Dosis equivalente de los operadores de medidores nucleares de densidad y humedad debida a la fuente de neutrones, usando detectores pasivos de policarbonato CR-39™.

Trabajo de titulación previo a la obtención del título de Magíster en Seguridad e Higiene Industrial

Autora: Ing. Elsa Cristina Serrano Pérez
C.I.: 0102814373

Director: Dr. Laszlo Sajo Bohus
C.I:02940749

Cuenca, Ecuador
04/07/2019
RESUMEN

Fuentes de neutrones de medidores nucleares de densidad y humedad (MNDH), son ampliamente utilizados en la industria de la construcción. El control de exposición a estas radiaciones no se realiza en el Ecuador. El objetivo del estudio fue determinar la dosis equivalente y efectiva de mencionada fuente, mediante detectores pasivos PADC (CR-39™) y compararlas con límites permitidos.

El estudio fue de tipo experimental. La emisión de radiación de neutrones por un MNDH (Troxler modelo 3430) se evaluó empleando detectores CR-39™ para identificar densidad de trazas y calcular las dosis requeridas. La eficiencia del CR-39™ fue evaluada al comparar dos tipos de conversores de 10B (pastilla vs. cinta engomada) y seleccionar el más eficiente. Se ensamblaron 11 detectores, usando cinta engomada y lámina de cadmio, para ubicarlos en diferentes posiciones simulando la exposición de un operador.

Se determinó que los promedios de densidades de trazas identificadas con pastilla de boro vs. cinta engomada no fueron diferentes (valor p >0.05). Se empleó el conversor más eficiente según menor costo, la cinta engomada. La dosis equivalente más alta calculada fue para la mano en contacto con el equipo (17.04±2.04µSv/h) y la menor para el rostro con el operador de pie (4.12±0.49µSv/h). Las dosis equivalente “total” y dosis efectiva “jornadas de 8 horas” estuvieron por debajo de los límites permisibles (199.09±23.89 mSv/año < 500 mSv/año y 18.50±2.22 mSv/año < 20 mSv, respectivamente).

En conclusión, las dosis equivalente y efectiva fueron menores que los límites permisibles, sin embargo resulta importante medir las radiaciones de neutrones que pudieran afectar la salud de los trabajadores expuestos a nivel laboral.

ABSTRACT

Neutron sources of nuclear density and moisture gauges (NDMG), are widely used in construction industry. The exposure control to this type of ionizing radiation is not carried out in Ecuador. The aim of the study was to determine the equivalent and effective dose of the neutron source of an NDMG by passive PADC detectors (CR-39™) and compare them with the permitted limits.

The study was experimental. The emission of neutron was evaluated by an NDMG brand (Troxler model 3430) using CR-39™ to identify trace density and calculate the required doses. The efficiency of the CR-39™ was evaluated by comparing two types of Boron converters (pill vs. adhesive tape) and selecting the most efficient one. Eleven detectors were assembled, using adhesive tape and cadmium foil, and located in different positions simulating the exposure of an operator.

The study determined that the average densities of traces identified with boron pill vs. adhesive tape were not statistically different (p value> 0.05). The most efficient converter was used for lower cost reason, the adhesive tape. The highest equivalent dose was for the hand in contact with the equipment (17.04 ± 2.04μSv/h) and the lowest for the face with the operator standing (4.12 ± 0.49μSb/h). The "total" equivalent doses and "8 work hour" effective dose were below the permissible limits (199.09 ± 23.89 mSv / year <500 mSv and 18.50 ± 2.22 mSv / year <20 mSv, respectively).

In conclusion, the doses emitted by the neutron sources was lower than the permissible limits. However, it is important to measure ionizing neutron radiation that could affect the health of workers exposed at work.

TABLA DE CONTENIDO

1. CAPÍTULO: INTRODUCCIÓN ..12

2. CAPÍTULO: OBJETIVOS DEL ESTUDIO ..14
 2.1. OBJETIVO GENERAL ..14
 2.2. OBJETIVOS ESPECÍFICOS ...14

3. CAPÍTULO: MARCO TEÓRICO ...15
 3.1. RADIACIONES IONIZANTES ..15
 3.1.1. GENERALIDADES ..15
 3.1.2. TIPOS DE RADIACIÓN IONIZANTE15
 3.1.2.1. Partículas Alfa: ...15
 3.1.2.2. Partículas Beta: ..15
 3.1.2.3. Rayos Gamma y Rayos X:15
 3.1.2.4. Neutrones: ...16
 3.1.3. FUENTES DE RADIACIÓN IONIZANTE16
 3.1.4. EFECTOS BIOLÓGICOS DE LA RADIACIÓN IONIZANTE16

 3.2. EL NEUTRÓN ..17
 3.2.1. EMISIÓN DE NEUTRONES ...18
 3.2.2. INTERACCIÓN DE LOS NEUTRONES CON LA MATERIA18
 3.2.2.1. DISPERSIÓN ..19
 3.2.2.2. ABSORCIÓN ...20
 3.2.3. DOSIS POR NEUTRONES ..21
 3.2.4. FUENTES DE NEUTRONES ..22

 3.3. PROTECCIÓN RADIOLÓGICA ..22
 3.3.1. NORMATIVA INTERNACIONAL ...22
 3.3.2. NORMATIVA NACIONAL ..23

 3.4. DOSIMETRÍA DE LAS RADIACIONES IONIZANTES24
 3.4.1. MAGNITUDES DOSIMÉRICAS ...24
 3.4.2. DOSIMETRÍA DEL NEUTRÓN ...25
 3.4.3. UNIDADES PARA DOSIMETRÍA ..26

 3.5. DETECCIÓN Y MEDICIÓN DE RADIACIONES IONIZANTES27
 3.5.1. DOSIMETRÍA PERSONAL ..27
 3.5.2. DOSÍMETROS TERMO LUMINISCENTES27
 3.5.3. DETECTORES SÓLIDOS DE TRAZAS NUCLEARES28
 3.5.3.1. METODOLOGÍA DE LOS DETECTORES POR TRAZAS EN SÓLIDOS ...28
3.5.3.2. DETECTORES DE POLICARBONATO CR-39.........................29
3.6. MEDIDORES NUCLEARES REGISTRADOS EN ECUADOR..............30
4. CAPÍTULO: MATERIALES Y MÉTODOS ...31
 4.1. TIPO DE ESTUDIO...31
 4.2. ÁREA DE ESTUDIO Y MUESTREO..31
 4.3. DESARROLLO EXPERIMENTAL..31
 4.3.1. EQUIPOS, MATERIALES Y REACTIVOS...............................31
 4.3.2. EVALUACIÓN EXPERIMENTAL DE LA EFICIENCIA DEL DETECTOR CR-39™ ...32
 4.3.2.1. Preparación de pastillas y cintas engomadas de 10B32
 4.3.2.2. Exposición a la Fuente de 241Am-Be.............................33
 4.3.2.3. Revelado Químico ...34
 4.3.2.4. Caracterización y lectura de trazas..............................34
 4.3.3. CÁLCULO DE LA DOSIS DE EXPOSICIÓN A RADIACIÓN DE NEUTRONES ..36
 4.3.3.1. Ensamblado de detectores pasivos CR-39 con 10B y Cd36
 4.3.3.2. Posición y tiempo de exposición de los detectores pasivos CR-39™ ..37
 4.3.3.3. Cálculo de la dosis de equivalente37
 4.3.4. CÁLCULO DE LA DOSIS EFECTIVA38
 4.4. PLAN DE TABULACIÓN Y ANÁLISIS38
5. CAPÍTULO: RESULTADOS ..39
 5.1. COMPARACIÓN ENTRE CONVERSORES DE 10B DE PASTILLA Y CINTA ENGOMADA ..39
 5.2. DOSIS EQUIVALENTE DE LA FUENTE DE NEUTRONES40
 5.3. DOSIS EFECTIVA DE LA FUENTE DE NEUTRONES44
 5.4. COMPARACIÓN DE DOSIS EQUIVALENTE Y EFECTIVA CON LÍMITES MÁXIMOS PERMITIDOS ...45
6. CAPÍTULO: DISCUSIÓN ..46
 6.1. Optimización del método para detección de neutrones46
 6.2. Dosis equivalente y efectiva de radiación ionizante por neutrones47
 6.3. Dosis máximas permitidas y nivel de riesgo48
 6.4. Limitaciones del estudio ..49
7. CAPÍTULO: CONCLUSIONES Y RECOMENDACIONES51
 7.1. CONCLUSIONES ..51
 7.2. RECOMENDACIONES ...51
8. BIBLIOGRAFÍA ...53
9. ANEXOS ..58
 9.1. ANEXO GLOSARIO DE SIGLAS EMPLEADAS Y DEFINICIONES58
 9.2. ANEXO. DETECTORES CR-39TM MARCA LANTRAK64
 9.3. ANEXO. METODOLOGÍA EXPERIMENTAL ...65
 9.4. ANEXO. MEDIDOR NUCLEAR DE DENSIDAD Y HUMEDAD MARCA TROXLER MODELO 3430 ...66
 9.5. ANEXO. CONVERTIDOR DE 10B ...67
 9.6. ANEXO. MODELO USADO EN PROCESO DE EXPOSICIÓN68
ÍNDICE DE FIGURAS

FIGURA 1. Modos de interacción de los neutrones con la materia en función de los valores σ y de la energía del neutrón ...19
FIGURA 2. Reacción neutrón-alfa del 10B ...21
FIGURA 3. Factor de ponderación WR para neutrones en función de su energía ...26
FIGURA 4. Estructura química de los PADC ..29
FIGURA 5. Proceso de barrido de la superficie del detector para conteo de trazas por campo de visión ..35
FIGURA 6. Ensamblado de detectores CR-39 ™ ..37

ÍNDICE DE TABLAS

TABLA 1. Clasificación de los neutrones por su energía cinética18
TABLA 2. Límites de dosis según ICRP de 1990 ...23
TABLA 3. Límites de dosis según el Registro Oficial 891 del 8 de agosto de 1979 del Ecuador ...24
TABLA 4. Factores de ponderación de la radiación ...25
TABLA 5. Factores de ponderación de tejidos ..25
TABLA 6. Magnitudes utilizadas en radiaciones ionizantes con sus unidades .26
TABLA 7. Comparación de densidad de trazas con convertidor de 10B en pastillas y en cinta engomada ...39
TABLA 8. Comparación de densidad de trazas con convertidor de 10B en pastillas y en cinta engomada, corregida con las trazas de fondo40
TABLA 9. Detectores y sus trazas por secciones ...41
TABLA 10. Densidad de trazas por sección y por detector41
TABLA 11. Incremento de eficiencia del detector y caracterización del tipo de neutrones detectados ...42
TABLA 12. Densidad de trazas por sección por detector restando fondo43
TABLA 13. Dosis equivalente por detectores para sección de detector 10B .44
TABLA 14. Dosis equivalente y efectiva anual para distintas posiciones y distancias del operador con relación a la fuente de neutrones44
TABLA A1. Factores de ponderación del tejido ...61
TABLA A2. Factores de ponderación de la radiación ...61
CLÁUSULA DE LICENCIA Y AUTORIZACIÓN PARA PUBLICACIÓN EN EL REPOSITORIO INSTITUCIONAL

Yo, Elsa Cristina Serrano Pérez, en calidad de autora y titular de los derechos morales y patrimoniales del trabajo de titulación "Dosis equivalente de los operadores de medidores nucleares de densidad y humedad debida a la fuente de neutrones, usando detectores pasivos de policarbonato CR-39™", de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMIA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el repositorio institucional, de conformidad a lo dispuesto en el Art. 114 de la Ley Orgánica de Educación Superior

Cuenca, 04 de julio del 2019

Elsa Cristina Serrano Pérez
C.I: 010281437-3
CLÁUSULA DE PROPIEDAD INTELECTUAL

Yo, Elsa Cristina Serrano Pérez, autora del trabajo de titulación "Dosis equivalente de los operadores de medidores nucleares de densidad y humedad debida a la fuente de neutrones, usando detectores pasivos de policarbonato CR-39∞", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autora.

