UNIVERSIDAD DE CUENCA

Características del uso del Cariotipo en el Centro de Diagnóstico y Estudios Biomédicos de la Facultad de Ciencias Médicas de la Universidad Cuenca, durante el período enero 2002 - diciembre 2011.

RESUMEN

Antecedentes: El cariotipo de linfocitos obtenidos en sangre periférica, es una de las técnicas citogenéticas más utilizadas en el astro de nuestro país, puesto que es un procedimiento sencillo y asequible. Este método consiste en el ordenamiento de los cromosomas observados en el microscopio, basándose en sus características. A pesar de ser una técnica sencilla, en nuestro país no existen guías con las indicaciones específicas para la realización del cariotipo, lo que contribuye a su uso inadecuado.

Objetivo: Determinar las características del uso del Cariotipo en el Centro de Diagnóstico y Estudios Biomédicos de la Facultad de Ciencias Médicas de la Universidad de Cuenca, durante el período enero de 2002 y diciembre de 2011.

Metodología: La investigación fue descriptiva retrospectiva. Los datos fueron obtenidos a través de un formulario, luego de lo cual se elaboró una base de datos, se excluyeron los cariotipos realizados exclusivamente con motivo de docencia y aquellas observaciones con más de 3 datos perdidos en el libro de registros.

Resultados y Conclusiones: El sobreuso del cariotipo fue del 11,80%, lo que determinó 732 días de trabajo desaprovechado con las consiguientes pérdidas económicas de 3 660 dólares durante 10 años. Entre los factores asociados al sobreuso encontramos la especialidad del solicitante y el año de solicitud (p< 0,05).

Palabras Claves: Cariotipo, Técnicas y procedimientos diagnósticos/ utilización, citogenética, recursos en salud/ estadística & datos numéricos.

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
Characteristics of the Karyotype utilization in the Center of Diagnosis and Biomedical Studies of the Medical Sciences Faculty of the Cuenca University during the period January 2002 - December 2011.

ABSTRACT

Background: The karyotype in lymphocytes of peripheral blood is one of the more used cytogenetics techniques in the south of our country, being as is a simple and accessible procedure. This method consists in ordering the chromosomes observed in the microscope based on their features. Even though this is a simple technique in our country there aren’t guidelines with the specific indications to carry out the karyotype, contributing to an inadequate use.

Objective: Determining the characteristics of the karyotype utilization in the Center of Diagnosis and Biomedical Studies of the Medical Sciences Faculty of the Cuenca University during the period January 2002 and December 2011.

Methodology: The research was descriptive and retrospective. The data was obtained through a survey, after that a dataset was elaborated. The karyotypes only for teaching or observations with more than 3 missed data in the book of register were excluded.

Results & conclusions: The overuse of karyotype was 11.80% which determined 732 days of work wasted with economic losses of 3 600 dollars during 10 years. Among the factors associated with overuse we found the specialty of the person who solicited the exam and the year of solicitude (p<0.05).

Key words: Karyotype, Diagnostic Techniques and Procedures / utilization, Cytogenetics, Health resources / statistics & numerical data.
ÍNDICE

RESUMEN.. 1

ABSTRACT... 2

CAPÍTULO I .. 8

1. INTRODUCCIÓN ... 13

1.1. ANTECEDENTES .. 14

1.2. PLANTEAMIENTO DEL PROBLEMA .. 16

1.3. JUSTIFICACIÓN .. 17

CAPÍTULO II ... 18

2. MARCO TEÓRICO .. 18

2.1. GENÉTICA MÉDICA ... 19

2.1.1. CITOGÉNÉTICA ... 19

2.1.2. CROMOSOMAS .. 20

2.1.3. ANOMALÍAS CROMOSÓMICAS .. 20

2.1.4. CARIÓGRAMA ... 22

2.1.5. MUESTRAS PARA LA OBTENCIÓN DEL CARIOTIPO .. 24

2.1.6. CARIOTIPO HUMANO ... 24

2.1.7. TÉCNICAS DE TINCIÓN DE LOS CROMOSOMAS ... 25

2.1.8. CRITERIOS PARA LA SOLICITUD DEL CARIOTIPO .. 28

2.2. MANEJO ADECUADO DE LOS RECURSOS DE SALUD ... 31

2.2.1. EMPLEO INADECUADO DE LOS MÉTODOS DE DIAGNÓSTICO 32

2.2.2. CALIDAD DE LOS SISTEMAS DE SALUD ... 33

CAPÍTULO III ... 35

3. OBJETIVOS ... 35

3.1. OBJETIVO GENERAL .. 35

3.2. OBJETIVOS ESPECÍFICOS .. 35

CAPÍTULO IV ... 36

4. DISEÑO METODOLÓGICO ... 36

4.1. TIPO DE ESTUDIO .. 36
4.2. ÁREA DE ESTUDIO .. 36
4.3. UNIVERSO Y MUESTRA .. 37
4.3.1. CRITERIOS DE INCLUSIÓN .. 37
4.3.2. CRITERIOS DE EXCLUSIÓN .. 37
4.4. VARIABLES ... 38
4.4.1. OPERACIONALIZACIÓN DE VARIABLES .. 38
4.5. MÉTODOS, TÉCNICAS E INSTRUMENTOS .. 38
4.5.1. MÉTODO .. 38
4.5.2. INSTRUMENTO .. 38
4.6. PLAN DE TABULACIÓN Y ANÁLISIS .. 38
4.6.1. PROGRAMA, MEDIDAS ESTADÍSTICAS Y GRÁFICOS .. 39
4.6.1.1. PROGRAMA .. 39
4.6.1.2. MEDIDAS ESTADÍSTICAS .. 39
4.6.1.3. TABLAS Y GRÁFICOS ... 39
4.7. CONSIDERACIONES ÉTICAS ... 40
5. RESULTADOS Y ANÁLISIS .. 40
5.1. TABLAS ... 40
5.2. GRÁFICOS ... 44
6. DISCUSIÓN .. 55
7. CONCLUSIONES Y RECOMENDACIONES ... 60
7.1. CONCLUSIONES ... 60
7.2. RECOMENDACIONES .. 60
8. BIBLIOGRAFÍA ... 62
8.1. REFERENCIAS BIBLIOGRÁFICAS ... 62
8.2. BIBLIOGRAFÍA .. 68
CAPÍTULO IX .. 75

9. ANEXOS ... 75

ANEXO 1: MAPA ... 75
ANEXO 2: OPERACIONALIZACIÓN DE VARIABLES .. 76
ANEXO 3: FORMULARIO ... 77
ANEXO 4: TABLAS DE CONTINGENCIA ... 78
Yo, Verónica Paola Encalada Guerreo, autora de la tesis "CARACTERÍSTICAS DEL USO DEL CARIOFIFO EN EL CENTRO DE DIAGNÓSTICO Y ESTUDIOS BIOMÉDICOS DE LA FACULTAD DE CIENCIAS MÉDICAS DE LA UNIVERSIDAD CUENCA, DURANTE EL PERÍODO ENERO 2002 - DICIEMBRE 2011", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autora/a.

Cuenca, 15 de Febrero del 2013.

Verónica Paola Encalada Guerreo
CJ 0302054176
Yo, Verónica Paola Escalada Guerrero, autora de la tesis “CARACTERÍSTICAS DEL USO DEL CAROTIPO EN EL CENTRO DE DIAGNÓSTICO Y ESTUDIOS BIOMÉDICOS DE LA FACULTAD DE CIENCIAS MÉDICAS DE LA UNIVERSIDAD CUENCA, DURANTE EL PERÍODO ENERO 2002 – DICIEMBRE 2011.”, reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de Médica. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afectación alguna de mis derechos morales o patrimoniales como autor.

Cuenca, 15 de Febrero del 2013.

[Signature]
Verónica Paola Escalada Guerrero.
C.I. 0022202024176

Cuenca, 15 de Febrero del 2013.

[Signature]

Teodoro Edmundo Jerves Serrano
CT-0164765988
Yo, Teodoro Edmundo Jerves Serrano, autor de la tesis “CARACTERÍSTICAS DEL USO DEL CAROTIPO EN EL CENTRO DE DIAGNÓSTICO Y ESTUDIOS BIOMÉDICOS DE LA FACULTAD DE CIENCIAS MÉDICAS DE LA UNIVERSIDAD CUENCA, DURANTE EL PERÍODO ENERO 2002 - DICIEMBRE 2011.”, reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de Médico. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afectación alguna de mis derechos morales o patrimoniales como autor.

Cuenca, 15 de Febrero del 2013.

[Signature]

Teodoro Edmundo Jerves Serrano.

Cuenca - Ecuador
Yo, Laura Andrea Pesantez Pacheco, autora de la tesis "CARACTERÍSTICAS DEL USO DEL CAROTIPO EN EL CENTRO DE DIAGNÓSTICO Y ESTUDIOS BIOMÉDICOS DE LA FACULTAD DE CIENCIAS MÉDICAS DE LA UNIVERSIDAD CUENCA, DURANTE EL PERÍODO ENERO 2002 - DICIEMBRE 2014", declaro que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autora.

Cuenca, 15 de Febrero del 2013.

Laura Andrea Pesantez Pacheco
C1 003358634
Yo, Laura Andrea Pesantez Pacneco, autora de la tesis "CARACTERÍSTICAS DEL USO DEL CARIOTIPO EN EL CENTRO DE DIAGNÓSTICO Y ESTUDIOS BIOMÉDICOS DE LA FACULTAD DE CIENCIAS MÉDICAS DE LA UNIVERSIDAD CUENCA, DURANTE EL PERÍODO ENERO 2012- DICIEMBRE 2013.", reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 (literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de Médica. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afición alguna de mis derechos morales o patrimoniales como autor.

