

Macroinvertebrates samples were preserved in 70% ethanol solution

and mostly identified to the family level with the use of a stereo-
microscope. nfam = 65 families were identified and grouped into
nord = 19 taxonomic groups (in its great majority orders).

2.4. Assessing biotic indices

Nine biotic indices (Bx) were calculated using nfam and nord. Each Bx
was calculated for each of the nrep replicates and a matrix (Bxmat) was
produced, which had an abiotic and a biotic component. The abiotic
component is made of all of the nobs abiotic observations, whilst the
biotic component is made of all of the nrep definitions of the particular
Bx. Thus, the resulting matrices differ only in the biotic component
since the abiotic component is the same in all of the matrices. The biotic
indices were considered as biological response (dependent) variables in
the classification models. The indices that were calculated and included
were (1) the Biological Monitoring Working Party (BMWP) (Armitage
et al., 1983), calibrated for Colombia (BMWP_Col) (Roldán, 2003); (2)
the Andean Biotic Index (ABI), similar to the BMWP but adapted for the
northern and central Andean streams above 2000 m a.s.l. (Ríos-Touma
et al., 2014); (3) a combined ABI_BMWP_Col index as proposed by
Sotomayor (2016), namely, (i) ABI for streams located above 2000 m
a.s.l.; and (ii) BMWP_Col for lower elevations (< 2000 m a.s.l.); (4) the
Ephemeroptera-Plecoptera-Trichoptera (EPT) index, expressed as the
number of the EPT individuals divided by the total macroinvertebrate
abundance (Lenat, 1988; Carrera and Fierro, 2001); (5) the Elmidae-
Plecoptera-Trichoptera (ElmPT) index (Von Ellenrieder, 2007), calcu-
lated similarly to the EPT index; (6) family richness; (7) the Average
Score Per Taxon (ASPT) (Walley and Hawkes, 1996). In this study, three
variations of this ASPT index were calculated, namely, (i) the

START

nsp = 64 sampling stations; nv = 27 WQ descriptive variables; 
nrep = 301 replicates; nobs = nv x nrep = 8127 obs. (xi,j); 

nfam = 65 macroinv. families; nord = 19 macroinv. orders

xi,j are normally distributed 
(Shapiro - Wilk test) ?

a

For each Bx, a matrix (Bxmat) was made of two 
components: one with nobs abiotic elements (zi,j) 

and one with nrep Bx calculations

a

PCA validation was carry out 
through multiple regression (MR)

Range scaling transformation of xi,j

nobs re-scaled varaibles (zi,j)

Redefinition of class number and boundaries of 
every Bx and redistribution of Bxrep according to 

number of classes tested (i.e., NC = 3, 4, 5)

Best model (Bxbest)

Every biotic index (Bx) was calculated upon nfam and 
nord  for all of the nrep (Bxrep), with rep = 1, 2, …, nrep

Bxmat were subjected to the SIMCA method. 
Each Bx was the categorical variable

Each class of the dataset of descriptive 
parameters (zi,j) defined by Bxbest

was modelled through PCA. 

A set of nine Bxmat

END

Most relevant descriptive parameters 
that explain river WQ in the study basin

Prior to the PCA application, the optimal number 
of PCs was calculated through cross-validation 

Correction of imbalanced datasets 
upon the use of percentiles

The Kruskal-Wallis test was carried 
out on the results of the PCA

NO YES
A non-parametric

classification method
is selected (i.e. SIMCA)

A parametric 
classification method 

is selected

Fig. 2. Flowchart of the modelling protocol that was implemented in the current study.
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calculation focused on the BMWP index validated for Colombia AS-
PT_BMWP_Col; (ii) the ASPT_ABI index focused on the ABI index; and
(iii) the ASTP_ABI_BMWP_Col index focused in turn on the
ABI_BMWP_Col index.

2.5. Data pre-processing

Fig. 2 depicts the flowchart of the multivariate-statistics based
protocol applied on this study. The Shapiro-Wilk test (Shapiro and Wilk,
1965; Yap and Sim, 2011) was applied to evaluate the normality of the
distribution associated with every WQ descriptive variable. This test
showed that none of the WQ descriptive variables (with exception of
pH) were normally distributed (Table 1). Thus, for the implemented
supervised pattern recognition process, a non-parametric method,
SIMCA, was selected. Prior to the SIMCA application, all WQ variables
were re-scaled in a 0–1 interval as follows:

=
−

−
= … = …z

x L
U L

for i 1, 2, ., n and j 1, 2, ,ni j
i j j

j j
,

,
v rep

(1)

where Lj and Uj are respectively the lower and upper limits of the
variable range, so that all of the zi,j ranges between 0 and 1 (Frank and
Todeschini, 1994), eliminating as such the discrepancy of the extent of
ranges of variation of the original variables.

2.6. Classification process

Classification models or supervised pattern recognition methods are

statistical tools aimed at finding out a model capable of assigning every
sampling site to its class using some independent variables (de-
scriptors). The class variable is the dependent categorical variable
(Frank and Todeschini, 1994). In the current study, the 27 WQ de-
scriptive variables were the independent ones and each Bx was the
dependent variable, introduced in the SIMCA model using not the ac-
tual Bx values but the class number corresponding to each value.