Cuenca, 04 de julio del 2019

Elsa Cristina Serrano Pérez
C.I: 010281437-3
AGRADECIMIENTO

Agradezco infinitamente el apoyo incondicional de mi director de tesis Dr. Laszlo Sajo Bohus, quien desde la distancia, nunca me hizo faltar una rápida y acertada respuesta para el progreso de este trabajo, abriéndome las puertas al fascinante mundo de la física nuclear.

Un especial agradecimiento al Dr. Tony Viloria, docente de la carrera de Ingeniería Ambiental de la Universidad Politécnica Salesiana sede Cuenca, por su incansable colaboración para el desarrollo de este trabajo, quien me acompañó en cada paso con infinita paciencia, demostrándome lo que es hacer ciencia que busca soluciones a problemas y engrandece a las personas.

Mis agradecimientos al Dr. Héctor René Vega Carrillo, docente de la Universidad Autónoma de Zacatecas, por su valiosa colaboración con las simulaciones del sistema experimental por el método de Monte Carlo. Al Dr. Guillermo Espinoza, docente de la Universidad Autónoma de México, por toda la información proporcionada. Agradezco también al Ing Andrés Méndez, gerente de la empresa Metrexlab; Ing. Rafael Díaz, gerente de la empresa Dosisrad y al personal de la Subsecretaría de Control y Aplicaciones Nucleares sede Cuenca, en especial al Ing. Leonardo Jadán e Ing. Flor Nataly Mora por su colaboración con este trabajo.

Elsa Cristina Serrano Pérez
DEDICATORIA

A mi querida madre, por su apoyo incondicional en cada uno de los proyectos de mi vida, demostrándome que todo lo que uno sueña se puede hacer realizar con trabajo y dedicación.

Elsa Cristina Serrano Pérez
1. CAPÍTULO: INTRODUCCIÓN

Las fuentes de radiación ionizante han sido de gran importancia para la ciencia y tecnología, al permitir el crecimiento de las industrias y generar beneficios por sus aplicaciones prácticas (García & Martín, 2008). La industria de la construcción, a nivel mundial como en el Ecuador, ha encontrado beneficios al emplear Medidores Nucleares de Densidad y Humedad, los cuales emiten radiación gamma y de neutrones. Estos equipos permiten controlar el estado de compactación de las capas que conforman las estructuras viales, con el fin de garantizar la calidad y durabilidad de las construcciones (Domingo et al., 2009; Ministerio de Transporte y Obras Públicas de Ecuador, 2012). Sin embargo, el empleo de estos equipos pueden generar riesgos para la salud del personal que los manipula, puesto que podrían exponerse a dosis de radiación ionizante (de tipo gamma o neutrones) que modifique la estructura atómica molecular de sus tejidos, produciendo cambios genéticos y consecuencias en su salud (Aramburu & Bisbal, 1996; Centro de Investigaciones Energéticas, 2013).

Entidades internacionales como el Organismo Internacional de Energía Atómica (OIEA), la Comisión Internacional de Protección Radiológica (ICRP), la Organización Mundial del Trabajo (OIT), la Organización Mundial de la Salud (OMS) y los organismos gubernamentales en cada país, controlan las fuentes que emiten este tipo de radiaciones, así como la exposición de los trabajadores que manipulan estas fuentes al exigir y vigilar la dosimetría personal con el objetivo de prevenir niveles de exposición de riesgo (Comisión Ecuatoriana de Energía Atómica, Agosto, 1979). En el Ecuador, el Ministerio de Energía y Recursos Naturales no Renovables a través de la Subsecretaría de Control y Aplicaciones Nucleares (SCAN) controla la importación y detención de cada una de las fuentes de radiación ionizante, así como del control y monitoreo de las dosis recibidas por el personal ocupacionalmente expuesto al exigir el uso de dosímetros personales (Comisión Ecuatoriana de Energía Atómica, Agosto, 1979). El control antes mencionado se aplica para radiación ionizante de tipo gamma mediante el empleo de dosímetros generalmente de tipo TLD 100 (detector termoluminiscente), los cuales son evaluados por pocas instituciones a nivel nacional. Mientras que, la dosimetría de neutrones no es controlada en el
país, probablemente porque se asume que la dosis emitida por las fuentes de neutrones es pequeña comparada con la dosis gamma (García-Fusté, Amgarou, García-Orellana, & Domingo, 2010) y debido a que no se dispone de fuentes certificadas para realizar calibraciones de los detectores de radiación, los cuales son muy costosos. En este punto, las industrias interesadas en controlar la exposición a radiación por neutrones deben asumir altos costos de enviar dosímetros al exterior para una adecuada evaluación. La falta de control de la exposición a radiación ionizante es preocupante, ya que se desprecian los efectos biológicos determinísticos que se presentan con dosis umbrales y los efectos biológicos estocásticos que son dependientes de las características intrínsecas de la persona y pueden presentarse independientemente de alcanzar una dosis umbral (Cherry, 2012).

Por todo lo antes mencionado, el presente estudio tiene como objetivo determinar la dosis equivalente y efectiva de la fuente de neutrones de un medidor nuclear de densidad y humedad mediante detectores pasivos PADC (CR-39™) y comparar estas dosis con los límites de dosis máximos permitidos. La dosis equivalente y la dosis efectiva se obtuvieron al aplicar el método más adecuado, el cual se seleccionó a partir de una comparación entre dos tipos de conversores de 10B (neutrón – partícula cargada).
2. CAPÍTULO: OBJETIVOS DEL ESTUDIO

2.1. OBJETIVO GENERAL

- Determinar la dosis equivalente y efectiva de radiación ionizante emitida por un medidor nuclear de densidad y humedad, mediante detectores pasivos PADC (CR-39TM).

2.2. OBJETIVOS ESPECÍFICOS

- Determinar la metodología más adecuada para la detección de neutrones a través de detectores PADC de trazas nucleares comparando dos tipos de conversores de ^{10}B (neutrón – partícula cargada): en pastilla y en cinta engomada.
- Estimar la dosis equivalente y efectiva debida a la fuente de neutrones, por medio de los detectores PADC con el tipo de convertidor más adecuado.
- Comparar la dosis equivalente y efectiva con los límites de dosis máximos permitidos para identificar el nivel de riesgo de radiación por el uso de medidores nucleares de densidad y humedad.
3. CAPÍTULO: MARCO TEÓRICO

3.1. RADIACIONES IONIZANTES

3.1.1. GENERALIDADES

La radiación ionizante es una radiación con energía mayor a la del enlace de los electrones al núcleo, caracterizada por su capacidad de atravesar y provocar modificaciones en la estructura atómico molecular de la materia con la que interacciona. (Aramburu & Bisbal, 1996; Ministerio de Energía Atómica, 2012).

La radiación ionizante se presenta en diferentes formas, como fotones (rayos-X, rayos gamma), partículas alfa, beta y neutrones, cada uno con características diferentes en cuanto a su carga, energía y poder de penetración (Ministerio de Energía Atómica, 2012)(Centro de Investigaciones Energéticas, 2013).

3.1.2. TIPOS DE RADIACIÓN IONIZANTE

3.1.2.1. Partículas Alfa:

Son un conjunto de dos protones y dos neutrones. Este tipo de radiación ocurre en átomos de elementos muy pesados, como el uranio, el torio o el radio. La radiación emitida es poco penetrante y son peligrosas cuando las sustancias que las emiten se introducen en el cuerpo humano por ingesta o por inhalación (Aramburu & Bisbal, 1996; Ministerio de Energía Atómica, 2012).

3.1.2.2. Partículas Beta:

Tienen carga negativa y una masa muy pequeña. Su poder de penetración es 100 veces más alto que el de las partículas alfa. Las sustancias emisoras de ésta radiación pueden ser peligrosas en caso de ingreso al organismo (Ministerio de Energía Atómica, 2012).

3.1.2.3. Rayos Gamma y Rayos X:

Las radiaciones gamma se originan en el núcleo excitado tras emitir una partícula alfa o beta, debido a un remanente de energía. Los rayos gamma no poseen carga ni masa e interaccionan con la materia colisionando con las capas electrónicas de los átomos con los que se cruzan. Pueden ser detenidos por

3.1.2.4. Neutrones:
Son partículas sin carga eléctrica con elevado poder de penetración en la materia. No producen ionización directamente, pero al interactuar con los átomos pueden generar rayos alfa, beta, gamma. Los neutrones solo pueden detenerse con masas gruesas de hormigón, agua o parafina (Ministerio de Energía Atómica, 2012).

3.1.3. FUENTES DE RADIACIÓN IONIZANTE
Las fuentes radiactivas son sustancias en estado sólido, líquido o gaseoso que emiten radiaciones nucleares. Se clasifican de acuerdo al origen de la radiación en naturales, cósmicas, terrestres y artificiales (médicas, ambientales y accidentes nucleares) y por el tipo de emisión en emisores alfa, beta, gamma y de neutrones (Instituto Nacional de Seguridad e Higiene en el Trabajo, OIT, 2001).

3.1.4. EFECTOS BIOLÓGICOS DE LA RADIACIÓN IONIZANTE
Los efectos biológicos producidos por las radiaciones ionizantes son consecuencia del paso de la radiación a través de las células en los seres vivos y de sus esfuerzos para compensar las lesiones. Los fenómenos de ionización y excitación generan una compleja serie de interacciones físico químicas, modificando la estructura original a nivel molecular, submolecular, celular o tisular (Castillo Moyano, 2016; Ministerio de Energía Atómica, 2012). Los principales efectos a nivel celular dentro de los organismos vivos incluyen:

- **Depósitos de energía:** la radiación ionizante es capaz de acumular energía suficiente para desprender electrones de los átomos con los que interactúa; lo cual genera radicales libres que generan cambios moleculares dentro de la célula (Instituto Nacional de Seguridad e Higiene en el Trabajo, OIT, 2001).
- **Efectos sobre el ADN:** El ADN es considerado como el diana biológico de la radiación debido a la ilimitada información genética que contiene. Los daños en el ADN se manifiestan en forma de mutaciones genéticas o
como cambios en la estructura y número de los cromosomas (Castillo Moyano, 2016).

- **Efectos sobre las células:** se refiere a inhibición de la división celular. Aunque el efecto suele ser pasajero puede estar asociado a alteraciones a nivel genético (Castillo Moyano, 2016; Ministerio de Energía Atómica, 2012).