Cuenca, 15 de Febrero del 2013.

Laura Andrea Pesantez Pacneco
C.16101259924

TESIS PREVIA A LA OBTENCIÓN DEL TÍTULO DE MÉDICO Y MÉDICA

AUTORES: VERÓNICA PAOLA ENCALADA GUERRERO
TEODORO EDMUNDO JERVES SERRANO
LAURA ANDREA PESÁNTEZ PACHECO

DIRECTORA: DRA. DÉNISE SOLÍZ C.

ASESORA: DRA. LORENA MOSQUERA

CUENCA-ECUADOR
2011-2012
CAPÍTULO I

1. INTRODUCCIÓN

La genética intenta explicar cómo se heredan y modifican las características de los seres vivos; éstas puede ser morfológicas, fisiológicas e incluso de comportamiento. La genética en la medicina tuvo su inicio a principios del siglo XX con Archibald Garrod, quien supuso que las leyes de la herencia de Mendel podrían explicar la recurrencia de ciertos desórdenes familiares. Durante los siguientes 100 años, la genética médica ha crecido desde una pequeña subespecialidad interesada en unos pocos trastornos hereditarios a una especialidad médica reconocida, cuyos conceptos y enfoques son componentes importantes en el diagnóstico y manejo de muchas enfermedades.¹

Con los avances científicos y tecnológicos, la genética ha llegado a ser una ciencia básica de suma importancia en todas las áreas médicas. Los estudios citogenéticos de laboratorio juegan un papel fundamental en la Genética Clínica, siendo una herramienta de gran utilidad en la confirmación del diagnóstico clínico, lo que posteriormente permite el manejo integral y el asesoramiento de los pacientes con enfermedades genéticas y sus familias. A través de un proceso, que se conoce como asesoramiento genético, se realizan la valoración clínica y pruebas especializadas (bioquímicas, citogenéticas, radiológicas, moleculares, entre otras), posteriormente se entrega información acerca de las características de las afecciones...
genéticas, los riesgos de ocurrencia y de recurrencia y los impactos familiares que ellas producen.1-3

El análisis del cariotipo de linfocitos obtenidos en sangre periférica, es una de las técnicas citogenéticas más utilizadas en el austro de nuestro país, puesto que es un procedimiento sencillo y asequible. Este método consiste en el ordenamiento de los cromosomas observados en el microscopio, basándose en sus características.4-7

El cariotipo como método de diagnóstico citogenético tiene indicaciones específicas y es de gran utilidad para confirmar o descartar enfermedades un gran número de síndromes cromosómicos y anormalidades físicas.8 Sin embargo, actualmente el conocimiento de estos criterios de indicación es limitado, lo que supondría un uso inadecuado de este importante método de diagnóstico.

El costo y tiempo de elaboración de esta técnica es variable, dependiendo de sus materiales y la técnica implementada.9

\textbf{1.1. ANTECEDENTES}

Los estudios genéticos inician con Mendel y su trabajo con guisantes, que hizo posible que se determinen las leyes básicas de la herencia que hasta la actualidad, son aplicadas a la herencia monogénica. A partir de entonces, el desarrollo de la Genética Humana ha sido acelerado, especialmente desde la segunda mitad del siglo XX, y cada vez existen más estudios y descubrimientos sorprendentes, de tal forma que en la presente época, existen numerosas ramas de la Genética Humana, siendo la Citogenética una de ellas.10
En 1910, Morgan observó los cromosomas en los núcleos celulares y concluyó que sus alteraciones estaban relacionadas con alteraciones del fenotipo del individuo, con lo cual se conforma la “Teoría Cromosómica de la Herencia”. A partir de entonces, la Citogenética tiene un gran avance, gracias al desarrollo de técnicas como el cultivo celular (Carrel, 1913), introducción de la Colchicina como bloqueador del huso acromático y el tratamiento hipotónico (Hsu y Pomeral, 1952), bandeamiento cromosómico (Caspersson et al., 1970), entre otras.8

En Ecuador, las primeras publicaciones sobre genética ocurrieron a mediados del siglo XX, publicándose el primer libro ecuatoriano de genética titulado “La Genética y el Hombre” (Hoffstetter, 1947). A partir de entonces, se realizaron algunos estudios acerca de malformaciones congénitas por varios autores.11

Desde 1967, el Estudio Colaborativo Latinoamericano de Malformaciones Congénitas (ECLAMC), ha realizado el registro de este tipo de anomalías, siendo este estudio el más antiguo de Latinoamérica. Desde 1973, el Ecuador inició su participación con 2 hospitales de la ciudad de Quito. En 1986 y 1987 se llevan a cabo el primer diagnóstico prenatal en líquido amniótico y la primera biopsia coriónica respectivamente.11,12

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
En 2002 se desarrollan los primeros ensayos con las técnicas de citogenética molecular o FISH (hibridación in situ fluorescente), prueba con la cual se puede detectar alteraciones cromosómicas pequeñas, síndromes y patologías que antes no eran detectables.11

Entre 1968 y 1982 se desarrollan la Biología y la Genética experimental en las facultades de Biología de las Universidades del país. En la ciudad de Cuenca a inicios de la década de los 80, el Dr. Patricio Barros, profesor de la Cátedra de Biología junto con sus Ayudantes de Cátedra iniciaron su capacitación sobre el estudio de los cromosomas en plantas y animales; un año después, se efectuó el primer cariotipo humano. En 1982 el análisis del cariotipo se convirtió en un servicio disponible al público en el Centro de Diagnóstico.

Desde el año de 1985 funciona el Departamento de Citogenética del Centro de Diagnóstico y Estudios Biomédicos de la Facultad de Ciencias Médicas de la Universidad de Cuenca, en donde se realizan cariotipos a pacientes del austro ecuatoriano, remitidos por endocrinólogos, pediatras y neurólogos. Desde el año 2004 se establecieron dos centros privados de Citogenética en Cuenca, hasta ese entonces el único pertenecía a la Facultad de Ciencias Médicas.

1.2. PLANTEAMIENTO DEL PROBLEMA

En América Latina, los trastornos de causas genéticas están adquiriendo relevancia para la salud pública ya que influyen significativamente en el bienestar de la comunidad. Algunos estudios indican que los países en vías en desarrollo requieren proyectos de bajo costo y alto impacto para prevenir
malformaciones congénitas, siendo los programas de prevención y promoción lo más importantes.2, 11, 14

En junio de 2003, la Organización Mundial de la Salud estableció algunas recomendaciones para los Servicios de Genética en Latinoamérica con respecto a la investigación y pruebas genéticas como la creación de bases de datos de todos los proyectos existentes, la difusión de esta información, la inclusión del asesoramiento genético y su desarrollo técnico, médico y ético. Sin embargo, esto no ha sido posible de llevar a cabo, especialmente por los recursos limitados de las naciones.15

Otros países de la región como Brasil, México y Argentina han tenido importantes contribuciones a la Genética mundial, mientras que en Ecuador este proceso se ha desarrollado con más lentitud. Los aportes han sido escasos y provienen de estudios aislados, ya que los autores sólo comentan acerca de algún “problema genético” específico.11, 16

Al existir en Ecuador insuficientes investigaciones en este campo, no se tiene conocimiento acerca de cómo están siendo utilizadas las técnicas de laboratorio, y principalmente el cariotipo, en el diagnóstico de enfermedades genéticas en el austro ecuatoriano. Creemos que existe un uso inadecuado debido a la falta de aplicación de las guías con las indicaciones específicas para la realización del cariotipo, lo que contribuye a al establecimiento de un diagnóstico inadecuado. Además, falta mucho para que la Genética cobre importancia en Ecuador así como lo ha hecho en otros países.

1.3. JUSTIFICACIÓN

La Genética Médica nos permite reducir la prevalencia de las enfermedades genéticas, otros defectos congénitos y al mismo tiempo mejorar la calidad de vida, reduciendo al mínimo el daño al individuo y su familia.11

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
La importancia de esta tesis recae sobre la necesidad de identificar las características del uso del cariotipo como método diagnóstico en nuestro medio a través de la ejecución de un estudio más actual, para su respectiva comparación con las investigaciones anteriores, así como con las realizadas en otros países de Latinoamérica donde la situación es similar a la nuestra.¹¹⁻¹³

Además, este estudio busca informar acerca del manejo de recursos humanos y económicos en torno a los problemas genéticos, tomando en cuenta los principales objetivos de las políticas de salud en América Latina. Por ejemplo, determinar cuáles son los problemas a ser priorizados como objeto de las acciones de salud pública. Cuanto mejor organizado y equitativo sea el sistema de salud, mejores serán los resultados de las acciones en el campo de la genética.¹⁷

Al finalizar este trabajo las conclusiones, medidas y soluciones estarán disponibles en la biblioteca de la Facultad de Ciencias Medicas de la Universidad de Cuenca, donde estarán al alcance de estudiantes, profesores, autoridades de salud y otros, para dar a conocer las características del uso del cariotipo en nuestra región y las indicaciones para la realización de cariotipos.

De esta manera pretendemos informar al personal de salud sobre los resultados de nuestra tesis para promover el uso racional de este importante método de diagnóstico.

CAPÍTULO II

2. MARCO TEÓRICO

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
2.1. GENÉTICA MÉDICA

La Genética Médica se ocupa de la prevención y tratamiento de las enfermedades genéticas y defectos congénitos en general. Las enfermedades genéticas son aquellas que se deben total o parcialmente a defectos en el ADN. Las tres categorías principales de enfermedades genéticas son las anomalías cromosómicas, los trastornos génicos, y los trastornos multifactoriales, causados por interacción genético-ambiental. Nuestro estudio está principalmente interesado en las alteraciones cromosómicas y las características de su principal método de diagnóstico: el análisis de cariotipo.