2.6.1. The soft independent modelling of class analogy (SIMCA) method
SIMCA carries out “soft modelling”, i.e., this method can identify

sampling sites as belonging to multiple classes and not necessarily
producing a classification of sampling sites into non-overlapping classes
(Pomerantsev, 2014). To build up the classification models, the first
step is to apply a Principal Component Analysis (PCA) for in-
dependently modelling each predefined class, which could be described
by a different number of principal components -PCs- (Brereton, 2007).
In this way, SIMCA defines G class models. In a final step, a new
sampling site is projected on each PCA subspace (for every class) and
the respective distances between the projections and the classes are
evaluated to assess on the adequacy of class assignment. Distances are
calculated on the basis of normalised Q residual variances (the variation
in the data not explained by the PC models) and normalised Hotelling
T2 values (Hotelling, 1936), the multivariate extension of the Student’s
t-test (Balabin et al., 2010; Ballabio and Consonni, 2013). Further de-
tails about the SIMCA method can be found for instance in Massart
et al., (1988), Brereton (2007) and Pomerantsev (2014).

SIMCA was used in this study to assess the appropriateness of each
of the nine Bx applied to evaluate the surface WQ via benthic macro-
invertebrates. Thus, the method was used for verifying whether the
allocation of WQ classes to the sampling sites, according to the WQ
descriptive variables of the sites (pattern recognition), matched the
classes determined previously by the nine Bx. Thus, the best Bx was
defined in the framework of the best SIMCA classification model ad-
justment.

2.6.2. Principal components analysis (PCA) in SIMCA
PCA is an intrinsic part of the SIMCA algorithm. In this method, the

original data matrix X with nv variables and nrep replicates is reduced to
the parts A (factor loadings) and U (factor scores). The loadings indicate
how much an original variable is 'loaded into' a PC, that is, how re-
levant the variable is. Scores are the coordinates of one sampling site in
the new coordinate system (Zupan, 1990). These factors are new non-
correlated synthetic variables and explain the total variance of all the
original variables. In the SIMCA method the PCA gives the necessary
information about which variables are useful for discriminating classes.

Further, an important prior task of a PCA is selecting an optimal
number of PCs, for which, a cross-validation process through the
Venetian blinds method (Ballabio and Consonni, 2013; Ballabio, 2015)
was used. This method is based on the use of segments of consecutive
sampling sites, where a test segment is determined by selecting every s-
th sampling site in the data set, starting at sampling site numbered 1
through s, with s being the number of data splits (Mevik and Wehrens,
2015). The data (nrep) was split into 5 groups for cross-validation im-
plying that for every group the PCA used 80% of the data for model
fitting, leaving out 20% of the data for model validation.

2.6.3. Evaluating the performance of classification models
For evaluating whether a given SIMCA classification model (out of

the nine ones) correctly allocated WQ classes to sampling sites, the
three following classification measures were used: accuracy (Acc), the F
measure (F) and the non-error rate (NER). The variation range of these
three classification measures is between 0 and 1, with 1 being their
optimal value. Acc is the most used empirical measure to assess a su-
pervised pattern recognition problem (Hand, 2012); it is the ratio of
correctly assigned sampling sites:

Table 1
Main statistics associated to the water quality (WQ) descriptive variables that
were monitored throughout years 2008 and 2010–2013 in the Paute River
basin, Ecuador (Fig. 1). Legend: Al = aluminium; BOD5 = 5-day biochemical
oxygen demand; Cd = cadmium; CL = chlorides; Cu = cooper; DO = dis-
solved oxygen; EC = electric conductivity; Elev = elevation, FC = faecal co-
liforms; Fe = iron; FHI–EPA = fluvial habitat index-Environmental Protection
Agency (Barbour et al., 1999); FL = fluorides; K = potassium; N-
NH4 = ammonium-nitrogen; Na = sodium; Ni = nickel; N-NO3 = nitrate-ni-
trogen; Pb = lead; P-tot = total phosphorus; Shreve = river order calculated
with the Shreve method; Slp = slope; TALK = total alkalinity; TH = total
hardness; TS = total solids; TU = turbidity; WT = water temperature;
STD = standard deviation; and m a.s.l. = meters above sea level.