Los efectos adversos en la salud luego de la exposición pueden ser categorizados en dos grupos:

- Efectos deterministas: se refieren a reacciones tisulares nocivas producidas tras la muerte o defectos en el funcionamiento de las células tras dosis elevadas luego de la exposición.

- Efectos estocásticos: cáncer y efectos heredables. Están relacionados con el desarrollo de cáncer debido a la mutación de células somáticas o una enfermedad heredable a futuras generaciones debido a una mutación en células reproductoras (Comisión Internacional de Protección Radiológica, 2008).

3.2. EL NEUTRÓN

El neutrón es una partícula subatómica que junto con el protón forman los nucleones. Es un partícula que carece de carga eléctrica y tiene una masa de $1,67493 \times 10^{-27}$ kg con un equivalente de energía de $937,505 \pm 0.010$ MeV (Ministerio de Energía Atómica, 2012; Sánchez del Río, Aranzazu, Rodríguez, & Montes, 1958). En un estado libre se transforma en protón y electrón acompañado por un neutrino (mecanismo de transformación de Fermi) con una semivida de $12,8 \pm 2.5$ minutos (Centro de Investigaciones Energéticas, 2013). Los neutrones se caracterizan por su capacidad de atravesar grandes espesores de materia debido a que no son desviados por campos eléctricos de núcleos o electrones (Contreras & Benigno, 2018). De acuerdo a su energía cinética se clasifican en los grupos presentados en la Tabla 1.
TABLA 1. Clasificación de los neutrones por su energía cinética

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Escala Energética</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lentos o térmicos</td>
<td>0-0,1 keV</td>
</tr>
<tr>
<td>Intermedios</td>
<td>0,1-20 keV</td>
</tr>
<tr>
<td>Rápidos</td>
<td>20 keV -10 MeV</td>
</tr>
<tr>
<td>De alta energía</td>
<td>>10 MeV</td>
</tr>
</tbody>
</table>

Fuente: Instituto Nacional de Seguridad e Higiene en el Trabajo, 2001

3.2.1. EMISIÓN DE NEUTRONES

Ningún proceso radioactivo tiene como resultado la emisión de neutrones por parte del núcleo; sin embargo, la emisión puede ser desencadenada como resultado de una reacción nuclear (Contreras & Benigno, 2018; Instituto Nacional de Seguridad e Higiene en el Trabajo, OIT, 2001). Las principales reacciones que desencadenan la emisión de neutrones son:

- **Reacciones (gamma, n):** la radiación gamma emitida por un radionúclido incide sobre el material adecuado (\(^9\)Be o \(^2\)H) para producir la reacción de fotodesintegración que desencadena la emisión del neutrón de unos pocos MeV.
- **Reacciones (alfa,n):** Las partículas alfa emitidas por un radionúclido inciden sobre un material adecuado (habitualmente Be) y se produce la captura de la partícula alfa con la consiguiente emisión de uno o varios neutrones de unos pocos MeV de energía cinética.
- **Reactores nucleares:** Se consideran como las fuentes más poderosas para obtención de neutrones; mediante fisión nuclear.
- **Aceleradores de partículas:** éstas reacciones usan haces de protones o de deuterones para la obtención de neutrones.
- **Fuentes de fisión espontánea:** Son fuentes formadas por elementos que se fusionan espontáneamente, por ejemplo: \(^{254}\)Cf, \(^{252}\)Cf, \(^{244}\)Cm, \(^{242}\)Cm, \(^{238}\)Pu y \(^{232}\)U (Contreras & Benigno, 2018; Morales Prieto, 2008).

3.2.2. INTERACCIÓN DE LOS NEUTRONES CON LA MATERIA

La interacción de los neutrones con la materia tiene lugar con los núcleos del medio absorbente y de forma despreciable con los electrones que rodean el núcleo atómico. Este fenómeno se debe a que el neutrón carece de carga.
eléctrica, por lo que no se presentan campos repulsivos entre los nucleones (Centro de Investigaciones Energéticas, 2013; Sánchez del Río et al., 1958). Como resultado, se produce la interacción neutrónica mediante reacciones nucleares de dispersión y absorción que a su vez se subdividen de acuerdo a la Figura 1.

FIGURA 1. Modos de interacción de los neutrones con la materia en función de los valores \(\sigma \) y de la energía del neutrón

Fuente: La autora

3.2.2.1. DISPERSIÓN

El proceso de dispersión se da cuando los neutrones interactúan con núcleos y se produce un intercambio de energía entre las partículas que colisionan, dejando libre el neutrón luego del proceso. (Centro de Investigaciones Energéticas, 2013; Ministerio de Energía Atómica, 2012). En el proceso de dispersión, las colisiones pueden ser elásticas o inelásticas:

- **COLISIÓN ELÁSTICA:** Se caracterizan porque el núcleo mantiene su estructura interna, pero su energía cinética total se incrementa. El neutrón por su lado, es desviado y pierde una fracción de su energía cinética (Centro de Investigaciones Energéticas, 2013; Furnari, 2012; Sánchez del Río et al., 1958).

- **COLISIÓN INELÁSTICA:** Este tipo de colisión ocurre cuando neutrones de alta energía chocan con núcleos pesados donde el neutrón es
temporalmente absorbido, formando un núcleo compuesto que pasa a un estado de excitado. El núcleo formado generalmente emite otro neutrón de menor energía, junto con rayos gamma característicos (Centro de Investigaciones Energéticas, 2013; Sánchez del Río et al., 1958).

3.2.2.2. ABSORCIÓN

El proceso de absorción, se presenta cuando un núcleo estable absorbe un neutrón, lo cual genera un isótopo. Si el isótopo resultante es radiactivo, el fenómeno se denomina Activación Neutrónica (Centro de Investigaciones Energéticas, 2013; Ministerio de Energía Atómica, 2012).

- CAPTURA NEUTRÓNICA O CAPTURA TÉRMICA: Es una reacción nuclear en la que un neutrón libre penetra en el núcleo blanco, formando uno más pesado; tiene lugar siempre que el neutrón y el núcleo se mueven a velocidades parecidas. Cuando el núcleo captura al neutrón libera energía de excitación por medio de fotones gamma. En el caso de que se tenga suficiente energía de excitación, el nuevo núcleo puede sufrir una desintegración beta para conseguir una mayor estabilidad convirtiéndose en un isótopo del elemento original (Centro de Investigaciones Energéticas, 2013; Furnari, 2012; Sánchez del Río et al., 1958).

- EMISIÓN DE PARTÍCULAS: Se produce cuando un neutrón incidente forma con el núcleo un sistema nuclear compuesto. Este, dependiendo de la energía involucrada, pierde energía emitiendo partículas cargadas, como protones y partículas alfa (Ministerio de Energía Atómica, 2012)
 - Reacción de dispersión neutrón-proton (n,p) se puede producir con un blanco por ejemplo núcleo de 16O. Si este núcleo captura un neutrón es posible la emisión de un protón generando así el núcleo de nitrógeno.
 - Reacción neutrón-alfa (n, alfa). Esta reacción se produce por ejemplo cuando un núcleo de 10B, un isótopo estable del boro, interactúa con neutrones térmicos. El átomo de boro absorbe el neutrón y se convierte en un isótopo inestable que decae emitiendo dos fragmentos, una partícula alfa y un núcleo de litio (Figura 2).
Las probabilidad de que se de este tipo de reacción es alta con una sección eficaz $\sigma = 3838 \text{b}$.

FIGURA 2. Reacción neutrón-alfa del ^{10}B
Fuente: Comisión Internacional de Protección Radiológica, 2008

- **FISIÓN**: Proceso exotérmico que libera grandes cantidades de energía en forma de radiaciones gamma y fragmentos de fisión. En la fisión el núcleo, se divide en dos fragmentos que liberan de 2 a 3 neutrones y una gran cantidad de energía (Ministerio de Energía Atómica, 2012).

3.2.3. DOSIS POR NEUTRONES

Considerando la afinidad de los neutrones con los elementos que forman los tejidos, el ICRU (International Commission on Radiation Units & Measurements) ha definido la composición de los tejidos, para efectos de cálculo de dosis por neutrones en cuatro elementos básicos Carbono, Hidrógeno, Oxígeno y Nitrógeno (Attix, 2008).

La dosis percibida en el ser humano, tras interacciones de los neutrones (E<10KeV) en los tejidos tiene lugar principalmente con los siguientes elementos:

- Captura de neutrones por nitrógeno $^{14}\text{N}(n,p)^{14}\text{C}$
- Captura de neutrones por hidrógeno $^{1}\text{H}(n,\gamma)^{2}\text{H}$
La captura de neutrones por hidrógeno tiene mayor probabilidad de presentarse debido a que los músculos tienen 41% más átomos de hidrógeno que de nitrógeno en su composición. (Attix, 2008; Instituto Nacional de Seguridad e Higiene en el Trabajo, OIT, 2001).

3.2.4. FUENTES DE NEUTRONES

Las principales fuentes de neutrones son los reactores nucleares, aceleradores de partículas y las fuentes especiales de neutrones (α, n) (Attix, 2008; Instituto Nacional de Seguridad e Higiene en el Trabajo, OIT, 2001).

- Reactores nucleares: Producen neutrones cuando el combustible nuclear (Uranio) se desdobra.
- Aceleradores de partículas: producen neutrones mediante la aceleración hasta altas energías de partículas cargadas como protones o electrones para luego bombardear núcleos diana.
- Fuentes especiales: constituyen las fuentes portátiles de neutrones en las cuales los emisores alfa pueden ser mezclados con Berilio, Polonio (210Po), Plutonio, (239Pu) y Americio (241Am) (Instituto Nacional de Seguridad e Higiene en el Trabajo, OIT, 2001).

3.3. PROTECCIÓN RADIOLÓGICA

La amplia utilización de las radiaciones ionizantes en áreas de medicina, farmacología, ingeniería, radiología, etc. volvió imperativo el establecimiento de límites máximos de exposición para los sujetos que trabajan en las áreas mencionadas, para el público y para el medio ambiente. El establecimiento de límites de exposición tiene por objeto evitar los efectos determinísticos en su totalidad y que la probabilidad de aparición de efectos estocásticos sea lo suficientemente baja (Comisión Internacional de Protección Radiológica, 2008; Instituto Nacional de Seguridad e Higiene en el Trabajo, OIT, 2001).

3.3.1. NORMATIVA INTERNACIONAL

Existen organismos reguladores a nivel internacional y nacional encargados de gestionar temas nucleares como seguridad radiológica, medio ambiente y
tecnología con radiación. A nivel internacional los principales entes reguladores son el OIEA y la ICRP (Carrasco, 2016). Los límites de dosis establecidos por la ICRP por exposición ocupacional y pública se detalla en la Tabla 2.