2.1.1. CITOGENÉTICA

La Citogenética es una rama de la Genética que nació en el siglo XX como un híbrido entre la Genética y Citología, esta ciencia estudia los cromosomas mediante diversos métodos, el cariotipo constituye la herramienta básica y punto de partida. La Citogenética constituye una ciencia relativamente joven. La observación los cromosomas al microscopio en el siglo XIX, sin embargo hasta finales de los años 50 no fue posible individualizarlos al microscopio para poder contarlos y conocer su estructura.

Los avances de la ciencia han sido de tal magnitud que es posible identificar anomalías cromosómicas muy pequeñas gracias al desarrollo de técnicas como la de Hibridación Fluorescente in Situ (FISH) e Hibridación Genómica Comparativa (CGH). El laboratorio de Citogenética juega un papel fundamental en la genética clínica y resulta importante conocer las técnicas de las cuales disponemos para aplicarlas en caso de sospecha de anomalías cromosómicas.

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
2.1.2. CROMOSOMAS

Los cromosomas etimológicamente son “cuerpos coloreados” localizados en el núcleo de las células eucariotas durante la división celular y tienen gran importancia al ser los portadores de la información genética del individuo.10

Están formados por cromatina que a su vez posee ADN, ARN y proteínas. La cromatina se encuentra desenrollada durante la interfase y se condensan para formar los cromosomas en la mitosis. Los cromosomas pueden ser visualizados al microscopio óptico compuesto y tienen las siguientes propiedades:

- Todos los individuos de la misma especie tienen un número determinado de cromosomas.
- Los cromosomas varían en tamaño, forma y posición del centrómero. Existen dos juegos de cromosomas, uno proviene de la madre y otro del padre.
- Los cromosomas somáticos se agrupan en pares y los sexuales X y Y condicionan el sexo.19

En la especie humana los cromosomas miden entre 1 y 8 μm. Además existen 46 cromosomas, 22 pares somáticos y 1 par sexual.18

2.1.3. ANOMALÍAS CROMOSÓMICAS

Las alteraciones o anomalías cromosómicas son cambios en los cromosomas apreciables mediante las técnicas de Citogenética que determinan síndromes según el lugar donde se produjo la alteración. Los desórdenes de los cromosomas representan la mayoría de enfermedades
genéticas produciendo una serie de alteraciones como malformaciones congénitas y retardo mental. Las anomalías específicas de los cromosomas son responsables de cientos de síndromes identificables que colectivamente son más comunes que todas las mutaciones puntuales. Los desórdenes citogenéticos se presentan en aproximadamente 1% de los recién nacidos.¹

Generalmente los defectos en los cromosomas determinan alteraciones en el fenotipo. Sin embargo existen alteraciones llamadas equilibradas que no afectan al individuo portador pero dificultan la generación de un nuevo ser.⁹

2.1.3.1. ANOMALÍAS CROMOSÓMICAS NUMÉRICAS

Las alteraciones numéricas son un cambio en la dotación de cromosomas. Cuando existen uno o más juegos completos de cromosomas (dotaciones monoploides n de su especie), se habla de euplodía (triploidía, tetraploidía y en general poliploidía). Cuando varía el número de cromosomas del genoma y el individuo presenta algún cromosoma de más o de menos en relación con su condición diploide se habla de aneuploídia. Se denomina monosomía cuando en lugar de dos cromosomas homólogos solo hay uno y trisomías cuando en lugar de dos hay tres cromosomas homólogos.²⁰

Casi la mitad de las alteraciones cromosómicas autosómicas que se encuentran en el recién nacido son la presencia de un cromosoma extra ya que las monosomías totales son incompatibles con la vida. Las trisomías constituyen la anomalía cromosómica más frecuente y dentro de estas, las más conocidas son la trisomía 21 (síndrome de Down), la trisomía 18 (síndrome de Edwards) y la trisomía 13 (síndrome de Patau). Solo los niños con síndrome de Down sobreviven hasta la edad adulta, mientras que los que tienen trisomías 18 y 13 mueren por lo general antes del primer año. Las anomalías de los cromosomas sexuales tienen una menor repercusión
fenotípica que la de los autosomas. Las alteraciones más frecuentes de los cromosomas sexuales son el síndrome de Turner (45, X), el síndrome de Klinefelter (47, XXY), el síndrome de la triple X (47,XXX) y el síndrome de la doble Y (47, XYY).21-26

2.1.3.2. ANOMALÍAS CROMOSÓMICAS ESTRUCTURALES

Las alteraciones estructurales se refieren a cambios en la forma y/o tamaño de un cromosoma. Cuando el material genético se conserva en el cromosoma, la alteración es equilibrada, mientras que si se gana o pierde material genético, la alteración es desequilibrada. Son la consecuencia de la rotura y uniones anómalas de los cromosomas. Entre las alteraciones estructurales tenemos: delección (cromosoma al que le falta un fragmento), duplicación, inversión, translocación (intercambio entre cromosomas no homólogos).19

2.1.4. CARIOGRAMA

Para observar de la mejor forma posible los cromosomas humanos es necesario aplicar algunas técnicas de microscopía que prepare los mismos de la mejor forma.7

El método más utilizado y factible es aquel en el cual se utiliza sangre periférica por las facilidades de obtención de la muestra y cultivo.1

Cada examen dura entre 3 y 15 días, en el laboratorio de la universidad el promedio es 12 días y el costo de 60 dólares por cariotipo.7 La técnica aplicada es la siguiente:
1. Colocar la muestra de sangre periférica obtenida mediante venopunción con materiales estériles en un tubo al vacío heparinizado.
2. Sembrar las muestras en dos tubos de ensayo por 72 horas a 37°C siguiendo la metodología convencional, en un ambiente y con instrumentos estériles.
3. En cada tubo se coloca 0,5ml (10 gotas) de sangre, 5ml de medio RPMI 1640 y 0,2 ml de penicilina G sódica y estreptomicina. Además, uno de los tubos se refuerza con 1ml suero bovino fetal y otro con 1ml de New Born.
4. Inducir la mitosis de los linfocitos con 0,2 ml de fitohemaglutinina. Y luego detener la división celular en metafase con 0,2ml de colchicina (Colmecid).
5. Centrifugar la preparación a 1500-2000 rpm durante 10 minutos.
6. Agregar una solución hipotónica de cloruro de potasio (0,075 M) y realizar varios lavados con la misma.
7. Aplicar Fijador de Carnoy (metanol- ácido acético 3:1) y transferir la preparación por goteo con una pipeta Pasteur a un portaobjetos.
8. Analizar las metafases después de emplear la técnica de tinción de bandas, por el ejemplo el bandeo G.
9. Al observar los cromosomas en el microscopio, se debe obtener una fotografía ampliada de los mismos, para posteriormente poder recortarlos y ordenarlos adecuadamente.

Se deben considerar 20 metafases cuando la anomalía es de carácter lineal y 30 o más en caso de presentarse mosaicismo. El cariograma se realiza en 20 o más metafases y el ordenamiento de los cromosomas y la nomenclatura se realizan según las pautas del Sistema Internacional de Nomenclatura Citogenética (ISCN).22

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
2.1.5. MUESTRAS PARA LA OBTENCIÓN DEL CARIOTIPO

Cualquier célula del cuerpo humano con núcleo y capaz de dividirse es una muestra potencial para estudiar los cromosomas pero debido a las facilidades las más utilizadas son:

Sangre periférica: Se obtiene la muestra de sangre venosa y se usan los linfocitos T.

Fibroblastos: Forman parte del tejido conectivo y están en prácticamente todos los tejidos del ser humano. Sin embargo para su cultivo se necesitan 2 semanas y un ambiente anaerobio.

Líquido amniótico: Se obtiene mediante amniocentesis en el embarazo entre las semanas 9 y 18, el riesgo de aborto es del 2%. Para obtener la muestra se puncionada a través de la pared abdominal.

Vellosidades coriónicas: Se obtiene una biopsia de la placenta en el embarazo entre las semanas 9 y 11, el riesgo de aborto es del 3%. Este nos permite conocer indirectamente el cariotipo del embrión ya que tanto la placenta como el nuevo ser se forman a partir del cigoto.

2.1.6. CARIOTIPO HUMANO

Una vez obtenida la imagen apropiada de una metafase se pueden organizar los cromosomas para obtener el cariotipo humano. Para el ordenamiento se toma en cuenta el tamaño, forma y posición del
centrómero de cada cromosoma, agrupándolos en pares en los siguientes grupos: \(^6\)

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Cromosomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Grandes metacéntricos</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>B: Grandes submetacéntricos</td>
<td>4, 5</td>
</tr>
<tr>
<td>C: Medianos metacéntricos y submetacéntricos</td>
<td>6, 7, 8, 11, 9, 10, 12, X</td>
</tr>
<tr>
<td>D: Medianos acrocéntricos</td>
<td>13, 14, 15</td>
</tr>
<tr>
<td>E: Pequeños metacéntricos</td>
<td>16, 17, 18</td>
</tr>
<tr>
<td>F: Muy pequeños metacéntricos</td>
<td>19, 20</td>
</tr>
<tr>
<td>G: Muy pequeños acrocéntricos</td>
<td>21, 22, Y</td>
</tr>
</tbody>
</table>

La fotografía de la metafase a partir de la cual se trabaja puede ser obtenida por medios informáticos y el proceso de ordenamiento puede acelerarse con el uso de software específico para esto.