WQ Parameter Mean Median STD Range

Al (mg L−1) 0.06 0.00 0.23 0.00–1.59
BOD₅ (mg L−1) 10.30 9.98 8.08 0.00–55.82
Cd (mg L−1) 0.01 0.00 0.05 0.00–0.61
CL (mg L−1) 5.26 0.73 27.32 0.00–363.86
Cu (mg L−1) 0.02 0.00 0.12 0.00–1.32
DO (mg L−1) 6.83 6.89 0.75 4.12–9.75
EC (µS cm−1) 122.43 70.00 197.36 2.96–1810.00
Elev (m a.s.l.) 2419.07 2420.00 730.01 480.00–3780.00
FC (bacteria 100−1 ml−1) 5038.32 1600.00 6451.66 1.00–16000.00
Fe (mg L−1) 0.21 0.00 0.49 0.00–3.73
FHI – EPA 129.49 128.00 28.54 71.00–184.00
FL (mg L−1) 1.56 0.42 6.83 0.00–67.89
K (mg L−1) 1.63 0.37 5.29 0.00–69.86
N-NH₄ (mg L−1) 0.78 0.00 1.57 0.00–15.00
Na (mg L−1) 5.28 3.37 9.15 0.00–112.89
Ni (mg L−1) 0.02 0.00 0.14 0.00–1.51
N-NO3 (mg L−1) 0.56 0.13 2.05 0.00–20.79
Pb (mg L−1) 0.02 0.00 0.07 0.00–0.85
pH 7.52 7.56 0.65 5.30–9.43
P-tot (mg L−1) 0.38 0.16 0.50 0.00–2.09
Shreve 334.15 51.00 1048.84 1.00–5760.00
Slp (%) 25.82 10.31 35.05 0.00–142.30
TALK (mg L−1) 0.74 0.08 1.35 0.00–7.80
TH (mg L−1) 33.34 23.60 36.50 0.00–263.56
TS (mg L−1) 2.00 0.01 10.42 0.00–116.00
TU (NTU) 19.48 0.92 88.16 0.00–1136.81
WT (°C) 14.57 14.00 3.27 8.70–23.50
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where G is the number of classes; ngg is the number of sampling sites of
the g-th class that are correctly classified. Not assigned sampling sites
are not considered in the Acc calculation. NER is the average of all of
the class sensitivity values (Ballabio and Consonni, 2013), with the
sensitivity of the g-th class (Sng) being the model ability to correctly
recognise sampling sites belonging to the g-th class. It is defined as the
ratio between ngg and the total number of sampling sites belonging to
the g-th class (ng). Not assigned sampling sites are not considered in the
calculation of Sng.

F is a classification measure (Ballabio et al., 2018) that considers the
NER and the mean precision (Prmean), with the precision of the g-th
class (Prg) representing the capability of a classification model to avoid
assigning sampling sites of other classes into the g-th class. Prmean is
defined as the ratio between ngg and the total number of sampling sites
assigned to that class (n'g):

=
+

F 2 (NER)Pr
NER Pr

mean

mean (3)

The assessment of these classification performance measures was
carried out in the cross-validation phase by using also in this case the
Venetian blinds cross-validation method, with 5 splits. This implies that
20% of the observed data was used during this validation phase to
judge on the correct class assignment process (i.e., defining ngg, sng,
etc.).

2.6.4. Number and limits of biotic indices classes
The standard methodology to establish the number of biotic classes

of benthic macroinvertebrates and their boundaries is based on the
Reference Condition Approach (RCA), where the biological integrity of
a site is defined by the “distance” (or alteration gradient) between
current and reference conditions. The alteration gradient is often di-
vided into, say, five classes, reflecting qualitative levels of biological
integrity (excellent, good, moderate, poor and bad conditions), which is
a classification arrangement particularly suitable for WQ studies.
Nevertheless, within the framework of the SIMCA classification models
implemented in this study, some particular aspects were taken into
account, namely:

- The “standard” version of the ElmPT and FamR indices has no
specific number of classes. However, the standard version of the
ABI, BMWP_Col, ASPT_BMWP_Col, ASPT_AB and
ASPT_ABI_BMWP_Col indices has five classes (Armitage et al., 1983;
Ríos-Touma et al., 2014), whilst the “standard” version of the EPT
index has four classes (Carrera and Fierro, 2001). There is then a
great variability in terms of the number of biotic classes as a func-
tion of the biotic indexes. However, in the framework of the current
application of the SIMCA method, for an appropriate comparison of
the values of the nine Bx, the number of classes must be equal for all
of these Bx. Thus, there is the need of adopting the same number of
classes for all of the nine studied Bx.

- A dataset is imbalanced if the classification categories are not si-
milarly represented, i.e., the sampling site distributions among
classes are skewed (Martina et al., 2017). As a result, classification
algorithms are affected in their accuracy performances causing
misclassification of sampling sites belonging to the under-
represented classes (Chawla, 2009). For avoiding this problem, it
was decided to discretise the different Bx using a set of threshold
values (Forman, 2003; Blagus and Lusa, 2010) defined upon per-
centiles throughout the distribution of the Bxrep, for determining the
limits (i.e., bounds) of the classes or categories.

In this context, three analyses were carried out varying the number

of classes (NC) of the different Bx and, as such, the respective threshold
values, namely, NC = 5 (80-th, 60-th, 40-th and 20-th percentiles),
NC = 4 (75-th, 50-th and 25-th percentiles) and NC = 3 (66.7-th and
33.3-th percentiles). To the best of the knowledge of the authors, no
study has been conducted for WQ assessments by using benthic mac-
roinvertebrates biotic indices that consider only two biological classes.
Thus, the current research did not consider NC = 2 as being a feasible
number of classes. Using percentiles does not only enable the inspection
of the performance of the different Bx as a function of the NC but also
deals with the problem of imbalanced datasets.

2.6.5. Choosing the best biotic index through the SIMCA method
The best biotic index, was defined upon the calculation of the above

depicted classification measures Acc, NER and F for each of the nine
studied Bx. After comparing the performance of the nine different
SIMCA classification models, the model with the highest values of the
associated classification measures was referred to as the best one.
Correspondingly, the respective Bx, the dependent variable of the best
classification model, was chosen as the best one.

2.6.6. Assessing the most significant WQ descriptive variables
Upon the selection of the best classification model, simultaneously,

the PCA component of the SIMCA process identifies the WQ descriptive
variables that explain each one of the biotic classes.