<table>
<thead>
<tr>
<th>APLICACIÓN</th>
<th>OCUPACIÓN</th>
<th>PÚBLICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosis efectiva</td>
<td>20 mSv/año</td>
<td>1 mSv/año</td>
</tr>
<tr>
<td>Dosis equivalente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cristalino</td>
<td>150 mSv</td>
<td></td>
</tr>
<tr>
<td>Piel</td>
<td>500 mSv</td>
<td>15 mSv</td>
</tr>
<tr>
<td>Mano y Pies</td>
<td>500 mSv</td>
<td>50 mSv</td>
</tr>
<tr>
<td>Mujer embarazada</td>
<td>2 mSv/periodo embarazo</td>
<td></td>
</tr>
</tbody>
</table>

ICRP: Comisión Internacional de Protección Radiológica.
Fuente: Comisión Internacional de Protección Radiológica, 2008

3.3.2. NORMATIVA NACIONAL

En el Ecuador, el ente regulador lo constituye la SCAN en dependencia del Ministerio de Energía y Recursos Naturales no Renovables, el que controla el uso responsable de las radiaciones ionizantes mediante la vigilancia de cumplimiento de normativas, emisión de licencias, servicios técnicos de apoyo y calibración de equipos (Carrasco, 2016).

Las normativas que rigen en el Ecuador son:

Normativas nacionales

- Reglamento de Seguridad Radiológica, Decreto Ejecutivo N 3640 - Registro Oficial 891, 8 de agosto de 1979 (Comisión Ecuatoriana de Energía Atómica, Agosto, 1979).

Según el Reglamento de Seguridad Radiológica vigente en el Ecuador, los límites de dosis individual para el personal ocupacionalmente expuesto y para el público son:
3.4. DOSIMETRÍA DE LAS RADIACIONES IONIZANTES

La evaluación de la exposición a radiaciones ionizantes se mide mediante las magnitudes dosis equivalente y dosis efectiva. Las magnitudes miden la energía depositada en los órganos y tejidos del cuerpo humano; sin embargo no pueden medirse directamente en el tejido, por lo cual es necesaria la medición de magnitudes operacionales a partir de las cuales se miden las dosis equivalente y efectiva (Comisión Internacional de Protección Radiológica, 2008).

3.4.1. MAGNITUDES DOSIMÉTRICAS

La magnitud fundamental para la medición de la exposición es la dosis absorbida; se define como la energía impartida por la radiación ionizante a la materia por unidad de masa (Instituto Nacional de Seguridad e Higiene en el Trabajo, OIT, 2001). Para la obtención de la dosis equivalente, la dosis absorbida es promediada sobre los órganos y tejidos específicos para una posterior aplicación de factores de ponderación escogidos de acuerdo a diferencias en sensibilidad de los órganos y eficacias biológicas de las radiaciones. Los factores de ponderación están ajustados de acuerdo al tipo de radiación (factores de ponderación de la radiación Wr) (Tabla 4) y de acuerdo al tipo de tejido (factores de ponderación de los tejidos Wt) (Tabla 5) (Andisco, Blanco, & Buzzi, 2014; Attix, 2008; Castillo Moyano, 2016; Comisión Internacional de Protección Radiológica, 2008; Instituto Nacional de Seguridad e Higiene en el Trabajo, OIT, 2001). Los valores de la dosis equivalente se suman a los órganos y tejidos.
ponderados por la sensibilidad a la radiación de estos órganos y tejidos para la obtención de la dosis efectiva (Andisco et al., 2014; Castillo Moyano, 2016; Comisión Internacional de Protección Radiológica, 2008).

TABLA 4. Factores de ponderación de la radiación

<table>
<thead>
<tr>
<th>Tipo de radiación</th>
<th>Factor de ponderación de la radiación W_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotones</td>
<td>1</td>
</tr>
<tr>
<td>Electrones y muones</td>
<td>1</td>
</tr>
<tr>
<td>Protones y piones cargados</td>
<td>2</td>
</tr>
<tr>
<td>Partículas alfa, fragmentos de fisión,</td>
<td>20</td>
</tr>
<tr>
<td>lones pesados</td>
<td></td>
</tr>
<tr>
<td>Neutrones</td>
<td>Una función continua de la energía del neutrón</td>
</tr>
</tbody>
</table>

Fuente: Comisión Internacional de Protección Radiológica, 2008

TABLA 5. Factores de ponderación de tejidos

<table>
<thead>
<tr>
<th>Tejido</th>
<th>W_T</th>
<th>ΣW_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Médula ósea, colon, pulmón, estómago, mama, resto de</td>
<td>0,12</td>
<td>0,72</td>
</tr>
<tr>
<td>los tejidos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gónadas</td>
<td>0,08</td>
<td>0,08</td>
</tr>
<tr>
<td>Vejiga, esófago, hígado, tiroides</td>
<td>0,04</td>
<td>0,16</td>
</tr>
<tr>
<td>Superficie del hueso, cerebro, glándulas salivales,</td>
<td>0,01</td>
<td>0,04</td>
</tr>
<tr>
<td>piel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,00</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Comisión Internacional de Protección Radiológica, 2008

3.4.2. DOSIMETRÍA DEL NEUTRÓN

La dosis de absorción del neutrón así como su eficacia biológica dependen directamente de su energía (Attix, 2008; Comisión Internacional de Protección Radiológica, 2008). Debido a que la mayoría de las exposiciones a neutrones involucran un rango de energías, el factor de ponderación para el cálculo de la dosis equivalente y/o dosis efectiva se considera una función continua (Figura 3) (Comisión Internacional de Protección Radiológica, 2008).
FIGURA 3. Factor de ponderación WR para neutrones en función de su energía

Fuente: (Comisión Internacional de Protección Radiológica, 2008)

3.4.3. UNIDADES PARA DOSIMETRÍA

En seguridad radiológica se usan unidades y definiciones que han sido desarrolladas y establecidas por la Comisión Internacional de Unidades y Medidas de Radiación (ICRU) y la ICPR (Andisco et al., 2014). Las principales magnitudes y sus correspondientes unidades se resumen en la Tabla 6:

TABLA 6. Magnitudes utilizadas en radiaciones ionizantes con sus unidades

<table>
<thead>
<tr>
<th>Magnitud</th>
<th>Símbolo</th>
<th>Proceso físico Medido</th>
<th>Unidades S.I.</th>
<th>Unidad Tradicional</th>
<th>Equivalencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad</td>
<td>A</td>
<td>Desintegración nuclear</td>
<td>Becquerel (Bq)</td>
<td>Curie (Ci)</td>
<td>1Ci=3,7x10^10 Bq</td>
</tr>
<tr>
<td>Exposición</td>
<td>X</td>
<td>Ionización producida por la radiación X y gamma en aire</td>
<td>Coulomb/kilogramo (C/kg)</td>
<td>Röentgen (R)</td>
<td>1R=2,58x10^-4 C/kg</td>
</tr>
<tr>
<td>Dosis Absorbida</td>
<td>D</td>
<td>Energía depositada</td>
<td>Gray (Gy)= 1 Jouel/kg</td>
<td>rad (rad)</td>
<td>1Gy=100rad</td>
</tr>
<tr>
<td>Dosis Equivalente</td>
<td>H</td>
<td>Efecto biológico. Toma en cuenta los distintos tipos de radiación</td>
<td>Sievert (Sv)</td>
<td>rem (rem)</td>
<td>1Sv=100 rem</td>
</tr>
<tr>
<td>Dosis Efectiva</td>
<td>E</td>
<td>Riesgo. Toma en cuenta la radiosensibilidad de los distintos tejidos u órganos</td>
<td>Sievert (Sv)</td>
<td>rem (rem)</td>
<td>1Sv=100 rem</td>
</tr>
</tbody>
</table>

Fuente: (Comisión Ecuatoriana de Energía Atómica, Agosto, 1979)
3.5. DETECCION Y MEDICION DE RADIACIONES IONIZANTES

Debido a que el cuerpo humano no es capaz de detectar las radiaciones ionizantes por ninguno de sus sentidos, es necesario contar con instrumentos que permitan cuantificarlas con el fin conocer el producto de la interacción de las radiaciones ionizantes sobre las moléculas y tejido humano.

La detección y medida de las radiaciones ionizantes se basan en la evaluación de los procesos físico – químicos que se producen al interactuar con la materia (ionización del medio gaseoso, ennegrecimiento de emulsiones fotográficas, descomposición ciertas sustancias químicas y producción de centelleo de sustancias luminiscentes) (Attix, 2008; Contreras & Benigno, 2018; Salazar & Castañeda, 2011).

3.5.1. DOSIMETRÍA PERSONAL

La dosimetría personal mide la dosis que reciben los trabajadores en sus actividades diarias y ayuda a evaluar la efectividad de los sistemas de protección radiológica (Ministerio de Energía Atómica, 2012).

El dosímetro personal es el instrumento que mide y registra la dosis total recibida por una persona. Los dosímetros deben cumplir requisitos tales como mínima pérdida de registros, poca dependencia energética, rango de medida amplio, buena respuesta a la dosis absorbida, adecuada sensibilidad, resistencia a condiciones ambientales, mínima interferencia en el desempeño de actividades del trabajador, costo razonable, equipos asociados no muy sofisticados, etc. Los tipos de dosímetros personales más usados son de película, lapicera y termoluminiscentes (TLD) (Attix, 2008; Ministerio de Energía Atómica, 2012)

3.5.2. DOSÍMETROS TÉRMOLUMINISCENTES

Actúan mediante la emisión de luz de un material previamente irradiado luego de calentarlo por debajo de su temperatura de incandescencia. A medida en que se incrementa la temperatura, los electrones y huecos comenzarán a vibrar hasta alcanzar la energía cinética suficiente para escapar de los estados meta estable y recombínarse siguiendo la emisión de la luz (Contreras & Benigno, 2018; Salazar & Castañeda, 2011).
La cantidad de luz emitida durante el calentamiento es proporcional a la dosis de radiación recibida. Los dosímetros emplean cristales termoluminiscentes TLD-100 de LiF(Mg,Ti) de alta sensibilidad, con capacidad de detectar radiaciones gamma y rayos x, radiaciones que con frecuencia se producen tanto en el área industrial como en el área de laboratorio y médicas (Ministerio de Energía Atómica, 2012; Salazar & Castañeda, 2011).

3.5.3. DETECTORES SÓLIDOS DE TRAZAS NUCLEARES

La detección de trazas nucleares en sólidos permite el estudio de partículas nucleares de manera simple y con características de bajo costo (Espinosa, 1994). Estos detectores son sensibles a partículas alfa, protones, iones y fragmentos de fisión, tienen aplicaciones en investigación sobre radiaciones, dosimetría para protección radiológica y medidas en campos. Actualmente la base sólida para la detección está constituida por polímeros debido a su alta sensibilidad a la detección de radiación, eficiencia y precisión (Contreras & Benigno, 2018; Espinosa, 1994)

El mecanismo de formación de las trazas se basa en la propiedad que tienen la mayoría de los polímeros sólidos de crear patrones finos de daño por el paso de partículas nucleares y de iones pesados. Las trazas generadas por las partículas son huellas generadas por desplazamientos atómicos (Espinosa, 1994).