2.1.7. TÉCNICAS DE TINCIÓN DE LOS CROMOSOMAS

Existen técnicas de tinción con diferente complejidad y utilidad entre las que destacamos:\(^28\):

- **Bandas G:**
 Se las denomina también bandas GTG. Se producen al someter las láminas a la acción de una enzima proteolítica denominada tripsina. Esta técnica tiñe de oscuro regiones ricas en Adenina y Timina con giemsa, zonas que son transcripcionalmente inactivas, pobres en genes y secuencias Alu, pero ricas en secuencias LINE (Long Interspersed Nuclear Elements), de replicación tardía. Resulta importante aclarar que las secuencias Alu son las...
secuencias repetitivas móviles más abundantes del genoma humano. Son secuencias cortas, de unos 300 pares de bases, ricas en guanina y citosina y las secuencias LINE son elementos nucleares dispersos largos que constituyen el 20% del genoma humano. Tanto las secuencias Alu como Line pueden tener importancia en la regulación de la expresión génica.²⁸

• **Bandas Q:**
 Fue la primera técnica de bandeamiento descrita en un momento en el cual la individualización de cromosomas era imposible. Consiste en teñir con quinacrina los componentes nucleares mediante métodos fluorescentes. Permite la visualización de los cromosomas con bandas brillantes o fluorescentes correspondientes a los segmentos ricos en AT y opacas correspondientes a los segmentos ricos en GC. Las bandas son constantes, lo que permite el reconocimiento de cada uno de los cromosomas.⁶

• **Bandas R:**
 Se las denomina de esta forma porque presentan un patrón inverso al de las bandas G, ya que estas son ricas en Guanina y Citosina, genes y secuencias Alu, pero al contrario, pobres en secuencias LINE. Son zonas de replicación temprana que se producen al someter las preparaciones en solución salina a altas temperaturas y coloreadas con giemsa.¹⁹

• **Bandas C:**
 Se trata de la detección de regiones heterocromáticas utilizando hidróxido de sodio e incubando los cromosomas en una solución salina para hacer la tinción posterior con giemsa. Debido a que los centrómeros son ricos en heterocromatina, esta tinción tiñe principalmente las regiones centroméricas, pericentroméricas y gran parte del cromosoma Y.²⁸

• **Bandas T:**
Es la tinción diferencial de la porción distal de los cromosomas, es una variante de las bandas R ya que las preparaciones son incubadas en el mismo buffer, pero por periodos de tiempo más largos.

- **Bandeo Extendido o de alta resolución:**
 Implican el estudio de los cromosomas con una resolución más alta que la del análisis cromósómico estándar. Consiste en el análisis de los cromosomas en profase y prometafase, en donde los mismos, pueden alcanzar una resolución superior a las 350 bandas. Los cromosomas están dispuestos de manera tal que se alargan un poco, por lo que se pueden ver más bandas. Esto permite observar partes más reducidas del cromosoma e identificar, de este modo, anomalías cromosómicas estructurales más pequeñas que no pueden ser vistas en un análisis de rutina como microdeleciones, duplicaciones y sutiles translocaciones.

- **Hibridación Fluorescente In Situ (FISH):**
 FISH o hibridación fluorescente in situ es una técnica de marcado de cromosomas en la que se provoca que los cromosomas específicos brillen bajo el microscopio. Esta técnica permite la rápida determinación de aneuploidía, la ausencia del cromosoma completo o la presencia de un cromosoma adicional, así como la adjudicación de un marcador genético a un cromosoma (cartografía genética). Se utilizan sondas específicas para el ADN con marcadores radiactivos o fluorescentes.

- **Hibridación in situ fluorescente multicolor (SKY):**
 El “FISH Multicolor”, “M-FISH” o “SKY” (Spectral Karyotyping) es una adaptación del FISH que permite la visualización de los 23 pares de cromosomas a la vez, teñidos con diferentes sondas fluorescentes. Un programa informático se encarga de analizar las imágenes y formar el cariotipo. Se utiliza con frecuencia en el estudio de células tumorales.
• **Hibridación genómica comparativa (CGH):**

La hibridación genómica comparativa (CGH) o análisis de microarreglos cromosómico (CMA) es un método de análisis molecular-citogenético para el análisis de cambios en el número de copias (ganancias/pérdidas) en el contenido de ADN de una persona y también en células tumorales. El método se basa en la hibridación del DNA de la persona marcado con fluorocromos como FITC con DNA normal marcado con Rodamina o Texas Red usando sistemas de análisis cuantitativos que evalúan diferencias regionales de fluorescencia, identificando regiones anormales del genoma. El estudio incluye el análisis simultáneo de 44 mil oligonucleótidos de DNA dispersos por todo el genoma humano, en el paciente afectado y sus dos padres o un control sano.⁶

2.1.8. CRITERIOS PARA LA SOLICITUD DEL CARIOTIPO

Existen criterios precisos para la solicitud del cariotipo⁵ que constituye una gran ayuda para confirmar o descartar patologías secundarias a anomalías cromosómicas tanto numéricas como estructurales. Cabe recalcar que de acuerdo a la indicación se debe seleccionar la muestra y la técnica de tinción más apropiada. Así, según las edades podemos establecer los siguientes criterios para la realización del cariotipo:

2.1.8.1. **En todas las edades**

• **Diagnóstico presuntivo de anomalías cromosómicas numéricas o estructurales:** Esta constituye la principal indicación para realizar un cariotipo, basta una muestra de sangre y el análisis de 20 metafases para establecer el diagnóstico.²³-²⁶
Procesos malignos de la sangre: Especialmente las leucemias mieloides crónicas que se asocian a la presencia del cromosoma Philadelphia, una translocación de los cromosomas 9 y 22. En la hematología el cariotipo es una herramienta que contribuye al diagnóstico, pero también representa la principal herramienta de monitoreo del tratamiento, permitiendo evaluar su eficacia y reconocer o predecir la evolución clínica de la neoplasia. Otras resultados positivos del cariotipo son las poliploídias o la fragilidad de algunos segmentos cromosómicos. La muestra necesaria es la sangre y se puede usar el cariotipo de resolución estándar o la técnica para buscar fragilidad según cada caso.

2.1.8.2. Período prenatal

Las muestras provienen de biopsias coriónicas o amniocentesis y el método de cultivo es diferente al de sangre periférica pues requiere de un medio anaerobio y dos semanas de incubación, las indicaciones son:

- Edad materna mayor a 35 años: La edad de la madre mayor a 35 años durante el embarazo es un factor de riesgo para las anomalías cromosómicas numéricas como el Síndrome de Down y Síndrome de Turner. Esto se debe a que la meiosis en la mujer dura años favoreciendo un fenómeno llamado no disyunción en los cromosomas homólogos no se separan.

- Sospecha ecográfica de Cromosomopatía: La ecografía es de gran ayuda para el tamizaje de anomalías intraútero pero el diagnóstico certero se lo realiza a través del cariotipo.
• Ansiedad materna: Algunas madres presentan preocupación extrema respecto al bienestar de su futuro hijo.\(^5\)

• Oligoamnios o polidramnios: Son alteraciones en la cantidad del líquido amniótico. Llamándose oligoamnios cuando el índice de líquido amniótico es menor a 5 y polidramnios cuando es mayor 25 cm. Estos hallazgos nos orientan a la posibilidad de anomalías cromosómicas numéricas.\(^27\)

• Retraso del crecimiento intrauterino: Se define como una altura del fondo uterino por debajo del percentil 10, una de las causas son las anomalías cromosómicas numéricas.\(^27\)

• Arteria umbilical única: Normalmente en el cordón umbilical existen 2 arterias y una vena, la presencia de una arteria única está relacionada sobre todo con Síndrome de Patau y Edwards.\(^27,25\)

2.1.8.3. Periodo neonatal

• Malformaciones múltiples o aisladas: Entre los múltiples signos de las alteraciones cromosómicas podemos encontrar malformaciones.\(^23-25\)

• Genitales ambiguos: Ante la duda del sexo del recién nacido una de los exámenes fundamentales que determinará las conductas a seguir es el cariotipo para establecer el sexo cromosómico.\(^30\)

2.1.8.4. Periodo de lactancia, preescolar y adolescencia

• Retraso mental: La gran mayoría de síndromes cromosómicos cursan con un mayor o menor grado de retardo mental.\(^31\)
Trastornos del crecimiento y retraso psicomotor: En los infantes una de las causas del retraso del crecimiento es el Síndrome de Down o Turner.\(^{31}\)

Amenorrea primaria: Cuando una mujer nunca a presentado menstruación, una de las causas es el síndrome de Turner.\(^{24}\)

Falta de desarrollo puberal: El síndrome de Turner en la mujer y el de Klinefelter en el hombre dificultan la maduración de los órganos sexuales y por lo tanto conducen a la esterilidad.\(^{24,26}\)

2.1.8.5. Periodo de adulto

Abortos a repetición: Se a documentado que la principal causa de aborto espontáneos durante el primer trimestre de gestación las alteraciones cromosómicas numéricas de manera particular las trisomías incompatibles con un producto vivo, para este estudio la muestra requerida proviene del producto del aborto o mortinato.\(^{32,33}\)

Infertilidad/Esterilidad: Alteraciones cromosómicas balanceados en los progenitorios pueden constituir la causa de infertilidad y esterilidad.\(^{32,33}\)

2.2. MANEJO ADECUADO DE LOS RECURSOS DE SALUD

Los procedimientos adecuados en el campo de la salud van adquiriendo cada vez más importancia con el pasar de los años pues repercuten en los costos en salud tanto públicos como privados además de las consecuencias en la salud de los usuarios. Un ejemplo es la importancia en la actualidad...
del mal uso y sobreuso de antibióticos que ha promovido la resistencia a los mismos además los gastos económicos provocados.34