In the context of the PCA, with the aim of determining the number
of interpretable (i.e., non-trivial) ordination axes, the “cutoff rule”
criterion was applied, which regards loadings as being significant when
|loadings|>Ath, with Ath being a subjectively pre-established
threshold value (Peres-Neto et al., 2003) that was herein fixed as 0.25
(Chatfield and Collins, 1980).

Moreover, for improving the identification, previously achieved by
the PCA, of the informative WQ variables that describe suitably all of
the biotic classes, a further analysis, the non-parametric Kruskal-Wallis
test (K-W) (Kruskal and Wallis, 1952), was carried out. Herein, the set
of nrep data of each informative WQ variable (i.e., with |loadings|>
0.25) was divided into biotic classes, after which the K-W test was
carried out to assess whether there is a significant difference among
these classes.

2.6.7. Testing the reliability of the PCA
The reliability of the PCA must be tested (Ouyang, 2005), for in-

stance, by comparing the outcome of multiple regression (MR) analyses
performed with and without the WQ descriptive variables that the PCA
identified as being informative (i.e., the WQ descriptive variables with
|loadings|> 0.25).

Three cases were developed for comparison through MR analyses,
using as the goodness of fit measure the adjusted R2 statistic (R2

adj),
which enables comparing the performance of models involving dif-
ferent numbers of independent variables (Rawlings et al., 1998). In the
MR analyses, the dependent variable was always the best biotic index
and the independent variables were either: (i) all of the WQ descriptive
variables (MR-model 1); (ii) WQ descriptive variables with associated
|loadings|> 0.25 (MR-model 2); and (iii) WQ descriptive variables
with associated |loadings| ≤ 0.25 (MR-model 3). If the PCA was suc-
cessful identifying the informative variables that explain most of the
WQ variability, the R2

adj values should not vary significantly with regard
to MR-models 1 and 2, whilst for MR-model 3 its value is expected to be
markedly lower than for the other two MR-models.

All the statistical analyses were implemented with MATLAB®
(Hanselman and Littlefield, 2012) version 2014, using the Classification
toolbox version 5.0 (Ballabio and Consonni, 2013), as well as specific-
purpose subroutines, developed particularly for this study.

2.6.8. Congruency of the resulting WQ classification
The correspondence of the spatial distribution of the biotic WQ

classes was assessed by its comparison with the land cover (LC)
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distribution of the Paute River basin, using as well auxiliary topo-
graphical information. LC raster data (year 2013) was available for the
whole extent of the basin. This is the most recent dataset that is
available publicly by the Ministry of Environment of Ecuador (MAE,
2013). Geographic Information Systems (GIS) algorithms were applied
on the original LC data so that it was reclassified to a more convenient
form, which enabled a direct association between LC and the spatial
distribution of the WQ classes. The considered LC classes were: (i) al-
tered vegetation; (ii) woody native vegetation; (iii) without cover/ur-
banised; and (iv) páramo (unaltered). Additionally, a raster digital
elevation model (DEM) of the whole catchment was available with a
resolution of 50 × 50 m2. The referred congruency assessment was
based on the visual inspection of the geographical distribution of the
WQ classes, the LC, and the DEM. ArcGis® and TerrSet® were used for
all of the GIS analyses.

3. Results

3.1. Sampling and analysing benthic macroinvertebrates

53,452 macroinvertebrate individuals belonging to 65 families were
collected and grouped into 19 taxonomic groups. Ephemeroptera were
the most dominant, accounting for 63.7% of all individuals, followed by
Diptera (11.2%), Trichoptera (8.2%), Coleoptera (6.3%) and
Oligochaeta (5.2%). The rest of the groups accounted for only 5% of the
total abundance.

3.2. Number and limits of biotic indices classes

The results showed that a five-class Bx scheme (standard metho-
dology) for defining the number of biotic classes of benthic macro-
invertebrates produces an imbalanced distribution with reduced sam-
pling site concentrations at the extreme classes (C1 and C5) (Fig. 3). In
contrast, the use of percentiles produces uniform sampling site dis-
tributions throughout the different classes, thus resolving the problem
of imbalanced data.

The results suggest that the distributions of the Acc, NER and F
classification measures are significantly different from each other as a
function of the NC (Fig. 4). Further the results depict that the maximum
performance was obtained for NC = 3 (Fig. 4). Thus, it was decided to

use this number of classes for all of the nine studied Bx. All Bx were
accordingly discretized using the 33.3-th and 66.7-th percentiles. Each
of the three classes was assigned a WQ attribute; C1: less polluted, C2:
moderately polluted, C3: highly polluted.

3.3. Choosing the best biotic index through the SIMCA method

Best performance was obtained for the ElmPT biotic index for which
the maximum values of the three referred classification measures were
observed (Fig. 5). The ElmPT index varied between 0.0% and 87.0%
with an average value of 20.2% and a standard deviation of± 19.3%.
The class limits for NC = 3 were 7.6% (33.3-th percentile) and 24.6%
(66.7-th percentile).

3.4. Assessing the most significant WQ descriptive variables

The optimal number of PCs chosen a priori in the framework of the
SIMCA method were 4, 9 and 3 (Table 2), respectively, for the biotic
classes C1, C2 and C3 (ElmPT index). As a result, for the three PCA
models, > 80% of the explained variance is present in its first three
components.