3.5.3.1. METODOLOGÍA DE LOS DETECTORES POR TRAZAS EN SÓLIDOS

La técnica que permite hacer ópticamente visible la traza formada por la radiación ionizante incidente en el sólido puede ser resumida en tres pasos:

1. Exposición a la radiación ionizante
2. Revelado químico de la traza.
3. Caracterización y lectura de la traza.

Exposición del detector a la radiación ionizante

El proceso de exposición consiste en colocar el detector sólido frente a la radiación ionizante, generando la traza nuclear en el material. La traza puede permanecer en el detector hasta posterior revelación.
Revelado por ataque químico

Para la observación de los lugares donde incide la radiación ionizante el detector sólido expuesto debe ser sometido a un desgaste superficial por ataque químico

Caracterización y lectura de la traza

El análisis y caracterización de la traza se realiza con ayuda de un microscopio óptico con el que se cuenta el número de trazas grabadas por unidad de área. Este número indica la relación del número de partículas incidentes, mientras que el diámetro de la traza, indica la energía de la partícula (Attix, 2008; Espinosa, 1994).

3.5.3.2. DETECTORES DE POLICARBONATO CR-39

Los detectores de carbonato polialil diglicol PADC \((C_{12}H_{18}O_{7})\), comúnmente llamado CR-39™, constituye el detector de trazas nucleares en sólidos más sensible y mejor estudiado (Figura 4).

Los CR-39™ son ampliamente usados en dosimetría de neutrones en campos complejos como ambientes de aceleradores de partículas, estaciones espaciales y para protección radiológica en dosimetría personal de neutrones debido a sus características de versatilidad en cuanto a tamaño y peso y a su alta sensibilidad en un amplio espectro de energías que van desde los 100 KeV hasta los 14 MeV (Contreras & Benigno, 2018; Espinosa, 1994; J. K. Pálfalvi, Szabó, Akatov, Sajó-Bohus, & Eördőgh, 2005).

El CR-39 es una resina resistente al calor que presenta cualidades no disponibles en otros plásticos como: ser completamente transparente a la luz visible y opaco en la región infrarroja y ultravioleta, resistencia a abrasivos,
propiedades ópticas de alta calidad, peso de alrededor de la mitad de otros plásticos, resistencia a golpes, presión y rayaduras, resistente a la radiación gamma, amplio rango de absorción ultravioleta, mantiene sus propiedades ópticas luego de una larga exposición a solventes químicos, ácidos oxidantes y bases fuertes (Contreras & Benigno, 2018).

El principio para la medida, en los detectores CR-39, se basa en el conteo del número de huellas dejadas en la superficie del detector luego de la irradiación. Como los neutrones no producen trazas, por no inducir ionización de forma directa, su detección se hace gracias a los núcleos de retroceso producto de los impactos de los neutrones con el hidrógeno, carbono, oxígeno o por partículas cargadas producto de reacciones nucleares tipo n,α (Castillo et al., 2013).

En ésta sección no se describe a detalle la metodología de los detectores pasivos de policarbonato de tipo CR-39 debido a que su modo de acción se describe a detalle en la sección de metodología.

3.6. MEDIDORES NUCLEARES REGISTRADOS EN ECUADOR

Las principales áreas de aplicación de radiaciones ionizantes en el Ecuador son la medicina, industria, docencia, investigación y apoyo a actividades industriales. Las prácticas en el área de la industria corresponden al 9% del total. En este grupo, hasta el año 2015, los medidores nucleares de densidad y humedad son los que mayor número de equipos tienen registrados en el país (Carrasco, 2016). Al analizar la base de datos “Registro de Ingresos a Laboratorio”, proporcionada por la empresa Metrexlab, se encontró que en el periodo de años 2014 a 2017 de 239 equipos ingresados alrededor del 60% (n=144) son de la marca Troxler modelo 3430 (Metrexlab Compañía Limitada, 2017). Es por ello que evaluaciones de mencionados equipos podrían proporcionar una idea general de la radiación ionizante a la que están expuestos la mayor parte de trabajadores que laboran directamente con detectores nucleares de este tipo.
4. CAPÍTULO: MATERIALES Y MÉTODOS

4.1. TIPO DE ESTUDIO
Se trata de un estudio experimental de tipo transversal que incluyó la evaluación del método de trazas nucleares en sólidos (TNS) mediante detectores CR-39™ ensamblados con pastillas y cintas engomadas de 10B y la determinación de la dosis equivalente y efectiva de neutrones generadas por la fuente 241Am-Be de un medidor nuclear de densidad y humedad.

4.2. ÁREA DE ESTUDIO Y MUESTREO
El estudio se realizó en un parqueadero de automóviles fuera de servicio ubicado en la calle Manuel Dávila de la ciudad de Cuenca, provincia del Azuay, al sur de la sierra ecuatoriana a 2.700 metros sobre el nivel del mar. El lugar fue elegido por contar por un sistema de seguridad confiable y una infraestructura adecuada, similar a la recomendada en el manual de uso del fabricante (Troxler Electronic Laboratories, Inc., 2003). La toma de muestra se llevó a cabo de Abril a Mayo de 2018.

4.3. DESARROLLO EXPERIMENTAL

4.3.1. EQUIPOS, MATERIALES Y REACTIVOS

4.3.1.1. Equipos
- Densímetro nuclear modelo 3430 (TROXLER, USA)
- Baño María modelo 580-342 (POLYSCIENCE, USA)
- Microscopio óptico (MICROS, AUSTRIA)

4.3.1.2. Materiales e insumos
- Detectores pasivos tipo CR-39™ (USA, LANTRAK TM)
- Láminas de cadmio natural
- Tamiz (No. 100) (SOILTEST INC.)
- Cinta adhesiva transparente (ABRO, INDONESIA)
- Balanza digital (Ohaus™, USA)
- Tubos de vidrio
- Gradillas

4.3.1.3. Reactivos
- 10 Boro (10B)
- Hidróxido de sodio (NaOH)
- Agua destilada.

4.3.2. EVALUACIÓN EXPERIMENTAL DE LA EFICIENCIA DEL DETECTOR CR-39™

El detector pasivo CR-39™ es un dispositivo capaz de registrar las trazas producidas por la interacción de los neutrones y, en conjunto con 10B se ha observado el aumento de la eficiencia de detección (Castillo et al., 2013; Palacios, Ingles, Greaves, Sajó-Bohus, & Barros, 2010; Vega-Carrillo, Barquero, & Mercado, 2013). El detector utilizado en el ensayo presenta las siguientes dimensiones: 19 mm de largo, 9.3 mm de ancho y 1 mm de espesor con una densidad de 1.3 g/cm3 (Anexo 2). El núcleo de 10B, un isótopo estable, interactúa con neutrones térmicos. El átomo de boro absorbe el neutrón y se convierte en un isótopo inestable que decae emitiendo dos fragmentos, una partícula alfa y un núcleo de litio (10B(n,alfa)7Li) (Nobuyuki, Ja, & Kunitomo, 2017).

Para el experimento se dividieron dos detectores CR-39™ en 6 partes con áreas de 28 mm2 en promedio (Anexo 3).

4.3.2.1. Preparación de pastillas y cintas engomadas de 10B

Para la elaboración de pastillas con mayor espesor y densidad, se utilizó 0.13g de polvo de 10B previamente tamizado (No. 100). El material obtenido fue humedecido con una gota de agua destilada y compactado, mediante golpes repetitivos, sobre una plantilla de plástico de 0.4 mm de espesor, cuyo interior posee un recorte de 13.7 x 11 mm. Una vez formadas las pastillas, éstas fueron secadas a temperatura ambiente (19°C) por 6 horas. Las pastillas resultantes
presentaron las siguientes características: 10.8 mm de largo, 3.9 mm de ancho, 0.6 mm de espesor, masa de 0.02gr y una densidad de 0.84gr/cm3.

El procedimiento para la obtención de cintas engomadas de boro de menor espesor se realizó siguiendo el método experimental de la cinta adhesiva. El método consiste en impregnar partículas ^{10}B mediante presión sobre una cinta adhesiva transparente de 18 mm de ancho. Una vez adherido el ^{10}B a la goma, se verifica que el material cubra la superficie en su totalidad. Finalmente, se retira el exceso y se corta en dimensiones de ancho y largo similares a la de la pastilla.

4.3.2.2. Exposición a la Fuente de $^{241}\text{Am-Be}$

Como fuente de emisión de neutrones se utilizó un densímetro nuclear (TROXLER) 3430 de propiedad el Laboratorio LABSCON. El dispositivo fue seleccionado debido a su amplio uso en el país. El equipo cuenta con una fuente de $^{241}\text{Am-Be}$ con serie número 78-3545 de 40±10% mCi (1.48±10%GBq) de actividad y una fuente gamma de ^{137}Cs con serie número 77-6184 de 8±10%mCi (0.3±10% GBq). La fuente posee una geometría cilíndrica aproximada de 120 mm de altura x 35mm de diámetro encapsulado en un cilindro de acero inoxidable en cuyo interior está conformado por un óxido de Am y una cápsula de Be (Anexo 4). El equipo cuenta con los mantenimientos, calibraciones y certificados de operatividad vigentes requeridos por la SCAN.

Para el experimento, seis detectores de CR-39 $^{\text{TM}}$ fueron ensamblados con pastillas de ^{10}B y seis detectores de CR-39 $^{\text{TM}}$ con cinta engomada de ^{10}B (Anexo 5). Un soporte universal adaptado a un goniómetro con platina fue empleado para simular la posición del operador al momento del contacto con la fuente de radiación iónica. Los pares de dispositivos fueron expuestos a 33.3, 66.6, 99.9, 133.2, 166.5 y 199,8 cm de distancia de la fuente, para simular las dosis de neutrones que podría recibir un operador durante una medición de rutina. El tiempo de exposición de cada tipo de detector ensamblado con ^{10}B fue 4, 5, 6, 7 8 y 11 horas respectivamente. Una vez que los detectores fueron expuestos a la radiación ionizante, se trasladaron al laboratorio de Universidad Politécnica Salesiana, sede Cuenca, hasta su análisis.
4.3.2.3. Revelado Químico

Una vez irradiado los detectores, las trazas son evidenciadas por un ataque químico. El revelado químico se realizó siguiendo la norma española para la medición de la radioactividad en el medio ambiente “Aire: radón-222. Parte 1” Orígenes del radón y sus productos de desintegración de vida corta y métodos de medición asociados“ (UNE-EN ISO, 2012). Las condiciones de concentración de la solución y temperatura de revelado se encuentran ampliamente descritas en la literatura (J. Pálfalvi, Akatov, Szabó, Sajó-Bohus, & Eördögh, 2006). El revelado por ataque químico permite distinguir de manera clara y precisa los lugares en los que incide la radación ionizante. La velocidad de reacción es mayor en la zona de trayectoria de penetración de las partículas, dando lugar a la formación de agujeros que varían en tamaño de acuerdo al tiempo de contacto con el reactivo. A estos agujeros se les denomina trazas y pueden ser observados con un microscopio óptico.

Los detectores, ensamblados e identificados con un alambre de acero inoxidable, fueron colocados en tubos de ensayo a un centímetro de su fondo. El material a analizar fue sometido a un ataque químico con 10 ml de una solución de NaOH 6N previamente atemperado a 70±1°C. Los tubos con el detector y la solución de revelado fueron mantenidos en baño maría a condiciones similares de temperatura por 6 horas. La temperatura de la solución de revelado fue medida constantemente, para asegurar su uniformidad. Una vez transcurrido el tiempo de revelado, los detectores son sumergidos en un vaso de precipitación con agua destilada por 20 minutos bajo agitación constante para eliminar residuos de la solución de revelado. Luego el material es nuevamente enjuagado en agua destilada por 10 minutos, sin agitación. Finalmente, los detectores fueron secados con papel absorbente evitando lastimar la superficie del detector.

