
CoSTest: A tool for Validation of Requirements at
Model Level

Maria Fernanda Granda1
Department of Computer Science

University of Cuenca
Cuenca, Ecuador

fernanda.granda@ucuenca.edu.ec

Nelly Condori-Fernández
 Department of Computer Science

University of A Coruña, Spain
Vrije Universitei Amsterdam, The

Netherlands
n.condori.fernandez@udc.es
n.condori-fernandez@vu.nl

Tanja E.J. Vos, Oscar Pastor
1PROS Research Center

Universitat Politècnica de València
Valencia, Spain

{tvos, opastor}@dsic.upv.es

Abstract—We present CoSTest, a tool that supports the
validation of Conceptual Schemas by using testing. The tool
implements techniques for transforming instantiations from a
Requirements Model into test case implementations by supporting
a Model-driven architecture.

Index Terms—Conceptual Schema Validation, Requirements-
based testing, Model-driven validation, Conceptual Schema
Testing.

I. INTRODUCTION
Requirements Engineering and Testing both aim to support

the development of software products that meet stakeholder’s
expectations regarding functionality and quality at different
stages of the software development life cycle. However,
connecting requirements and testing processes is still a
significant challenge [1], because requires a clear (verifiable)
specification of requirements and practices that support this
alignment. According to Mac Millan Dictionary’s definition,
‘align’ is when ‘activities or systems are organised so that they
match or fit well together’. A weak alignment of requirements
with the test cases may lead to problems in delivering the
software product on time with the right quality. For example, if
requirements changes are agreed without involving testers and
without updating the requirements specification, the changed
functionality is either not verified or incorrectly verified.

In order to overcome these issues, we propose a novel
solution that aims at combining the testing process with
automated reasoning procedures in a model-driven development
environment to generate the test cases from a Requirements
model based on Communication Analysis [2]. In [3], we
proposed the model-driven approach for testing Conceptual
Schemas (CS) based on UML class diagram (CD). In this paper
we

The main purpose of the tool is the validation of CS
according to stakeholders’ requirements. A UML CD-based CS
can be tested if the CS is specified in an executable form, for
example in the Action Language for Foundational UML (ALF
[4]), which is supported as a standard. Out tool aims the
validation of two CS quality goals [5]: the correctness (covers
both syntactic correctness -right syntax or well-formedness, and
semantic correctness -right meaning and relations relative to the
knowledge about the domain) and completeness (i.e. all the
necessary information is defined in the CS).

Our tool may be used by testers/modellers/analysts in any
development phase of a CS based on UML class diagram (CD).
For example, as part of the test-last validation (i.e. correctness
and completeness are checked by testing after the CS definition)
or test-first development, in which the elicitation and definition
is driven on a set of test cases.

In the next section, we briefly describe our CoSTest tool. In
Appendix, we explain what exactly will be demonstrated as well
as the expected participants in the demonstration.

II. THE COSTEST TOOL
Figure 1 shows an overview of the three main functionalities

of the CoSTest: Test Suite Generation, CSUT generation and
Test Execution. Each phase depicts the CoSTest artefacts,
processes, inputs and outputs and modeller/tester interactions.
As the names suggest, CoSTest processes are done
automatically by our tool whereas the modeller/tester activities
are done manually. The numbered ovals represent activities and
directed edges to and from processes represent the consumption
and production of artefacts, respectively. In the next, we
describe the different steps of the CoSTest tool.
1. Generation of the Test Model. CoSTest analyses the

structure of the Requirements Model (RM) by automatically
traversing all the RM nodes (event sequences) and extracting
all the Test Model elements and their properties.

2. Generation of the Test Scenarios Model. CoSTest computes
the possible test scenarios (based on event sequence) and
generates a model of test scenarios.

3. Concretization of Test Values. The next step is to concretize
the variables of the test cases. The tester can (i) recover a
variable list from the test model and generate values
automatically way from the example values specified in the
RM, or (ii) concretize manually by introducing values for
each variable.

4. Generation of Abstract Test Cases. Transform each test
scenario into Test cases scripts (ALF script).

5. Choosing the tests types. The tester can select between two
types of test cases such as (i) partial (only positive test cases)
ii) complete, which adds test cases with some test items such
as values out of range, constraint violations, and, unique
value violation for class variables.

2017 IEEE 25th International Requirements Engineering Conference

2332-6441/17 $31.00 © 2017 IEEE

DOI 10.1109/RE.2017.69

456

2017 IEEE 25th International Requirements Engineering Conference

2332-6441/17 $31.00 © 2017 IEEE

DOI 10.1109/RE.2017.69

464

Fig 1. Overview of the CoSTest

6. Generation of Executable Test Cases. CoSTest
automatically transforms each test scenario with abstract test
cases into parameterized ALF scripts. CoSTest then
generates the executable and concrete test cases, including
the test data, test objective and an expected output (oracle
based on test case type) that is used to validate the CS
requirements.

7. Prioritizing and select test cases. In order to know the test
types that should be prioritized, CoSTest allows to mutate
CS and to evaluate the effectiveness [6] in killing mutants of
the test cases generated by CoSTest

8. Generation of Executable CS under test (CSUT). CoSTest
translates the UML CD-based CS into an executable format
(ALF scripts) for its execution.

9. Parsing the CSUT. The CSUT should be parser before the
testing process for verifying that it is well-formed.

10. Executing the CSUT. Test cases are executed on the
executable CS and the output is compared to the oracle.

11. Test Evaluation. CoSTest generates a report in which the
executed test cases are classified as passed, failed or
inconclusive. A report including times, test cases coverage
and detected faults is generated.