Fifteen WQ descriptive variables (Table 3) were regarded as ex-
plaining most of the surface WQ variability, represented in the three
biotic classes C1, C2 and C3, that is, Al, DO, EC, Elev, FC, Fe, FHI-EPA,
FL, N-NH₄, P, pH, Shreve, Slp, TALK and WT. Furthermore, considering
the results of the K-W test, only seven of the fifteen WQ descriptive
variables were found significant (p < 0.05), namely, DO, EC, FC, FHI-
EPA, pH, Shreve and Slp (the p-values were pAl = 0.91, pDO ≤ 0.0001,
pEC = 0.0001, pElev = 0.51, pFC ≤ 0.0001, pFe = 0.46,
pFHI–EPA ≤ 0.0001, pFL = 0.28, pN-NH₄ = 0.4033, pP = 0.50,
ppH = 0.0055, pShreve ≤ 0.0001, pslope = 0.0004, pTALK = 0.29 and
pWT = 0.0553).

Fisher's least significant difference (LSD) test was used to calculate
intervals around the means of these seven most significant WQ de-
scriptive variables, as a function of the three biotic classes C1, C2 and
C3 (Fig. 6) for identifying the statistical populations whose averages are
statistically different from each other (Dodge, 2008). The values
adopted by pH (Fig. 6a), FC (Fig. 6b), EC (Fig. 6c) and Shreve (Fig. 6d)
are larger for the sampling points belonging to C3 than for the ones
belonging to C1 and C2 (averages of FC expressed in bacteria 100−1

Fig. 3. Distribution of replicates as a function of the number of biotic classes (NC), for the BMWP_Col index (RCA: Reference Condition Approach).
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ml−1 are 3378.5 for C1, 5079.9 for C2 and 6740.3 for C3; averages of
pH are 7.3 for C1, 7.5 for C2 and 7.7 for C3; averages of EC expressed in
µS cm−1 are 86.1 for C1, 93.8 for C2 and 185.0 for C3; and averages of
Shreve are 221.7 for C1, 233.3 for C2 and 551.0 for C3). For FHI-EPA,
DO and slope (Fig. 6e, 6f and 6 g respectively) the inverse trend was
observed (averages of FHI-EPA are 145.7 for C1, 132.5 for C2, 111.3 for
C3; averages of DO expressed in mg L−1 are 7.0 for C1, 6.8 for C2, 6.6
for C3 and of river slope expressed in % are 32.8 for C1, 29.2 for C2 and
14.5 for C3).

3.5. Testing the reliability of the PCA

The R2
adj value for MR-model 1 (27.0%) was not affected that much

when the uninformative WQ descriptive variables (|loadings| ≤ 0.25)
were removed from it to produce MR-model 2; on the contrary, its value

(28.1%) increased slightly. For the MR-model 3 the R2
adj value (3.1%)

was very poor due to the uninformative WQ descriptive variables in-
cluded in the model. Thus, the PCA was regarded as being reliable.

3.6. Congruency of the resulting WQ classification

The distribution of each biotic class (C1, C2, C3) across the basin, in
relation to the relevant land cover is shown in Fig. 7a. Intervened areas
cover 37.1% of the basin, woody native vegetation covers 34.4%,
without cover/urbanised 3.5% and Páramo 25.0% (Fig. 7b). Sub-basins
with increased physicochemical degradation had significantly higher
proportion of class C3 sites. Most C3 sites are located around flat areas
with increased urbanization and anthropogenic activity (Fig. 7). Thus,
flatter values of the Slp. variable suggest potential anthropogenic
causes for C3 conditions. Thus, the congruency of the results seems
appropriate.

4. Discussion

The results of the study showed that maximum performance is ob-
tained using a 3-class system (Fig. 4), which is in agreement with
previous research (Theodoropoulos et al., 2018). As the number of
classes increased, F, NER and Acc values decreased. This is probably a
multiclass classification issue; the classifier's effort to carry out pattern
recognition, and distinguish and correctly classify when NC > 2, is
higher (Silva-Palacios et al., 2017), and this effort potentially results to
biased determination. However, this study does not necessarily suggest
that NC = 3 should be strictly followed elsewhere instead of NC = 5,
but a 3-class system had maximum performance in the current study.

Within the selected NC = 3 system, ElmPT had the highest classi-
fication performance (> 0.7) (Fig. 5). Previous studies use Plecoptera
and Trichoptera as biological indicators for WQ monitoring, mainly as
part of the EPT index, but Elmidae have not always been included.
Their potential as bio-indicators has been studied in Europe (García-
Criado and Fernández-Alaez, 1995; 2001) and USA (Ode et al., 2005;
Muenz et al., 2006). Similar findings were observed from studies in
South America. Von Ellenrieder (2007) worked in a mountain rainforest
of the Andes (Bolivia and Argentine) and found that ElmPT index was
best correlated with the local disturbance gradient. Dos Santos et al.,
(2011) compared the diagnostic capabilities of benthic macro-
invertebrates metrics through a classification method. The IBY-4 index
that includes Plecoptera, Trichoptera and Elmidae (besides Mega-
loptera) achieved the best performance in the Yungas Mountains. El-
midae exhibited a decreasing trend from C1 to C3 with respect to
presence and total abundance, i.e., 77.5% (C1), 66.3% (C2) and 32%
(C3) and 2005 ind. (C1), 807 ind. (C2) and 180 ind. (C3).