Los exámenes complementarios son de gran ayuda para el diagnóstico de las enfermedades ante la sospecha clínica o factores de riesgo. Sin embargo, muchas de las veces sus indicaciones no son respetadas y se los solicita indiscriminadamente dando lugar a la pérdida de recursos económicos y humanos.38 Las técnicas citogenéticas no están exentas de este problema y debido a su novedad favorecen a los errores de solicitud por el desconocimiento de sus indicaciones. Muchos procedimientos son sometidos a una evaluación para determinar el uso inapropiado, ya sea este sobreuso o subuso y posteriormente a la identificación de las causas para intervenir sobre las mismas.43 Se debe buscar el método más efectivo y barato.36

De acuerdo a cada procedimiento médico el impacto no sólo es económico sino que puede acompañarse de iatrogenia. Uno de las medidas adoptadas para controlar este fenómeno es la elaboración de guías clínicas para el país o región que dicten las pautas a seguir para el uso correcto los exámenes complementarios basados en la mejor evidencia científica disponible.41 También es importante destacar que ante la ausencia de estudios científicos sobre el tema a tratar la opinión de los expertos constituye la primera opción a pesar del que este grado de evidencia es cuestionable.37, 43

\textbf{2.2.1. EMPLEO INADECUADO DE LOS MÉTODOS DE DIAGNÓSTICO}

Existen 3 tipos de empleo inadecuado de los métodos de diagnóstico y tratamiento en los servicios de salud:
Sobreuso: Es el uso indiscriminado de un método de diagnóstico sin una justificación médica, cuando este es innecesario favorece al uso excesivo de recursos de toda índole, ya que un mayor uso no significa mejores resultados.35,40

Subuso: Es una negligencia de los profesionales de la salud o un descuido de los pacientes que determina que no se realicen los exámenes o consuman los medicamentos necesarios para llegar a un diagnóstico correcto o la curación respectivamente.40

Mal uso: Es un error médico y se produce cuando un tratamiento o método de diagnóstico es empleado en paciente perjudicándolo sin generar ningún beneficio.40

2.2.1.1. CONSECUENCIAS DEL SOBREUSO, SUBUSO Y MAL USO

Sin duda una de las formas de cuantificar la sobreutilización es mediante el cálculo de las pérdidas económicas, pero este método tiene sus limitaciones pues deja de lado las consecuencias clínicas y sociales. Por esta razón, otra manera de valorar el impacto del sobreuso, subuso y mal uso es calculando el tiempo perdido y los beneficios o perjuicios que provoca el método utilizado en los pacientes.34

2.2.2. CALIDAD DE LOS SISTEMAS DE SALUD

En el país existen diferentes instituciones dedicadas al cuidado de la salud de la población. Como parte de su visión, el Ministerio de Salud Pública del Ecuador priorizará la promoción de la salud y la prevención de enfermedades, con altos niveles de atención de calidad, con calidez, garantizando la salud integral de la población y el acceso universal a una
red de servicios, con la participación coordinada de organizaciones públicas, privadas y de la comunidad. Actualmente, el concepto de calidad aplicado a los Servicios de Salud, se ha ido incorporado al Sistema Nacional de Salud de nuestro país, como ha sucedido en otros países latinoamericanos.46, 47

Se define calidad como el grado en que el servicio prestado se aproxima al modelo óptimo de asistencia que debería prestarse a tal paciente. Según Myers y Slee la calidad en los servicios de salud es el grado en que se cumplen las normas en relación con el mejor conocimiento sanitario existente, de acuerdo con los principios y prácticas generalmente aceptados. Este mejor conocimiento sanitario existente debe plasmarse en normas, que luego deberán ser adaptadas a las realidades y circunstancias locales.47

En esta investigación la calidad de los servicios de salud se refleja en parte por el sobreuso, subuso o mal uso de los métodos de diagnóstico. La importancia de estos fenómenos en los sistemas de salud ha dado lugar a la aparición de organizaciones que investigan y regulan este problema.39 Se han planteado estrategias para disminuir estos fenómenos entre las que resaltan la medición de estos problemas, la ayuda a los profesionales y el compromiso de los usuarios para exigir una mejor calidad.37,40

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
CAPÍTULO III

3. OBJETIVOS

3.1. OBJETIVO GENERAL

Determinar las características de uso del Cariotipo en el Centro de Diagnóstico y Estudios Biomédicos de la Facultad de Ciencias Médicas de la Universidad de Cuenca, durante el período comprendido entre enero de 2002 y diciembre de 2011.

3.2. OBJETIVOS ESPECÍFICOS

1. Conocer las características de la población en estudio.

2. Establecer las características de uso del cariotipo: frecuencia, manejo apropiado.

3. Identificar las causas y consecuencias del uso inadecuado del cariotipo.

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
CAPÍTULO IV

4. DISEÑO METODOLÓGICO

4.1. TIPO DE ESTUDIO

La presente investigación es de tipo descriptivo retrospectivo, porque su finalidad fue conocer la frecuencia del uso del cariotipo y las características relacionadas a este en nuestro medio, para ello se usaron los datos de los registros disponibles de los últimos 10 años del Departamento de Citogenética del Centro de Diagnóstico y Estudios Biomédicos de la Facultad de Ciencias Médicas de la Universidad de Cuenca.

4.2. ÁREA DE ESTUDIO

La investigación se realizó en el Departamento de Citogenética del Centro de Diagnóstico y Estudios Biomédicos de la Universidad de Cuenca que ofrece a la comunidad del Austro y del país sus servicios para el diagnóstico de un importante número de enfermedades.

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesáñez Pacheco
El Centro de Diagnóstico a través de su laboratorio de Citogenética está en capacidad de realizar estudios de Cariotipo Humano que sirven para el diagnóstico de enfermedades genéticas hereditarias y está ubicado en la Avenida del Paraíso 3-52, en la ciudad de Cuenca, en la provincia del Azuay, en Ecuador. (Ver Anexo No.1)

4.3. UNIVERSO Y MUESTRA

El universo estuvo conformado por todos los cariotipos realizados en el Departamento de Citogenética del Centro de Diagnóstico y Estudios Biomédicos de la Universidad de Cuenca entre enero del 2002 y diciembre del 2011. En este caso, el trabajo de investigación incluyó a todo el universo.

4.3.1. CRITERIOS DE INCLUSIÓN

De la población en estudio se incluyeron las personas que fueron remitidas al Departamento de Citogenética del Centro de Diagnóstico y Estudios Biomédicos de la Universidad de Cuenca para la realización del cariotipo entre enero del 2002 y diciembre del 2011.

4.3.2. CRITERIOS DE EXCLUSIÓN

De la población en estudio se excluyeron los cariotipos realizados exclusivamente con motivo de docencia y aquellas observaciones con más de 3 datos perdidos en el libro de registros.
4.4. VARIABLES

- Edad
- Sexo
- Residencia
- Año en el que se realizó el examen
- Institución solicitante
- Especialidad del médico tratante
- Indicación
- Uso del cariotipo

4.4.1. OPERACIONALIZACIÓN DE VARIABLES

(Ver Anexo No.2)

4.5. MÉTODOS, TÉCNICAS E INSTRUMENTOS

4.5.1. MÉTODO

El método utilizado fue la observación indirecta, puesto que la información se obtuvo de las bases de datos del establecimiento ya referido en el Área de estudio. En este caso el libro de registros y los informes disponibles en el Departamento de Citogenética.

4.5.2. INSTRUMENTO

Se utilizó un formulario que será estructurado de acuerdo a los objetivos. Para el desarrollo de esta investigación se realizó una base de datos con el fin de obtener la información de las personas que participen en el estudio. (Ver Anexo No. 3)

4.6. PLAN DE TABULACIÓN Y ANÁLISIS
4.6.1. PROGRAMA, MEDIDAS ESTADÍSTICAS Y GRÁFICOS

4.6.1.1. PROGRAMA

Para realización de la base de datos, procesamiento y análisis estadístico se utilizaron los siguientes programas: Microsoft Office Excel 2007 y Stata 11.

4.6.1.2. MEDIDAS ESTADÍSTICAS

Las principales medidas estadísticas utilizadas fueron la frecuencia absoluta y relativa (porcentajes) para todas las variables categóricas y se utilizó la mediana y rango intercuartilar para la edad que es una variable continua.

Se emplearon las pruebas de Chi cuadrado o Fisher según la distribución normal o anormal de los datos para identificar si existe una relación significativa entre las variables sexo, residencia, año en el que se realizó el estudio, institución solicitante, especialidad del médico tratante y las variables uso del cariotipo. Se consideró significativa una p < 0,05.

Todos los datos disponibles fueron tomados en cuenta, se completaron los datos en la medida de lo posible y no se hizo uso de un método para el abordaje de los datos perdidos.

4.6.1.3. TABLAS Y GRÁFICOS

Tablas: Se emplearon una tabla simple para las características de base con las medidas de frecuencia absoluta y relativa de todas las variables categóricas. Además, se usaron tablas simples y de 2 x 2 de acuerdo a las variables analizadas. Para demostrar el desaprovechamiento de recursos por el sobreuso de los cariotipos a lo largo de los años se utilizó una tabla simple.

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
Gráficos: Para la edad se utilizó un gráfico de cajas y bigotes.

Tanto para el uso del cariotipo como para la indicación se emplearon pasteles para demostrar los resultados.

Los resultados del uso del cariotipo según el año de realización del examen se expusieron mediante diagramas de puntos.