4.3.2.4. Caracterización y lectura de trazas

Para el conteo de las trazas se utilizó un microscopio óptico de transmisión de luz con un aumento de 400x. El conteo de trazas por unidad de área (densidad
de trazas ρ) se realizó de forma manual por un solo operador a través de la técnica de barrido de superficie (Durrani & Ilic, 1997). En el conteo sólo se consideraron como trazas aquellas huellas que tengan formas claras con bordes redondeados bien definidos y que al momento de maniobrar con el micrómetro del microscopio se pueda ver el ingreso o paso de la partícula cargada por la materia.

Para determinar la densidad de trazas primero se definió el área del campo de visión correspondiente al aumento 400x. Para esto se tomaron de referencia, una traza localizada en la parte central superior del campo de visión y por otro lado la posición correspondiente en la regla lateral del microscopio con relación a 0. Una vez definidos los dos puntos de referencia, se desplaza el campo de visión hacia abajo de forma vertical hasta que la referencia (traza) haya salido del campo de visión. Se verifica el desplazamiento de la regla y se registra el dato. Se repite el proceso por 10 veces para obtener promedio del diámetro del campo de visión y se calcula el área aplicando la fórmula $A = \pi \times r^2$; donde A es la área del campo de visión y r es el radio del campo de visión.
Finalmente la densidad de trazas es obtenida mediante la siguiente ecuación ((Durrani & Ilic, 1997):)

$$\rho = \frac{(N)}{n(A)}$$

Donde:
- ρ es igual a la densidad de trazas.
- N es el número de trazas.
- n es el número de campos de visión.
- A el área del campo de visión.

La identificación de trazas de fondo en detectores expuestos a distancias superiores a 100 cm, no se consideraron para la evaluación de la eficacia del detector pero sí para corregir las perturbaciones de fondo.

4.3.3. CÁLCULO DE LA DOSIS DE EXPOSICIÓN A RADIACIÓN DE NEUTRONES

Se calculó la exposición a la radiación de neutrones mediante el método de detección de trazas nucleares en sólidos utilizando detectores pasivos CR-39™ ensamblados con cinta engomada 10B y lámina de Cd.

4.3.3.1. Ensamblado de detectores pasivos CR-39 con 10B y Cd

El 10B con cinta engomada y el Cd fueron ensamblados en el detector CR-39™. El detector pasivo tipo CR-39™ fue dividido en tres áreas, una región sin recubrimiento, otra cubierto con 10B y un último sector recubierto con 10B y una lámina delgada de cadmio de 0.5 mm espesor (Figura 6). El cadmio natural en láminas (espesor de 0.4 mm, 10 mm de largo por 6 mm de ancho) fue utilizado como filtro de neutrones lentos para definir los tipos de neutrones que contribuyen a la dosis equivalente recibida por el operador del medidor nuclear.
4.3.3.2. Posición y tiempo de exposición de los detectores pasivos CR-39™

Para definir la posición de los detectores se calculó el ángulo mediante el teorema de Pitágoras. Se estableció una distancia lineal de 10, 20, 40 y 80 cm desde la fuente de 241Am-Be con la ayuda de un soporte universal descrito anteriormente. Las distancias se fijaron en base al perfil radiológico del densímetro nuclear (Troxler Electronic Laboratories, Inc., 2003). La altura se estableció calculando la distancia comprendida entre el suelo y el nivel de pies, genitales y rostro de cuatro operadores simulando la postura cuando se encontraban expuestos a la fuente al momento de accionar el equipo (cucilllas) y al leer los resultados (de pie) (Anexo 6). Las partes del cuerpo del operador (pies, genitales y rostro) se eligieron por ser regiones corporales con alta susceptibilidad de contraer cáncer atribuibles a una irradiación rápida de 0,1 Sv (Cherry, 2012). El tiempo de exposición fue de 24 horas y la posición de los detectores fueron modificados diariamente por 11 días. Una vez que los detectores fueron expuestos a la fuente, se analizaron con el procedimiento descrito en el numeral 3.3.2.3. y 3.3.2.4.

4.3.3.3. Cálculo de la dosis de equivalente

La dosis equivalente emitida por el medidor nuclear, fue calculada en base a la densidad de trazas visibles. La dosis equivalente es igual a la tasa de fluencia por el factor de respuesta experimental reportado por Abdalla (Abdalla et al., 2015). Este factor fue considerado debido a las características similares del equipo utilizado en éste estudio.
La tasa de fluencia se obtiene mediante el producto entre el factor de rendimiento y la densidad de trazas. El factor de rendimiento es igual a \(1.2 \times (1 + \alpha) \times 10^{-4}\) debido al uso del convertidor \(^{10}\text{B}\); donde \(\alpha\) es la densidad de trazas del pico alfa. El valor \(\alpha\) fue obtenido mediante ensayos experimentales con la técnica de cinta engomada de \(^{10}\text{B}\), obteniéndose valores de 2.8 por cada neutrón detectado vía dispersión \((n, p)\), dando como resultado un factor de rendimiento igual a \(4.56 \times 10^{-4}\) neutrones detectados por cada neutrón esperado.

La dosis equivalente total de cada detector se establece como la sumatoria de las dosis equivalentes en pies, gónadas y cuello del operador cuando éste está expuesto a 10, 30 y 70 cm de la fuente en posición de pie o cuchillas respectivamente.

4.3.4. CÁLCULO DE LA DOSIS EFECTIVA

La dosis efectiva \((E)\) para cada parte del cuerpo se calculó multiplicando la dosis equivalente por el factor de ponderación tisular \((W_t)\) (Zoetelief, Pernička, & Carlsson, 2003). Para en análisis se estima un error del 12% debido a la técnica de densidad de trazas (Aparicio, Miranda, Gómez, & Llosa, 2004; Espinosa, 1994).

4.4. PLAN DE TABULACIÓN Y ANÁLISIS

Los datos de las lecturas de densidad de trazas visibles fueron tabulados y analizados en el programa Excel, por la autora. Los datos de cada ubicación de los detectores fueron presentados en tablas de frecuencia absoluta. Las diferencias de proporciones de las densidades de trazas identificadas con pastilla de boro vs. cinta engomada fue determinada mediante la Prueba T de datos pareados.
5. CAPÍTULO: RESULTADOS

5.1. COMPARACIÓN ENTRE CONVERSORES DE 10B DE PASTILLA Y CINTA ENGOMADA

Los ensayos realizados para definir la conveniencia en el uso de pastilla o cinta engomada de 10B se presentan en la Tabla 7. Al comparar el promedio de densidades de trazas identificadas con pastilla de boro vs. cinta engomada, aplicando la Prueba T de datos pareados, se pudo obtener que estas mediciones en promedio no son diferentes estadísticamente (valor p 0.303).

TABLA 7. Comparación de densidad de trazas con convertidor de 10B en pastillas y en cinta engomada.

<table>
<thead>
<tr>
<th>Detector</th>
<th>Densidad de trazas (cm²/s)</th>
<th>Valor p *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distancia de ubicación (cm)</td>
<td>Tiempo de exposición (hora)</td>
</tr>
<tr>
<td>33.3</td>
<td>4</td>
<td>0.025</td>
</tr>
<tr>
<td>66.6</td>
<td>5</td>
<td>0.016</td>
</tr>
<tr>
<td>99.9</td>
<td>6</td>
<td>0.014</td>
</tr>
<tr>
<td>133.2</td>
<td>7</td>
<td>0.015</td>
</tr>
<tr>
<td>166.5</td>
<td>8</td>
<td>0.015</td>
</tr>
<tr>
<td>199.8</td>
<td>11.3</td>
<td>0.010</td>
</tr>
</tbody>
</table>

* Prueba de comparación de medias de dos muestras (pareada). **Fuente:** La autora

Al considerar sólo las mediciones de los detectores más cercanos (ubicados a distancias inferiores a 100 cm) y obtener la densidad de trazas corregida al restar las trazas de fondo identificadas en los detectores lejanos (ubicados a distancias superiores a 100 cm), se pudo comparar el promedio de densidades de trazas identificadas con pastilla vs. cinta engomada, aplicando la Prueba T de datos pareados, observándose que tampoco el promedio fue diferente estadísticamente (valor p 0.168) (Tabla 8). Los resultados presentados permitieron elegir la cinta engomada como convertidor de 10B, debido a que no
se identificó diferencias con las densidades de trazas determinadas con la pastilla y dado que existe un menor costo en el empleo de la cinta engomada, generando un balance costo beneficio a su favor al permitir ahorro de dicho material.

TABLA 8. Comparación de densidad de trazas con convertidor de ^{10}B en pastillas y en cinta engomada, corregida con las trazas de fondo

<table>
<thead>
<tr>
<th>Detector</th>
<th>Densidad de trazas (cm2/s)</th>
<th>Valor p *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pastilla de Boro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distancia de ubicación (cm)</td>
<td>Tiempo de exposición (hora)</td>
<td>Pastilla de Boro</td>
</tr>
<tr>
<td>33.3</td>
<td>4</td>
<td>0.0138</td>
</tr>
<tr>
<td>66.6</td>
<td>5</td>
<td>0.0055</td>
</tr>
<tr>
<td>99.9</td>
<td>6</td>
<td>0.0032</td>
</tr>
</tbody>
</table>

* Prueba de comparación de medias de dos muestras (pareada). **Fuente**: La autora

5.2. DOSIS EQUIVALENTE DE LA FUENTE DE NEUTRONES

Los resultados de las trazas por secciones, de los 11 detectores CR-39 TM expuestos a la fuente por 24 horas, se presentan en la Tabla 9. Se observa variaciones en función de la distancia existente entre el detector y la fuente de neutrones del medidor nuclear, con valores desde las 433.5 trazas/cm2 hasta los 1134.6 trazas/cm2.

Respecto a las secciones de un mismo detector, se observó que existen variaciones del número de trazas, especialmente la sección compuesta de solo detector y en la sección detector con ^{10}B (Tabla 10).