Several studies have shown that Elmidae are sensitive to stream
degradation (Brown, 1987; Elliott, 2008; Miserendino et al., 2000;
Miserendino and Archangelsky, 2006), particularly when caused in-
directly through the reduction of the riparian vegetation. Braun et al.
(2018) suggested the maintenance of a buffer riparian vegetation to
conserve environmental integrity of Brazilian streams. Nessimian et al.
(2008) found that elmids were positively correlated with the Habitat

Fig. 4. Notched box plots of Acc, NER and F classification measures as a function of the number of biotic classes (NC), considered for every one of the nine inspected
biotic indices.

Fig. 5. Performance of each biotic index (Bx) based on F, NER and Acc.
Classification was considered correct when the Bx class of a sample matched
that of the water quality classification. For Bx abbreviations see section 2.4.

Table 2
Eigenvalues, explained variance and cumulative variance for the three PCA
model that correspond to the three biotic classes C1: less polluted, C2: mod-
erately polluted, C3: highly polluted.

Class PC Eigenvalue Variance (%) Cumulative variance (%)

C1 1 1.7 71.6 71.6
2 0.2 7.4 79.0
3 0.1 4.4 83.4
4 0.1 3.4 86.8

C2 1 1.6 71.3 71.3
2 0.2 7.7 79.0
3 0.1 3.9 82.9
4 0.1 3.2 86.1
5 0.1 2.7 88.8
6 0.1 2.2 91.0
7 0.0 1.8 92.9
8 0.0 1.4 94.3
9 0.0 1.2 95.5

C3 1 1.6 69.8 69.8
2 0.2 8.1 77.8
3 0.1 4.9 82.8
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Integrity Index (HII), which encapsulates information on land use, ri-
parian zone, stream-bed characteristics and stream-channel mor-
phology, and this is in accordance with the results of this study that
showed decreasing FHI-EPA values as degradation increased (C1:
145.7, C2: 132.5, C3: 111.3).

Plecoptera and Trichoptera exhibited trends similar to the one
shown by Elmidae with respect to presence and total abundance.
Trichoptera proved to be the second most diverse group, with 11 fa-
milies. It is considered to be indicative of good WQ status (De Moor and
Ivanov, 2008). However, this group is very diverse and this could result
in lower performance in terms of presence, compared to Plecoptera and
Elmidae, in adequately reflecting the WQ status (Dohet, 2002). Ple-
coptera are generally considered an appropriate bioindicator of good
ecological status (Fochetti and Tierno De Figueroa, 2008), which is
congruent with the current results.

All of the above suggest that elmids are a critical bio-indicator taxon
and, in this study, their use in a biotic index, such as the ElmPT, re-
sulted in increased performance over the EPT index (Fig. 5). EPT
showed poor performance in assessing the WQ status in the basin, as
indicated by the presence and abundance of Ephemeroptera (i.e., C1:
92.3%, C2: 96.6% and C3: 87.6% and C1: 4548 individuals, C2: 7586
individuals and C3: 20,025 individuals). Similar conclusions were
drawn by Dos Santos et al. (2011), Nessimian et al. (2008) and Von
Ellenrieder (2007). The lower EPT performance is probably caused by
the presence of tolerant taxa of the genus Baetodes (family Baetidae).
Baetodes individuals occurred in both clean and heavily disturbed sub-
basins, such as Burgay, due to physiological adaptations (Baptista et al.,
2006; Buss and Salles, 2007) that enable them tolerate eco-hydrological
disturbances. Thus, the use of Ephemeroptera as a biotic index is not
recommended (Btista et al., 2007).

In combination with other advantages of the ElmPT index (simple
calculation and easy identification of Elmidae, large body size of

Elmidae, Plecoptera and Trichoptera groups), it can be inferred that the
ElmPT index is a powerful tool for biomonitoring for non-taxonomists.

Increased concentrations of faecal coliforms were found in C2 and
C3 sites compared to C1, suggesting that C2 and C3 sites had higher
organic inputs.

Most of the monitoring sites located within the Burgay and the
Magdalena sub-basins (Fig. 7a) present wastewater effluents that often
contain high amounts of organic pollution from sources such as do-
mestic sewage and municipal stormwater drainage (Da Ros, 1995;
Pauta-Calle and Chang-Gómez, 2014; Sotomayor et al., 2018); as such,
they belong to WQ classes C3 and C2. Although faecal coliforms con-
sume large amounts of oxygen, reducing the dissolved oxygen available
for aquatic invertebrates (Varnosfaderany et al., 2010), the DO values
recorded at the C3 sites were not systematically lower than those of the
C1 and C2 sites. However, the lowest DO values show a decreasing
trend from C1 to C3 sites, i.e., [5.4, 9.2] mg L−1 for C1, [4.4, 9.8] mg
L−1 for C2 and [4.1, 8.5] mg L−1 for C3.

FHI-EPA was higher in C1 sites than C2 and C3 (Fig. 6e), in ac-
cordance with previous research, suggesting that habitat and biological
diversity are closely linked (Barbour et al., 1999). Loss of riparian
ecosystems turns into loss of instream quality because, due to resulting
changes in hydrology, erosion and suspended solids increase, which
may even be accentuated by an increment of concentrations of pollu-
tants because of the lack of natural riparian ecosystems filtering (Tate
et al., 2004; Sovell et al., 2000). Correspondingly, FC, N-NH₄, FL, TS, K
and CL were higher at C3 monitoring sites where poor riparian eco-
systems exist. Nevertheless, the contribution of these variables to the
WQ classification, except for FC, was not significant. Furthermore, they
are often correlated with EC (Singh et al., 2004). On average, EC was
higher in C3 sites compared to C1 and C2 ones (Fig. 6c), in agreement
with the results of Azrina et al. (2006), which also match the trend
observed for N-NH₄, FL, TS, K and CL.