Para los resultados del uso del cariotipo según la especialidad del solicitante, la residencia, el sexo y la institución solicitante se recurrieron a las barras dobles.

4.7. CONSIDERACIONES ÉTICAS

Los resultados reposarán en la biblioteca de la facultad para facilitar investigaciones o trabajos posteriores. Toda la información que proporcionó será confidencial y sólo podrá ser conocida por las personas que trabajen en este estudio. En caso de que quienes dispusieron de la información lo soliciten pueden confirmar la confidencialidad.

CAPÍTULO V

5. **RESULTADOS Y ANÁLISIS**

5.1. **TABLAS**

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masculino</td>
<td>221</td>
<td>42,75</td>
</tr>
<tr>
<td>Femenino</td>
<td>296</td>
<td>57,25</td>
</tr>
</tbody>
</table>

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
Interpretación:

El porcentaje de mujeres (57,25) supera ligeramente al de hombres. Los pacientes pertenecieron en su mayoría a la provincia del Azuay (77,89%). El
2007 fue el año con mayor cantidad de exámenes (77 que equivalen al 14,89%) y el 2004 fue el que hubo menos exámenes (37 que equivalen al 7,16%). Las solicitudes de las instituciones públicas predominaron sobre las privadas con un 54,30%. Con respecto a la especialidad del solicitante la mayoría fueron pediatras con el 35,24%.

Con estos resultados podemos establecer que no hay mayor diferencia entre la frecuencia de pedido de esta examen con respecto al sexo, ya que los problemas genéticos afectan tanto a hombres como a mujeres.

El mayor porcentaje de pacientes pertenecen a la provincia del Azuay debido a la facilidad de acceso al laboratorio de Citogenética de la Universidad de Cuenca, lugar en donde se realiza esta prueba diagnóstica. Sin embargo, también existen pacientes de toda la región austral del país por ser uno de los pocos centros especializados de la zona.

En el año en el que más solicitudes de este examen se registraron fue en el 2007, probablemente por la promoción de los proyectos de inclusión social por parte del gobierno.

Los beneficiarios fueron tanto del sector público como privado con una pequeña tendencia hacia el sector público por el bajo costo y mayor acceso de las unidades de salud a este centro de diagnóstico.

En relación con la especialidad del solicitante, los pediatras fueron quienes más solicitaron este examen, lo cual indica el mayor número de solicitudes del examen en las edades tempranas. Pero cabe recalcar que unos cuantos profesionales de la salud distintos a los médicos también solicitaron el examen sin tener la preparación para hacerlo.
Tabla 2. Uso del cariotipo según el sexo, residencia, institución solicitante, especialidad del solicitante y año de realización en el Departamento de Citogenética, durante el período 2002-2011.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor de p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td>0,983</td>
</tr>
<tr>
<td>Residencia</td>
<td>0,095*</td>
</tr>
<tr>
<td>Institución solicitante</td>
<td>0,070</td>
</tr>
<tr>
<td>Especialidad del solicitante</td>
<td>0,048</td>
</tr>
<tr>
<td>Año de realización</td>
<td>0,001</td>
</tr>
</tbody>
</table>

*Se utilizó la prueba de Fisher, para las demás variables se aplicó el chi cuadrado.

Fuente: Formularios de recolección
Realizado por: Teodoro Jerves, Laura Pesántez y Verónica Encalada.

Interpretación:

Para poder determinar los valores del chi cuadrado y prueba de Fisher según corresponda se emplearon las tablas del Anexo No. 4.

Los resultados de sexo, residencia e institución solicitante no fueron estadísticamente significativos (p>0,05) para el uso del cariotipo. Mientras que la especialidad del solicitante y el año de realización fueron estadísticamente significativos (p<0,05).

Tabla 3. Recursos desaprovechados por el sobreuso de cariotipo según el año de solicitud en el Departamento de Citogenética, durante el período 2002-2011.

<table>
<thead>
<tr>
<th>Año</th>
<th>Sobreuso del cariotipo</th>
<th>Tiempo (días)</th>
<th>Dinero (dólares)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>1</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>2003</td>
<td>13</td>
<td>156</td>
<td>780</td>
</tr>
<tr>
<td>2004</td>
<td>15</td>
<td>180</td>
<td>900</td>
</tr>
<tr>
<td>2005</td>
<td>10</td>
<td>120</td>
<td>600</td>
</tr>
<tr>
<td>2006</td>
<td>6</td>
<td>72</td>
<td>360</td>
</tr>
<tr>
<td>2007</td>
<td>3</td>
<td>36</td>
<td>180</td>
</tr>
</tbody>
</table>

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
Interpretación:

El total de dinero gastado por el sobreuso fue 3 660 dólares, mientras que el tiempo empleado para realizar los exámenes fue de 732 días. En la tabla se observa como con el pasar de los años disminuye el sobreuso probablemente debido a la actualización de los médicos y a un mejor conocimiento de las indicaciones.

Esta cantidad de tiempo y dinero son pérdidas significativas para el Departamento de Citogénetica y el Centro de Diagnóstico y Estudios Biomédicos considerando su bajo presupuesto.

5.2. GRÁFICOS
Gráfico 1. Edad de los pacientes que se realizaron cariotipos en el Departamento de Citogenética, durante el período 2002-2011.

Fuente: Formularios de recolección
Realizado por: Teodoro Jerves, Laura Pesántez y Verónica Encalada.

Interpretación:

La mediana de la edad fue 5 y el periodo intercuartilar se encontró entre 0 y 27. Se encontró un rango de edad entre 0 y 60 años. Debido a estos resultados se pueden evidenciar la distribución asimétrica de la edad en este gráfico de cajas y bigotes.

Este examen se realiza en todas las edades pero principalmente en los recién nacidos, niños y adolescentes. Según los resultados obtenidos en la presente investigación, los cariotipos se realizaron en su mayoría en la

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
población joven debido a que durante los primeros años de vida el diagnóstico y una detección temprana pueden a conducir a una mejor calidad de vida.

Gráfico 2. Uso del cariotipo en el Departamento de Citogenética, durante el período 2002-2011.

<table>
<thead>
<tr>
<th>Uso</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso apropiado</td>
<td>88,2%</td>
</tr>
<tr>
<td>Sobreuso</td>
<td>11,8%</td>
</tr>
</tbody>
</table>

Fuente: Formularios de recolección
Realizado por: Teodoro Jerves, Laura Pesántez y Verónica Encalada.

Interpretación:

En este gráfico podemos apreciar que la mayoría de cariotipos tuvieron un uso adecuado (88,20%) pues la mayoría de profesionales solicitantes tienen claras las principales indicaciones de esta prueba. Sin embargo, existió un 11,80% de sobreuso, una cifra significativa y alta. Estamos conscientes de que el subuso es un problema mayor pero por las limitaciones va más allá del análisis de este estudio.
Gráfico 3. Indicación del cariotipo en el Departamento de Citogenética, durante el período 2002-2011.

Fuente: Formularios de recolección
Realizado por: Teodoro Jerves, Laura Pesántez y Verónica Encalada.

Interpretación:
En este gráfico podemos apreciar que la mayoría de cariotipos tuvieron una indicación adecuada (88,20%). Sin embargo, existe un buen porcentaje de indicaciones ausentes e inadecuadas, 6,77% y 5,03% respectivamente.

Las indicaciones inadecuadas se deben principalmente a que el cariotipo es prueba genética con mayor disponibilidad y la más conocida, pero se desconocen sus limitaciones ya que este no puede confirmar ni descartar enfermedades relacionadas con mutaciones puntuales y a pesar de ello se solicitó erróneamente en los casos mencionados.

La ausencia de una indicación nos indica que algunos profesionales, al no realizar un diagnóstico presuntivo adecuado, no tienen la certeza de qué es lo que buscan con el cariotipo y esperan un resultado positivo. Las pruebas diagnósticas como el cariotipo deben confirmar o descartar probables diagnósticos preliminares.

Gráfico 4. Uso del cariotipo según el sexo en el Departamento de Citogenética, durante el período 2002-2011.
Interpretación:

En este gráfico podemos ver que el porcentaje de sobreuso del cariotipo en los pacientes masculinos y femeninos es similar, corroborando que no hay una diferencia significativa a causa de esta variable. Ningún estudio a demostrado ni orientado la influencia del sexo del paciente en el sobre de pruebas genéticas.
Gráfico 5. Uso del cariotipo según la residencia en el Departamento de Citogenética, durante el período 2002-2011.*

*15 datos perdidos
Fuente: Formularios de recolección
Realizado por: Teodoro Jerves, Laura Pesántez y Verónica Encalada.

Interpretación:

Según la gráfica el sobreuso del cariotipo es similar según la procedencia del paciente. Entonces el manejo adecuado de las indicaciones es homogéneo en los médicos de las diferentes provincias del sur de nuestro país.

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
Gráfico 6. Uso del cariotipo según la institución solicitante en el Departamento de Citogenética, durante el período 2002-2011.*

*5 datos perdidos
Fuente: Formularios de recolección
Realizado por: Teodoro Jerves, Laura Pesántez y Verónica Encalada.

Interpretación:
Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
De acuerdo al gráfico existe una mínima diferencia entre el sobreuso del cariotipo cuando la solicitud proviene de las instituciones públicas en comparación con las privadas.— Es posible que los profesionales que trabajan en instituciones públicas estén más ligados a la docencia que las privadas en nuestro medio y esto determine la diferencia. Los pacientes del sector público como del privado se han beneficiado de esta prueba citogenética en el centro donde llevamos a cabo nuestra investigación ya que hace unos años era el único. A pesar de la aparición de otros centros el bajo costo y la confiabilidad hacen que los médicos sin importar el tipo de institución sigan confiando en este centro.