En la Tabla 11 se presenta el incremento de la eficiencia del detector con el uso del radiador de ^{10}B y los correspondientes porcentajes debido a trazas generadas por protones más neutrones rápidos y lentos (incremento de la eficiencia promedio 35.6%).
TABLA 9. Detectores y sus trazas por secciones

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>n</td>
<td>A (cm2)</td>
<td>ρ (cm2)</td>
<td>N</td>
<td>n</td>
</tr>
<tr>
<td>Contacto con el medidor nuclear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teclado</td>
<td>127</td>
<td>102</td>
<td>0.00184</td>
<td>677.48208</td>
<td>177</td>
<td>97</td>
</tr>
<tr>
<td>Parte frontal</td>
<td>121</td>
<td>120</td>
<td>0.00184</td>
<td>548.65379</td>
<td>269</td>
<td>129</td>
</tr>
<tr>
<td>Pies a 10 cm</td>
<td>93</td>
<td>76</td>
<td>0.00184</td>
<td>665.83040</td>
<td>178</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>101</td>
<td>94</td>
<td>0.00184</td>
<td>584.63900</td>
<td>165</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>63</td>
<td>0.00184</td>
<td>587.30355</td>
<td>120</td>
<td>80</td>
</tr>
<tr>
<td>Cucullas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genitales a 10 cm</td>
<td>100</td>
<td>91</td>
<td>0.00184</td>
<td>597.93348</td>
<td>229</td>
<td>116</td>
</tr>
<tr>
<td>Genitales a 30 cm</td>
<td>122</td>
<td>100</td>
<td>0.00184</td>
<td>663.82575</td>
<td>213</td>
<td>110</td>
</tr>
<tr>
<td>Genitales a 70 cm</td>
<td>137</td>
<td>113</td>
<td>0.00184</td>
<td>659.68466</td>
<td>219</td>
<td>113</td>
</tr>
<tr>
<td>Cucullas / De pie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rostro / Genitales a 10 cm</td>
<td>71</td>
<td>73</td>
<td>0.00184</td>
<td>529.21208</td>
<td>105</td>
<td>71</td>
</tr>
<tr>
<td>Rostro / Genitales a 30 cm</td>
<td>82</td>
<td>95</td>
<td>0.00184</td>
<td>469.66101</td>
<td>112</td>
<td>87</td>
</tr>
<tr>
<td>Rostro / Genitales a 70 cm</td>
<td>89</td>
<td>104</td>
<td>0.00184</td>
<td>465.64069</td>
<td>92</td>
<td>88</td>
</tr>
</tbody>
</table>

N: número de trazas. n: número de campos de visión. A: área de campo de visión de 40 x 10 centímetros cuadrados. ρ: densidad de trazas. **Fuente**: La autora

TABLA 10. Densidad de trazas por sección y por detector

<table>
<thead>
<tr>
<th>Ubicación del Detector</th>
<th>SECCIONES DE LOS DETECTORES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>protones</td>
<td>protones + alfa (todos los neutrones)</td>
</tr>
<tr>
<td></td>
<td>trazas/cm2h</td>
<td>trazas/cm2h</td>
</tr>
<tr>
<td>Contacto con el medidor nuclear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teclado</td>
<td>28,228</td>
<td>41,370</td>
</tr>
<tr>
<td>Parte frontal</td>
<td>22,861</td>
<td>47,277</td>
</tr>
<tr>
<td>De pie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pies a 10 cm</td>
<td>27,743</td>
<td>45,859</td>
</tr>
<tr>
<td>Pies a 30 cm</td>
<td>24,360</td>
<td>38,565</td>
</tr>
<tr>
<td>Pies a 70 cm</td>
<td>24,471</td>
<td>34,007</td>
</tr>
<tr>
<td>Cucullas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genitales a 10 cm</td>
<td>24,914</td>
<td>44,757</td>
</tr>
<tr>
<td>Genitales a 30 cm</td>
<td>27,659</td>
<td>43,901</td>
</tr>
<tr>
<td>Genitales a 70 cm</td>
<td>27,487</td>
<td>43,939</td>
</tr>
</tbody>
</table>
TABLA 11. Incremento de eficiencia del detector y caracterización del tipo de neutrones detectados

<table>
<thead>
<tr>
<th>Ubicación del Detector</th>
<th>Incremento de eficiencia con uso de 10B (trazas/cm2h)</th>
<th>TRAZAS POR TIPO DE NEUTRONES (trazas/cm2h)</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trazas/cm2h</td>
<td>Rápidos</td>
<td>Lentos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contacto con el medidor nuclear</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Teclado</td>
<td>13,141</td>
<td>40,809</td>
<td>98,6</td>
<td>0,5609</td>
<td>1,4</td>
</tr>
<tr>
<td>Parte frontal</td>
<td>24,416</td>
<td>32,855</td>
<td>69,5</td>
<td>14,4219</td>
<td>30,5</td>
</tr>
<tr>
<td>De pie</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pies a 10 cm</td>
<td>18,116</td>
<td>35,687</td>
<td>77,8</td>
<td>10,1717</td>
<td>22,2</td>
</tr>
<tr>
<td>Pies a 30 cm</td>
<td>14,205</td>
<td>25,774</td>
<td>66,8</td>
<td>12,7911</td>
<td>33,2</td>
</tr>
<tr>
<td>Pies a 70 cm</td>
<td>9,536</td>
<td>24,692</td>
<td>72,6</td>
<td>9,3156</td>
<td>27,4</td>
</tr>
<tr>
<td>Cuclillas</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Genitales a 10 cm</td>
<td>19,843</td>
<td>32,835</td>
<td>73,4</td>
<td>11,9222</td>
<td>26,6</td>
</tr>
<tr>
<td>Genitales a 30 cm</td>
<td>16,241</td>
<td>32,053</td>
<td>73,0</td>
<td>11,8475</td>
<td>27,0</td>
</tr>
<tr>
<td>Genitales a 70 cm</td>
<td>16,452</td>
<td>29,792</td>
<td>67,8</td>
<td>14,1472</td>
<td>32,2</td>
</tr>
<tr>
<td>Cuclillas / De pie</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Rostro / Genitales, a 10 cm</td>
<td>11,478</td>
<td>24,846</td>
<td>74,1</td>
<td>8,6829</td>
<td>25,9</td>
</tr>
<tr>
<td>Rostro / Genitales, a 30 cm</td>
<td>9,617</td>
<td>24,315</td>
<td>83,3</td>
<td>4,8720</td>
<td>16,7</td>
</tr>
<tr>
<td>Rostro / Genitales, a 70 cm</td>
<td>4,300</td>
<td>18,060</td>
<td>76,2</td>
<td>5,6417</td>
<td>23,8</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td></td>
<td></td>
<td>35,6%</td>
<td>75,7%</td>
<td>24,3%</td>
</tr>
</tbody>
</table>

Fuente: La autora

Los resultados obtenidos de la determinación de densidad de trazas, eliminado trazas de fondo, se presentan en la Tabla 12. Se observa que en la mayoría de los casos los resultados de la sección del detector que tienen cadmio es menor a la densidad de trazas de la sección con solo boro. Otra característica que llama la atención es la distribución de las trazas con respecto a la distancia; observándose que no cumplen con la ley de los inversos del cuadrado de la distancia; incluso en algunos casos, en las cercanías del equipo, se nota un ligero incremento en la cantidad de trazas.
Los resultados obtenidos de la determinación de dosis equivalente, empleando el factor de eficiencia más adecuado (Abdalla et al., 2015), se presentan en la Tabla 13. La dosis equivalente más alta calculada fue para la mano en contacto con el equipo (17.04±2.04μSv/h) y la menor para el rostro con el operador de pie (4.12±0.49μSv/h).
TABLA 13. Dosis equivalente por detectores para sección de detector +¹⁰B

<table>
<thead>
<tr>
<th>Ubicación del Detector</th>
<th>ρ trazas/cm²h</th>
<th>Φ n/cm²h</th>
<th>H µSv/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contacto con el medidor nuclear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teclado</td>
<td>23,309</td>
<td>51117,204</td>
<td>17,039</td>
</tr>
<tr>
<td>Parte frontal</td>
<td>29,216</td>
<td>64070,323</td>
<td>21,357</td>
</tr>
<tr>
<td>De pie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pies a 10 cm</td>
<td>27,798</td>
<td>60960,726</td>
<td>20,320</td>
</tr>
<tr>
<td>Pies a 30cm</td>
<td>20,505</td>
<td>44966,460</td>
<td>14,989</td>
</tr>
<tr>
<td>Pies a 70 cm</td>
<td>15,947</td>
<td>34971,500</td>
<td>11,657</td>
</tr>
<tr>
<td>Cuclillas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genitales a 10 cm</td>
<td>26,696</td>
<td>58544,935</td>
<td>19,515</td>
</tr>
<tr>
<td>Genitales a 30 cm</td>
<td>25,840</td>
<td>56666,854</td>
<td>18,889</td>
</tr>
<tr>
<td>Genitales a 70 cm</td>
<td>25,878</td>
<td>56750,851</td>
<td>18,917</td>
</tr>
<tr>
<td>Cuclillas / De pie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rostro / Genitales, a 10 cm</td>
<td>15,468</td>
<td>33921,109</td>
<td>11,307</td>
</tr>
<tr>
<td>Rostro / Genitales, a 30 cm</td>
<td>11,126</td>
<td>24399,172</td>
<td>8,133</td>
</tr>
<tr>
<td>Rostro / Genitales, a 70 cm</td>
<td>5,642</td>
<td>12372,174</td>
<td>4,124</td>
</tr>
</tbody>
</table>

ρ: Densidad de trazas. Φ: Tasa de fluencia de neutrones calculada. H: dosis equivalente. µSv: micro sievert. **Fuente:** La autora

5.3. DOSIS EFECTIVA DE LA FUENTE DE NEUTRONES

Los resultados de los valores de dosis efectiva (Dosis equivalentes de la zona corporal X Factor de ponderación tisular Wᵣ) se presentan en la Tabla 14. La dosis efectiva más alta calculada fue para la postura “cuclillas” a 10 cm (18.5±2.22µSv/año) y la menor para la postura “de pie” a 70 con (4.11±0.49µSv/h).

TABLA 14. Dosis equivalente y efectiva anual para distintas posiciones y distancias del operador con relación a la fuente de neutrones.

<table>
<thead>
<tr>
<th>Ubicación del Detector</th>
<th>DISTANCIA</th>
<th>DOSIS EQUIVALENTE</th>
<th>DOSIS EFECTIVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm</td>
<td>µSv/h</td>
<td>mSv/año</td>
</tr>
<tr>
<td>Cuclillas</td>
<td>10</td>
<td>68,18 ± 8,18</td>
<td>199,09 ± 23,89</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>59,05 ± 7,09</td>
<td>172,43 ± 20,69</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>34,70 ± 4,16</td>
<td>101,32 ± 12,16</td>
</tr>
<tr>
<td>De pie</td>
<td>10</td>
<td>31,63 ± 3,8</td>
<td>92,35 ± 11,08</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>23,12 ± 2,77</td>
<td>67,52 ± 8,10</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>15,78 ± 1,89</td>
<td>46,08 ± 5,53</td>
</tr>
</tbody>
</table>

µSv: micro sievert. **Fuente:** La autora
5.4. COMPARACIÓN DE DOSIS EQUIVALENTE Y EFECTIVA CON LÍMITES MÁXIMOS PERMITIDOS

Se calculó la mayor dosis equivalente a la que podría exponerse un operador de un equipo que posee una fuente de neutrones, al considerar una exposición simultánea de manos, piel, genitales y resto del cuerpo, durante 8 horas diarias, los 365 días del año en estricto contacto. La mayor dosis equivalente calculada es de 199.09±23.89 mSv/año, la cual es menor al valor de exposición ocupacional permisible para trabajadores mayores a 18 años, según la recomendación de 1990 de la ICRP (500 mSv). Al calcular dosis efectiva en las mismas condiciones de año corrido en contacto con el equipo en jornadas de 8 horas diarias, el valor anual calculado es de 18.50±2.22 mSv/año, el cual es aproximadamente 1.5 mSv/año inferior a la recomendación de 1990 de la ICRP (20 mSv para jornadas de 8 horas) (Comisión Internacional de Protección Radiológica, 2008).
6. CAPÍTULO: DISCUSIÓN

Este es el primer estudio en el Ecuador que analiza la radiación ionizante proveniente de fuentes de neutrones de \(^{241}\)Am-Be. Esta investigación permitió determinar la dosis equivalente y efectiva de neutrones dispersados y de fuga emitidos por un medidor nuclear de densidad y humedad, mediante la metodología de trazas nucleares en sólidos. Estos datos fueron menores a límites máximos permisibles según entes reguladores internacionales, obteniendo un nivel de riesgo aceptable, pero no despreciable por lo que se deben considerar procedimientos de protección radiológica. Además, se determinó experimentalmente que el uso de conversores de \(^{10}\)B en forma de cinta engomada es una técnica válida y económica en este tipo de detectores.