III. CONCLUSIONS AND FUTURE WORK
The CoSTest tool is a research prototype that takes a

requirements model based on Communicational Analysis as
input to generate test cases and execute them against UML CD-
based CSs for detecting defects of correctness and
completeness. We also introduced briefly that this tool mutates
the CSs to evaluate the effectiveness of the tests cases generated
by CoSTest and to prioritize them.

In the future, since the requirements model based on
Communication Analysis is time consuming now, we need to

find some efficient way to solve the problem, so that it can be
more feasible to specify the requirements of a large scale of
modellers. In addition, the reliability of the tool would be
evaluated with large-scale users and CSs.

ACKNOWLEDGMENT
This work is supported by SENESCYT of the Republic of

Ecuador, Spanish Ministry of Economy, Industry and
Competitiveness with the PGE and FEDER Projects: TIN2016-
78011-C4-1-R and TIN2013-46238-C4-3-R.

REFERENCES
1. Bjarnason, E., Runeson, P., Borg, M., Unterkalmsteiner, M.,

Engström, E., Regnell, B., Sabaliauskaite, G., Loconsole, A.,
Gorschek, T., Feldt, R.: Challenges and practices in aligning
requirements with verification and validation: a case study of six
companies. Empir. Softw. Eng. 19, 1809–1855 (2014).

2. Granda, M.F., Condori-Fernandez, N., Vos, T.E.J., Pastor, O.:
Towards the automated generation of abstract test cases from
requirements models. In: 1st International Workshop on
Requirements Engineering and Testing. pp. 39–46. IEEE,
Karlskrona, Sweden (2014).

3. Granda, M.F.: Testing-Based Conceptual Schema Validation in a
Model- Driven Environment. In: CAiSE 2013 Doctoral
Consortium. , Valencia (2013).

4. Object Management Group: Action Language for Foundational
UML (ALF). (2013).

5. Mohagheghi, P., Dehlen, V., Neple, T.: Definitions and approaches
to model quality in model-based software development - A review
of literature. Inf. Softw. Technol. 51, 1646–1669 (2009).

6. Granda, M.F., Condori-Fernández, N., Vos, T.E.J., Pastor, Ó.:
Effectiveness Assessment of an Early Testing Technique using
Model-Level Mutants. In: 21st International Conference on
Evaluation and Assessment in Software Engineering. , Karlskrona,
Sweden (2017).

457465

APPENDIX
The demo of CoSTest aims at allowing participants to

generate test cases from a Requirements model and find some
injected faults with the purpose of showing the main tool
functionalities. Anyone (e.g. analysts, conceptual modelling
researchers, testers, students and practitioners) considering or
planning to conduct validation of UML CD-based CS using a
tool, as well as anyone interested in taking a systematic sound
snapshot the CS validation practice are expected as visitors in
this demonstration. Participants will get a general overview
about of (1) the test suite generation, (2) the executable CSUT
generation, and (3) the test execution. For this demonstration,
we will use a simple CS of an online conference review (OCR).

The user interface of the tool is composed by eight tabs (see
Fig 2). Each tab corresponds to one of the above main
functionalities of CoSTest. As seen in Fig 2, the derivation
strategy of the test cases starts with loading the requirement
model (see Fig 3) based on the Test Model tab.

Fig 2. Test Model Generation

Fig 3.Excerpt of a Requirements model for our OCR example

Once the model has been selected, the requirement model is
transformed into the test model (see Fig 2). Then, on the next
tab (i.e. Test Scenario Model), the test scenario model is
generated with the different abstract test cases (show in Fig 4).

Fig 4. Generation of the test scenario model

After that, on the Data Concretization tab, we are able to
setup a data base by creating, reading, updating and deleting test
data values for concretize the test cases. A variable may be
concretized with values by using (i) the requirement model, (ii)
a manual entry, or (iii) a web-based generation. Fig 5 shows the
main components (e.g. list of variables, patterns, concrete
values) of this screen.

Fig 5. Screenshot for the data concretization in the CoSTest tool

Fig 6 shows the CS of our example with five defects injected
for this demonstration: (a) missing association, (b) unnecessary
parameter, (c) wrong association, (d) wrong constraint and (e)
missing constraint.

Fig 6. UML class diagram for OCR CS

458466

This model is selected in the next tab of the tool named
Conceptual Schema Under Test (see Fig 7).

Fig 7. Screenshot for generating an executable CSUT in the CoSTest tool

After this translation, the user can parser the CSUT to verify
that it is well-formed as well as to report a list of translated
elements (see Fig 8). Fig 9 shows a defect founded by the parser
in our example.

Fig 8. Report of translated elements

Fig 9. An example of the parser results

When the test cases are generated, the user can choose the
kind of test cases to be generated (shows in Fig 10).

Fig 10. Configuration of kind of the test cases

Fig 11 shows an example of test case generated by CoSTest
for our example.

Fig 11. Generation of the executable test cases

Fig 12 shows the result of the execution of an example of
CoSTest’s test suite on Testing Results Tab, in which one test
case has had problems in its execution, and therefore the global
verdict is Inconclusive.

Fig 12. Test execution Report in the CoSTest tool

After that, the user must change the CS or the requirements
in order to make it correct and complete. Then, the valiation
process should be re-run to ensure that the changes are valid.

Finally, CoSTest tool is publicly available in the project
website https://staq.dsic.upv.es/webstaq/costest.html, as well as
other CS examples (e.g. Medical Treatment, Sudoku Game,
Expense Report, and Photography Agency) and complementary
documentation about the tool.

Demo: https://youtu.be/YUDGsm634rQ
Email: fernanda.granda@ucuenca.edu.ec

459467