Gráfico 7. Uso del cariotipo según el año de solicitud en el Departamento de Citogenética, durante el período 2002-2011.
Interpretación:

Como podemos apreciar en el año en el que se utilizó más apropiadamente el cariotipo fue el 2007, mientras que en el 2004 existió la mayor frecuencia de sobreuso, además esta frecuencia tiende a disminuir con el tiempo. Esto se debe a que conforme pasan los años, los conocimientos de genética se difunden y con estos las indicaciones de solicitud de este examen, por ende en los últimos años las indicaciones han demostrado una mejoría.

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
La disponibilidad en los últimos años de otras pruebas de genética más complejas en nuestro medio ha permitido que el cariotipo deje de ser la única opción diagnóstica en este tipo de trastornos.

Gráfico 8. Uso del cariotipo según especialidad del solicitante en el Departamento de Citogenética, durante el período 2002-2011.

#113 datos perdidos

Fuente: Formularios de recolección

Realizado por: Teodoro Jerves, Laura Pesántez y Verónica Encalada.

Interpretación:

En este gráfico podemos observar que cuando la solicitud proviene de un profesional que no es médico existe un mayor porcentaje de sobreuso. Los

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
profesionales de la salud que no son médicos no están preparados debidamente para entender las indicaciones del cariotipo y por ello tienden a equivocarse con mayor frecuencia.

Los que utilizan esta prueba diagnóstica de la forma más adecuada son los endocrinólogos y el resto de especialidades tiene un porcentaje parecido. La razón de este fenómeno es desconocida.

CAPÍTULO VI

6. DISCUSIÓN

En el Ecuador alrededor de 106,902 personas presentan discapacidad de origen congénito, lo que representa el 0,74% de la población.45 En la actualidad, los progresos de la genética han sido espectaculares y existen numerosas técnicas de citogenética que permiten el diagnóstico y tratamiento oportuno de estas condiciones. Algunas de ellas tienen un impacto de salud pública significativo, lo que implica que tanto portadores y afectados tomen decisiones voluntarias e informadas sobre su descendencia. La Organización Mundial de la Salud ha recomendado programas específicos de prevención y atención de enfermedades genéticas en países en desarrollo, teniendo en cuenta aspectos sanitarios, culturales y éticos mencionados.17

Los cariotipos que se realizaron en el Laboratorio de Citogenética y Estudios Biomédicos de la Universidad de Cuenca en el período 2002-2011 fueron en su mayoría en adolescentes con una media de 13,1 años y una desviación estándar de 15,19 años. Es importante realizar un diagnóstico precoz de éstas anormalidades para poder aplicar un tratamiento temprano y conducir

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
a una mejor calidad de vida lo más pronto posible. De la misma manera en un estudio al Sudeste de Turquía Balkan et al. Reportó que los pacientes se encontraron entre recién nacidos y 50 años, una media de 14,3 años con una desviación estándar de 12,45.20

En este estudio, los cariotipos que se realizaron fueron más es mujeres que en varones con el 57,25% y 43,75% respectivamente, mientras que en la investigación de Balkan et al, se demostró un ligero predominio de exámenes realizados en hombres con el 51,1%.20 Así, se demostró que no hay mayor diferencia entre la frecuencia de pedidos de éste examen con respecto al sexo, ya que los problemas genéticos afectan tanto a hombres como a mujeres y por ello, las solicitudes realizadas para la realización del cariotipo fueron similares para ambos sexos en los dos estudios citados.

El mayor porcentaje de pacientes a quienes se les realizó un cariotipo pertenecen a la provincia del Azuay con un 77,89% del total de cariotipos realizados debido a la facilidad de acceso al laboratorio de Citogenética de la Universidad de Cuenca, lugar en donde se realiza esta prueba diagnóstica. Sin embargo, también existen pacientes de toda la región austral del país por ser uno de los pocos centros especializados en la realización de éstos exámenes en la zona. El 12,55% de exámenes realizados fueron de pacientes procedentes del Cañar, y los demás pacientes fueron de El Oro, Morona Santiago y otros con el 4,58, 2,19 y 2,79% respectivamente.

En el año en el que más solicitudes de este examen se registraron fue en el 2007, año en el que se realizaron 77 exámenes correspondientes al 14,89% del total de exámenes, esto se debe probablemente a la promoción de los proyectos de inclusión social por parte del gobierno, ya que el 23 de mayo de 2007, el Vicepresidente de la República, Lenín Moreno Garcés, presentó
el programa “Ecuador sin Barreras”, que promueve una sociedad incluyente y democrática, basada en la cultura de respeto a la diferencia y a los derechos, en donde las personas con discapacidad y sus familias sean parte de la sociedad en igualdad de condiciones.

En el año 2011 se realizaron 65 exámenes, que corresponden al 12,57%. En los años 2006 y 2008 se realizaron 59 exámenes que corresponden al 11,41%. En los años 2003 y 2010 se realizaron 47 exámenes que corresponden al 9,09%. En los años 2005 y 2009 se realizaron 46 y 41 cariotipos que corresponden al 8,90 y 7,93% respectivamente. Finalmente, los años en los que la menor cantidad de exámenes se realizaron fueron en el 2002 y 2004 con una cantidad de 39 y 37 cariotipos que corresponden al 7,54 y 7,16% respectivamente.

Los beneficiarios fueron tanto del sector público como privado, sin embargo se encontró un mayor porcentaje de pacientes del sector público. Esto se debe al bajo costo y mayor acceso de las unidades de salud a este centro de diagnóstico. Se realizaron 278 exámenes para el sector público y 234 para el sector privado, lo que corresponde al 54,30 y 45,70% respectivamente.

En relación con la especialidad del solicitante, los pediatras fueron quienes más solicitaron este examen, lo cual indica el mayor número de solicitudes del examen en las edades tempranas. Pero cabe recalcar que unos cuantos profesionales de la salud, distintos a los médicos también solicitaron el examen sin tener ésta potestad. Los médicos pediatras solicitaron 142 exámenes lo que corresponde al 35,24% del total, después de ellos, quienes más solicitaron este examen fueron los ginecólogos con una frecuencia de 124, que corresponde al 30,77%. Los endocrinólogos, neurólogos, médicos de otra especialidad y médicos

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesáñez Pacheco
generales solicitaron 46, 33, 32 y 20 exámenes respectivamente, los que corresponden al 11,41, 8,19, 7,94 y 4,96%.

Otros profesionales, es decir, aquellos que no son médicos solicitaron 6 exámenes, lo que corresponde al 1,49%.

El sexo (p= 0,983), la residencia (p=0,095) y la institución solicitante (0.070) no influyeron en el uso del cariotipo, mientras que la especialidad del solicitante demostró que los endocrinólogos son quienes mejor manejan las indicaciones de uso del cariotipo (p=0,048). El resto de especialidades tienen un porcentaje de error similar y como es de esperar, aquellos que no son médicos, no conocen las indicaciones, lo que supone una pérdida de recursos.

Conforme pasan los años, los conocimientos de genética se han incrementado y a su vez se han difundido, con ello, las indicaciones de solicitud de este examen, por ende en los últimos años las indicaciones han demostrado una mejoría (p=0,001).

Después de la revisión bibliográfica, no se encontraron investigaciones acerca de las características del uso del cariotipo por lo que nosotros consideramos aceptable un sobreuso menor al 5% y en este estudio se evidenció un porcentaje de 12%, por lo que posteriormente plantearemos algunas recomendaciones para disminuir este problema. El impacto del sobreuso puede ser millonario (10,7 y 15 millones de dólares) como reporta un estudio de sobreuso de antibióticos en 1391 pacientes, además de otros problemas propios de los antibióticos como la resistencia y el impacto social.34
Otro problema bastante conocido en la bibliografía es el sobreuso de la terapia antisecretora en la consulta, un estudio reportó 35,4% de sobreuso en 946 pacientes determinando un gasto de $ 233 994.\(^3\)\(^5\)

Continuando con los fármacos, los medicamentos contra la cefalea también están entre los que mayor sobreuso reportan.\(^3\)\(^9\)

En cuanto a recursos económicos se refiere considerando las 61 solicitudes inadecuadas en nuestro estudio y que cada examen tiene un costo de 60 dólares, durante estos 10 años se han perdido 3 660 dólares. Hay que considerar que los recursos que se manejan en la salud pública son limitados y que cualquier forma de prevenir un uso inapropiado de los mismos es de gran utilidad considerando que hay muchas personas que esperan poder beneficiarse de ello.

Además, teniendo en cuenta que cada examen toma en promedio 12 días para completarse, el tiempo perdido fue de 732 días. En lo que se refiere a indicaciones en un 7% estuvieron ausentes y en un 5% fueron inadecuadas. La ausencia de un criterio diagnóstico se consideró un sobreuso ya que ningún cariotipo que fue solicitado sin indicación reportó un resultado positivo.

El problema del sobreuso para algunos autores radica sobretodo en que el daño puede sobrepasar el potencial beneficio.\(^3\)\(^7\) Para disminuir el sobreuso, las indicaciones de cada prueba tienen una gran importancia y no deben ser ignoradas.\(^3\)\(^8\)
CAPÍTULO VII

7. CONCLUSIONES Y RECOMENDACIONES

7.1. CONCLUSIONES

El sobreuso del cariotipo en del Departamento de Citogenética del Centro de Diagnóstico y estudios Biomédicos de la Universidad de Cuenca fue del 11,80%, lo que determinó 732 días de trabajo perdido con las consiguientes pérdidas económicas de 3 660 dólares durante 10 años.