Table 3
Loading values for the principal components of the three PCA models (C1 (less polluted), C2 (moderate polluted) and C3 (highly polluted). Bold values indicate
strong influence of the WQ descriptive variables (i.e., |loadings|> 0.25). Aluminium (Al), 5-day biochemical oxygen demand (BOD5), cadmium (Cd), chloride (CL),
copper (Cu), dissolved oxygen (DO), electric conductivity (EC), elevation (Elev), faecal coliforms (FC), iron (Fe), fluvial habitat index of the Environmental Protection
Agency (FHI-EPA), fluoride (FL), potassium (K), sodium (Na), nickel (Ni), ammonium-nitrogen (N-NH4), nitrate-nitrogen (N-NO3), total phosphorus (P-tot), lead
(Pb), pH, Shreve river order (Shreve), river slope (Slp), total alkalinity (TALK), total hardness (TH), total solids (TS), turbidity (TU) and water temperature (WT).

Parameter Class 1 Class 2 Class 3

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC1 PC2 PC3

Al −0.04 0.08 −0.08 −0.15 −0.03 −0.06 0.01 −0.07 −0.08 −0.24 −0.07 0.56 0.30 −0.03 −0.04 −0.02
BOD₅ −0.15 0.00 −0.02 0.14 −0.14 0.04 −0.08 −0.03 −0.19 0.02 −0.07 −0.14 0.15 −0.15 0.01 0.09
Cd −0.02 0.03 0.00 −0.03 −0.02 0.04 −0.02 0.01 −0.15 −0.14 −0.11 0.02 −0.20 −0.01 0.01 0.00
CL 0.00 0.01 −0.01 −0.01 −0.01 0.03 0.01 −0.03 0.01 0.02 0.11 −0.04 0.08 −0.02 −0.04 −0.02
Cu −0.02 0.11 −0.05 −0.04 0.00 0.01 0.00 0.00 −0.01 −0.02 −0.02 0.01 −0.03 −0.01 0.03 0.01
DO −0.40 0.15 0.03 −0.09 −0.38 0.14 −0.09 −0.05 −0.18 −0.08 0.43 0.44 −0.40 −0.35 0.25 −0.05
EC −0.04 0.03 −0.04 −0.03 −0.04 0.04 −0.03 −0.13 −0.13 −0.18 −0.11 −0.25 0.09 −0.09 −0.04 −0.07
Elev −0.44 −0.42 0.42 −0.30 −0.49 0.13 0.49 −0.11 0.33 −0.30 0.05 −0.06 0.17 −0.47 0.06 0.55
FC −0.17 −0.56 −0.73 −0.27 −0.28 −0.91 −0.09 −0.26 −0.05 0.00 −0.04 −0.05 −0.08 −0.38 −0.82 −0.15
Fe −0.04 0.07 0.00 −0.20 −0.06 −0.01 0.09 −0.04 −0.03 0.20 −0.38 0.44 0.44 −0.03 0.03 0.01
FHI – EPA −0.52 −0.10 0.20 0.38 −0.44 −0.01 0.02 0.57 0.17 0.13 −0.51 −0.05 −0.28 −0.27 0.20 −0.06
FL −0.01 0.02 −0.02 0.01 −0.02 0.07 −0.08 −0.16 −0.09 −0.24 −0.14 −0.28 0.15 −0.02 0.04 −0.08
K −0.01 0.01 0.00 −0.01 −0.02 0.02 0.00 −0.03 −0.03 −0.04 −0.02 −0.01 −0.03 −0.03 0.04 0.01
Na −0.03 0.07 −0.07 −0.12 −0.05 −0.03 −0.07 0.01 −0.02 −0.27 0.07 −0.03 0.05 −0.05 −0.03 −0.01
Ni −0.03 0.04 −0.03 −0.03 −0.02 0.01 −0.01 −0.01 −0.03 −0.05 0.00 −0.02 0.00 −0.06 −0.03 −0.08
N-NH4 0.00 −0.01 0.03 −0.04 0.00 0.01 0.01 −0.01 −0.02 0.03 −0.02 −0.01 0.06 −0.02 0.06 0.09
N-NO3 −0.02 0.02 0.02 0.01 −0.01 0.01 −0.01 0.00 −0.02 −0.03 −0.01 −0.01 −0.01 −0.04 −0.08 −0.10
P-tot −0.16 −0.13 −0.23 0.68 −0.15 −0.11 −0.32 0.58 −0.07 −0.31 0.33 −0.09 0.40 −0.15 −0.16 −0.05
Pb −0.01 0.04 −0.02 −0.01 −0.01 0.00 −0.03 0.03 −0.03 −0.07 0.00 0.00 −0.04 −0.03 −0.04 0.00
pH −0.39 0.12 0.07 −0.21 −0.42 0.15 0.18 −0.22 −0.12 0.34 0.24 −0.21 0.11 −0.47 0.21 0.11
Shreve −0.02 0.10 −0.07 0.00 −0.03 0.04 −0.13 0.07 −0.38 0.11 −0.06 0.01 −0.18 −0.07 0.24 −0.59
Slp −0.18 0.39 −0.11 −0.13 −0.17 0.19 −0.69 −0.32 0.54 −0.01 −0.11 0.04 −0.02 −0.08 0.04 0.09
TALK −0.07 0.19 −0.05 −0.17 −0.08 0.15 0.00 −0.15 −0.30 −0.47 −0.32 0.07 −0.23 −0.08 0.08 0.04
TH −0.09 0.02 −0.07 0.16 −0.08 −0.01 −0.09 0.08 0.03 −0.04 0.12 −0.03 0.06 −0.14 −0.12 −0.23
TS −0.01 0.04 −0.01 −0.03 −0.01 0.05 −0.01 −0.10 −0.14 −0.21 −0.16 −0.23 0.05 −0.02 0.04 0.04
TU −0.01 −0.02 −0.02 0.00 −0.01 −0.01 0.01 0.02 0.00 0.03 −0.05 0.05 0.07 −0.03 −0.06 −0.07
WT −0.31 0.46 −0.38 0.02 −0.28 0.15 −0.28 −0.08 −0.41 0.31 −0.09 −0.05 0.25 −0.34 0.20 −0.44
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Fig. 6. Means and Fisher's-based intervals of the significant WQ descriptive variables for each biotic class (C1: less polluted, C2: moderately polluted, C3: highly
polluted). FHI-EPA: Fluvial habitat integrity, DO: Dissolved oxygen, FC: Faecal coliforms, EC: Electric conductivity. Mean values are depicted with an × symbol.

Fig. 7. (a) Water quality (WQ) classes at each sub-basin. 1 = Sidcay, 2 = Collay, 3 = Cuenca, 4 = Jadán, 5 = Paute, 6 = Machángara, 7 = Magdalena, 8 = Mazar,
9 = Juval, 10 = Pindilig, 11 = Pulpito, 12 = Santa Bárbara, 13 = Burgay, 14 = Tarqui, 15 = Tomebamba, 16 = Yanuncay, 17 = Paute bajo and 18 = Negro; (b)
Land use/cover in the Paute River Basin (data from 2013).
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Relationships between benthic macroinvertebrates and stream order
were evidenced in this study and have been previously documented
(Harrel and Dorris, 1968). Based on the PCA, stream order significantly
influenced WQ classification in the basin (Fig. 6d). Generally, higher-
order, lowland streams receive most of the groundwater flow, con-
centrating pollution and thus reducing WQ. In this study, however,
most C3 sites are located in higher elevations in the Burgay and Mag-
dalena sub-basins. Consequently, these sites have associated low stream
order values, which would produce for the entire basin a lower average
Shreve value associated to C3. This average Shreve value for the entire
basin and associated to C3 turned, nevertheless, higher only because
there exists one C3 monitoring station, located within the Paute sub-
basin (Fig. 7a), with an associated larger order (i.e., 5760), which re-
plicates six times in the database.

Slope was another variable significantly contributing to WQ classi-
fication, showing a decreasing trend from C1 to C3 sites (Fig. 6g). The
influence of slope on macroinvertebrates has been previously reported
by Roy et al. (2003). Despite the fact that most of the monitoring sites
belonging to class C3 are located at higher elevation zones, the analysis
of the DEM reveals that the slopes of these zones are generally flatter.
Anthropogenic activities from human settlements tend to occur at
flatter slopes. These suggest that the WQ associated with C3 monitoring
sites, located at higher elevations, respond to anthropogenic perturba-
tions, which is emphasised by the land use/coverage information.

Degraded areas are located in the mid-route of the Paute River at
mid elevations. Western and eastern areas of higher and lower eleva-
tions, respectively, have a significant presence of woody native vege-
tation and páramo. Woody native vegetation is present for instance in
the sub-basins Negro (77.8%), Juval (86.4%), Pulpito (77.3%) and
Machángara (76.4%). Páramo (unaltered) is present in the sub-basins
Yanuncay (60.1%), Pulpito (59.5%), Machángara (56.7%) and
Tomebamba (48.3%). Further, the Paute River Basin is characterized by
extended protected areas (Fig. 1a). However, the study showed that a
large part of the basin has been altered due to anthropogenic activities
and, consequently, its surface WQ has been degraded (Fig. 7a).

4.1. Future research

This study is the first assessment of the ecological requirements of
elmids in the Paute River Basin. Considering the importance of this
taxon for accurate biotic classifications, reported in this study, a deep
knowledge of their ecological and taxonomic aspects is required.
Ecological monitoring tools based on elmids distribution models in the
basin could be a very effective management tool.

The results regarding the EPT index suggest that future research
should focus on the taxonomical resolution level of Ephemeroptera and
the distortion that the genus Baetodes may cause in the EPT index.
Further, research associated with the allocation of correct scores to taxa
is needed for the Paute River basin.

5. Conclusions

This study highlighted the effectiveness of the SIMCA supervised
pattern recognition algorithm for the analysis and interpretation of
complex datasets, which in this case resulted in identifying the ElmPT
biotic index as the most appropriate for assessing the surface WQ to be
monitored in the future in the basin. This would result in cost-effective
but equally accurate monitoring schemes. The combination of multi-
variate statistics with GIS tools is also useful for assessing the con-
gruency between WQ-biotic classification and field or land-use based
information.
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