Entre los factores asociados al sobreuso encontramos la especialidad del solicitante (p< 0,05) pues aquellos profesionales no médicos fueron los que tuvieron mayor sobreuso, mientras que los endocrinólogos fueron los que mejor uso hicieron del cariotipo según las indicaciones. Además, el año de solicitud también se relacionó significativamente con el sobreuso (p< 0,05), en los últimos años disminuyó el porcentaje de este problema.

7.2. RECOMENDACIONES

- Nuestra primera recomendación consiste en que el Departamento de Citogenética del Centro de Diagnóstico y Estudios Biomédicos de la Universidad de Cuenca dé a conocer cuáles son los exámenes citogenéticos disponibles al público y las respectivas indicaciones.

- El análisis de cariotipo debería ser realizado sólo en aquellos pacientes con un diagnóstico presuntivo adecuado de acuerdo los datos obtenidos en la anamnesis y el examen físico, más no en caso de ausencia de indicación o indicaciones erróneas. Además, la solicitud del mismo debería realizarse solamente por parte de un médico.
Creemos que sería de gran utilidad y ayuda para la comunidad que el Departamento de Citogenética del Centro de Diagnóstico y Estudios Biomédicos de la Universidad de Cuenca implemente otras técnicas como la realización del cariotipo en líquido amniótico y óbitos fetales con el objetivo de poder ayudar a un mayor número de personas con una probable alteración genética.

Los servicios de genética de nuestra ciudad deberían estar actualizándose constantemente para poder implementar nuevas técnicas citogenéticas y nunca dejar de lado los aspectos éticos.

Finalmente recomendamos que todos los procedimientos realizados o solicitados en el campo de la Citogenética por el médico y el personal de salud se fundamente en protocolos o manuales aplicables en nuestro medio, como es el caso de aquellos sugeridos por la Organización Panamericana de la Salud.
CAPÍTULO VIII

8. BIBLIOGRAFÍA

8.1. REFERENCIAS BIBLIOGRÁFICAS

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco

8.2. BIBLIOGRAFÍA

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco

47. Paz y Miño C. Genética Molecular y Citogenética Humana: Fundamentos, aplicaciones e investigaciones en el Ecuador. Quito: Universidad de las Américas; 2009.

9. ANEXOS

ANEXO 1: MAPA

-Departamento de Citogenética del Centro de Diagnóstico y Estudios Biomédicos de la Universidad de Cuenca
ANEXO 2: OPERACIONALIZACIÓN DE VARIABLES

<table>
<thead>
<tr>
<th>Variable</th>
<th>Concepto</th>
<th>Dimensión</th>
<th>Indicador</th>
<th>Escala</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>Tiempo transcurrido a partir del nacimiento de un individuo</td>
<td>Edad</td>
<td>Edad en años</td>
<td>Numérica</td>
</tr>
<tr>
<td>Sexo</td>
<td>Características biológicas que definen a un individuo como hombre o mujer</td>
<td>Fenotipo</td>
<td>Genero del individuo</td>
<td>Masculino Femenino</td>
</tr>
<tr>
<td>Residencia</td>
<td>Lugar donde reside el paciente.</td>
<td>Provincia</td>
<td>Provincia donde vive el individuo al que se le realizó el cariotipo.</td>
<td>Azuay Cañar El Oro Morona Santiago Otra</td>
</tr>
<tr>
<td>Año de realización del examen</td>
<td>Es el año en que fue realizado el cariotipo.</td>
<td>Cronológica</td>
<td>Año que consta en el informe del cariotipo.</td>
<td>2002 2003 2004 2005 2006 2007 2008 2009 2010 2011</td>
</tr>
<tr>
<td>Institución solicitante</td>
<td>Es el establecimiento desde el cual es solicitado el examen.</td>
<td>Pública</td>
<td>Si la institución pertenece al Estado.</td>
<td>Pública</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Privada</td>
<td>Si la institución es</td>
<td>Privada</td>
</tr>
</tbody>
</table>

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
<table>
<thead>
<tr>
<th>Especialidad del médico tratante</th>
<th>Estudios cursados por un graduado en medicina en su periodo de postgrado.</th>
<th>Título académico</th>
<th>Título de mayor nivel alcanzado por el médico que solicitó el cariotipo.</th>
<th>Ninguna Pediatría Ginecología Endocrinología Medicina Interna Neurología Otra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicación</td>
<td>Solicitud apropiada del cariotipo según las indicaciones</td>
<td>Adecuada</td>
<td>Criterio válido de solicitud</td>
<td>Adecuada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inadecuada</td>
<td>Criterio no válido de solicitud</td>
<td>Inadecuada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ausente</td>
<td>Cuando no hay un criterio de solicitud del cariotipo.</td>
<td>Ausente</td>
</tr>
<tr>
<td>Uso del cariotipo</td>
<td>Tipo de uso de este método de diagnóstico.</td>
<td>Sobreuso</td>
<td>Cuando la indicación es inadecuada o esta ausente.</td>
<td>Sobreuso</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uso apropiado</td>
<td>Cuando la indicación es adecuada.</td>
<td>Uso apropiado</td>
</tr>
</tbody>
</table>

ANEXO 3: FORMULARIO

UNIVERSIDAD DE CUENCA
FACULTAD DE CIENCIAS MÉDICAS
ESCUELA DE MEDICINA

Características del uso del Cariotipo en el Centro de Diagnóstico y Estudios Biomédicos de la Facultad de Ciencias Médicas de la Universidad Cuenca, durante el periodo enero 2002 - diciembre 2011.

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
Formulario # Fecha:

Institución:

1. Datos de filiación

Nombre: Edad: Sexo: M □ F □

Residencia:
Azuay
Cañar
El Oro
Morona Santiago
Otros

2. Cariotipo

Institución solicitante: Públicas □ Privada □

Año de realización del examen:
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Especialidad del médico tratante:
Ninguna
Pediatría
Ginecología
Endocrinología
Medicina Interna
Neurología
Otra

Indicación: Adecuada □ Inadecuada □ Ausente □

Uso del cariotipo: Uso apropiado □ Sobreuso □

ANEXO 4: TABLAS DE CONTINGENCIA

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
Tabla 1. Distribución del uso del cariotipo según el sexo en el Departamento de Citogenética, durante el período 2002-2011.

<table>
<thead>
<tr>
<th>Sexo</th>
<th>Uso del cariotipo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sobreuso</td>
<td>Uso apropiado</td>
</tr>
<tr>
<td>Masculino</td>
<td>35</td>
<td>261</td>
</tr>
<tr>
<td>Femenino</td>
<td>26</td>
<td>195</td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
<td>456</td>
</tr>
</tbody>
</table>

Fuente: Formularios de recolección

Realizado por: Teodoro Jerves, Laura Pesántez y Verónica Encalada.

Tabla 2. Distribución del uso del cariotipo según el tipo de Institución solicitante en el Departamento de Citogenética, durante el período 2002-2011.

<table>
<thead>
<tr>
<th>Institución solicitante</th>
<th>Uso del cariotipo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sobreuso</td>
<td>Uso apropiado</td>
</tr>
<tr>
<td>Pública</td>
<td>34</td>
<td>200</td>
</tr>
<tr>
<td>Privada</td>
<td>26</td>
<td>252</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>452</td>
</tr>
</tbody>
</table>

Fuente: Formularios de recolección

Realizado por: Teodoro Jerves, Laura Pesántez y Verónica Encalada.

Tabla 3. Distribución del uso del cariotipo según la residencia en el Departamento de Citogenética, durante el período 2002-2011.

<table>
<thead>
<tr>
<th>Residencia</th>
<th>Uso del cariotipo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sobreuso</td>
<td>Uso apropiado</td>
</tr>
<tr>
<td>Azuay</td>
<td>44</td>
<td>347</td>
</tr>
<tr>
<td>Cañar</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>El Oro</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>Morona</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Santiago</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>

Verónica Paola Encalada Guerrero
Teodoro Edmundo Jerves Serrano
Laura Andrea Pesántez Pacheco
<table>
<thead>
<tr>
<th>Año de realización</th>
<th>Uso del citotipo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-2006</td>
<td>Sobreuso</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Uso apropiado</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>228</td>
</tr>
<tr>
<td>2007-2011</td>
<td>Sobreuso</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Uso apropiado</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>289</td>
</tr>
<tr>
<td>Total</td>
<td>Sobreuso</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Uso apropiado</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>517</td>
</tr>
</tbody>
</table>

Fuente: Formularios de recolección
Realizado por: Teodoro Jerves, Laura Pesántez y Verónica Encalada.

<table>
<thead>
<tr>
<th>Especialidad del solicitante</th>
<th>Uso del citotipo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ninguna (médico general)</td>
<td>Sobreuso</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Uso apropiado</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20</td>
</tr>
<tr>
<td>Pediatría</td>
<td>Sobreuso</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Uso apropiado</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>142</td>
</tr>
<tr>
<td>Ginecología</td>
<td>Sobreuso</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Uso apropiado</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>125</td>
</tr>
<tr>
<td>Endocrinología</td>
<td>Sobreuso</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Uso apropiado</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>46</td>
</tr>
<tr>
<td>Neurología</td>
<td>Sobreuso</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Uso apropiado</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6</td>
</tr>
<tr>
<td>Otra</td>
<td>Sobreuso</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Uso apropiado</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>33</td>
</tr>
<tr>
<td>No médico</td>
<td>Sobreuso</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Uso apropiado</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>32</td>
</tr>
<tr>
<td>Total</td>
<td>Sobreuso</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Uso apropiado</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>404</td>
</tr>
</tbody>
</table>

Fuente: Formularios de recolección
Realizado por: Teodoro Jerves, Laura Pesántez y Verónica Encalada.