6.1. Optimización del método para detección de neutrones

En el presente estudio, la aplicación del \(^{10}\)B en forma cinta engomada en los detectores de neutrones de policarbonato CR-39™ con la finalidad de aumentar el tamaño de las trazas latentes producidas por las reacciones nucleares y disminuir el error de fondo, resultó semejante al uso tradicional del \(^{10}\)B en forma lámina gruesa o pastilla (Sahoo et al., 2014), lo cual valida la eficiencia de esta técnica. Además, resulta más económico que el utilizar el \(^{10}\)B en pastilla, debido a su facilidad de confección y manipulación. Esto es favorable para el desarrollo y uso de estos tipos de detectores en economías precarias como es el caso de nuestro país, en donde actualmente ni el ente regulador posee estos tipos de dispositivos debido a su elevado costo, dando como consecuencia que no exista un control adecuado de las fuentes de neutrones. Situación preocupante, debido al demandante número de trabajadores ocupacionalmente expuestos a este riesgo radiológico en el área de la construcción y la medicina, en donde se utilizan aceleradores, medidores nucleares, gammagrafía industrial, entre otros.

Por otro lado, en otros países como Japón, India, México, Argentina y Eslovenia, también se han realizado estudios experimentales para optimizar los dispositivos detectores de neutrones (Cernilogar-Radez, Giacomelli, & Ilic, 2005; Kumar, Sonkawade, & Dhaliwal, 2010; Sahoo et al., 2014; Saint Martin, Lopez, &
Bernaola, 2009; Tsuruta, Niwa, & Fukumoto, 1992; Vega-Carrillo et al., 2013). Algunos de estos autores se han centrado en el proceso de exposición, revelado, análisis y conteo de trazas, tipos de neutrones; mientras que otros han basado su análisis en medidas de dosis ambientales en campos de neutrones mezclados o de bajo flujo de neutrones. Incluso, la versatilidad de estos dispositivos se ha demostrado en la determinación de la contribución de rayos cósmicos galácticos primarios y partículas secundarias, en la dosis recibida por los tripulantes de la Estación Espacial Internacional, con la participación de varios laboratorios, entre estos, el laboratorio de la Universidad Simón Bolívar de Caracas-Venezuela (J. K. Pálfalvi et al., 2005). Esto evidencia que las técnicas y métodos para la dosimetría de neutrones se encuentran en continuo desarrollo, no solamente en países desarrollados sino también en países de bajos y medianos ingresos. Lo que abre un gran campo para futuras investigaciones en el país, en base a la metodología de trazas nucleares en sólidos.

Adicionalmente, este estudio corroboró la capacidad de los detectores CR-39™ de caracterizar por su energía los tipos de neutrones (rápidos y lentos) que llegan al detector, con el uso de 10B y cadmio, lo que los hace muy versátiles, confiables y económicos; sobre todo, por la posibilidad de dejarlos por largos periodos de tiempo y colocarlos en lugares de difícil acceso sin la necesidad de conexiones eléctricas o restricciones de temperatura y humedad.

6.2. Dosis equivalente y efectiva de radiación ionizante por neutrones

Al determinar la contribución de los neutrones a la dosis del personal ocupacionalmente expuesto, las mayores dosis son las que se reciben al entrar en contacto el trabajador con el equipo, especialmente cuando el operador está de cuclillas frente al teclado para el ingreso de datos del material de estudio. En esta posición, el valor de la dosis equivalente en las manos fue de 17.039±2.04 μSv/hora con un 98% de neutrones rápidos. Esto es esperable debido a la mayor cercanía a la fuente.
Así también, la mayor dosis equivalente considerando una exposición simultánea de manos, piel, genitales y resto del cuerpo fue de 68,18 ± 8,18 µSv/h (199.09±23.89 mSv/año) correspondiente a la posición en cuclillas a 10 m de la fuente y la dosis efectiva fue de 18,5 mSV/año. Estas cantidades son superiores a las encontradas en estudios en España, en los que también se evaluó la exposición ocupacional a neutrones emitidos por densímetros nucleares (Domingo et al., 2009; García-Fusté et al., 2010), en donde se encontraron dosis equivalentes de hasta máximo 27 µSv/h (2,5 mSv/año). Esta divergencia con los equipos españoles se debe posiblemente a la antigüedad del equipo analizado, a la configuración del dispositivo de detección o a las características de la fuentes de neutrones de, que pueden estar aumentando los valores.

6.3. Dosis máximas permitidas y nivel de riesgo

Al comparar los valores de dosis obtenidos en este estudio con los límites máximos permisibles según la ICRP (Comisión Internacional de Protección Radiológica, 2008), aunque el trabajador estaría en contacto diario por 8 horas durante un año, no superaría la dosis máximas permitidas anuales (500 mSv/año para dosis equivalente y 20 mSv/año para dosis efectiva). Estos datos confirman que el equipo posee los blindajes adecuados para que el riesgo de exposición a radiación esté controlado y que el beneficio por uso sea mayor que los peligros. Por tanto, estos datos revelan un nivel de riesgo aceptable y que probablemente los efectos determinísticos del personal expuesto a densímetros nucleares son insignificantes debido a que las dosis calculadas no llegaron a los umbrales de radiación. Sin embargo, no son despreciables los efectos biológicos estocásticos que las radiaciones ionizantes pueden producir a mediano o largo plazo, incluso a nivel genético, como se ha discutido en algunos trabajos científicos en los que se demuestra que la exposición a dosis bajas de radiación ionizante puede ocasionar inflamación molecular y daños cromosómicos y está en relación directa con el tiempo de exposición y la sensibilidad individual, mas no con la cantidad recibida de radiación (Baquero, Guevara, Giraldo, & Soto, 2004; Güerci & Cordoba, 2015; Núñez, UdelaR, & de ALASBIMN, 2008), por lo que futuras investigaciones podrían evaluar estas variables y sus posibles efectos estocásticos en el organismo. Además, se debería considerar la vigilancia
biológica adicional a la dosimetría para el personal expuesto ya sea a dosis bajas o altas de cualquier tipo de radiación ionizante.

Por otra parte, se deben también considerar protecciones específicas para posibles incidentes como los mencionados por Cateriano, 2006 y Ermacora, 2005, los cuales describen situaciones de robo o mala manipulación de equipos, en los que se pueden producir golpes o roturas, pudiendo afectar los blindajes y modificándose las dosis emitidas tanto de la fuente de neutrones como de gamma, exponiendo a los trabajadores o al público a dosis no controladas (Cateriano, 2006; Ermacora, 2005).

Por todo lo antes expuesto, es importante resaltar que procedimientos de seguridad para la operación, transporte, limpieza, almacenamiento, manipulación y mantenimiento de equipos con fuentes nucleares encapsuladas deben estar claramente establecidos y controlados, y ser mejorados constantemente para evitar irradiaciones innecesarias tanto al personal involucrado como al público externo. Así también, se debe poner énfasis en la capacitación y entrenamiento de los trabajadores expuestos y el fortalecimiento de la cultura de seguridad en el uso de los medidores nucleares.

6.4. Limitaciones del estudio

La principal limitación se debió a que el estudio se realizó en una sola época del año, lo cual impide establecer si hay variaciones en las mediciones debido a factores ambientales estacionales. Así también, la falta de recursos económicos, no permitió realizar un mayor número de mediciones que representen de una forma más adecuada el fenómeno.

Otro aspecto complejo fue el de discriminar entre una traza o un daño existente en el material. Esto debido a que todos los detectores incluso hasta el más lejano poseía trazas, lo que se atribuyó a un fondo del material que en ciertos detectores llegaba a ser mayor a lecturas de detectores que se encontraban a
distancias más pequeñas. En este tipo de experimentos se debería usar un control más estricto en cuanto a exposiciones involuntarias.
7. CAPÍTULO: CONCLUSIONES Y RECOMENDACIONES

7.1. CONCLUSIONES

La metodología de trazas nucleares en sólidos con detectores de policarbonato CR-39™ ensamblados con cinta engomada de 10B y lámina de cadmio expuesto a la fuente de neutrones 241Am-Be de 1.48GBq de actividad, demostró ser una técnica eficiente, económica, sencilla y versátil, capaz de estimar la exposición a radiación de espectros complejos, especialmente para dosimetría de neutrones rápidos y lentos.

El presente trabajo reporta la caracterización de los tipos de neutrones presentes en la fuente y la estimación de dosis equivalente para las distintas partes del cuerpo del operador mediante el uso de detectores ensamblados con 10B como convertidor y cadmio natural.

La dosis equivalente en posición cuclillas, cuando la mano del operador entra en contacto con el teclado del medidor nuclear, resultó ser la parte del cuerpo con mayor radiación ionizante registrada con un valor de 68.18 ± 8.18 µSv/h.

La dosis efectiva para una exposición improbable de contacto constante por el lapso de un año fue de 18.5 ±2.22mSv/año y 4.11±0.49 mSv/año para un trabajador en posición de cuclillas a 10 cm de distancia del equipo y de pie a 70 cm de distancia, respectivamente; considerándose una exposición de bajo riesgo.

7.2. RECOMENDACIONES

- Considerando el incremento de actividades industriales que utilizan radiaciones ionizantes con fuentes de neutrones a nivel nacional, se recomienda la utilización de ésta técnica como método para el estimar de la dosis de exposición a radiación de neutrones.

- Se recomienda evaluar la dosis de exposición entre dosímetros TLD y los dispositivos desarrollados en este trabajo con la finalidad de establecer la
contribución de neutrones a la dosis real en las actividades cotidianas de toma, traslados, almacenamiento y mantenimientos del densímetros nucleares.

- Los resultados obtenidos en el presente trabajo podrían contribuir a la concientización sobre el correcto manejo, transporte y almacenamiento de densímetros nucleares de densidad y humedad.
8. BIBLIOGRAFÍA

Castillo Moyano, B. A. (2016). *Cálculo del riesgo radiológico debido a la concentración...*

9. ANEXOS

9.1. ANEXO GLOSARIO DE SIGLAS EMPLEADAS Y DEFINICIONES

9.1.1 SIGLAS EMPLEADAS

En el presente trabajo se usan algunas siglas, aunque son explicadas en el texto, se ha visto la conveniencia de colocarlas de forma separada.

AASHTO. American Association of State Highway and Transportation Officials

ASTM. Asociación Norteamericana para la Prueba de Materiales.

DTS. Detectores de Trazas en Sólidos

eV. Electrón Voltio

MEER. Ministerio de Electricidad y Energía Renovable.

OIT. Organización Mundial del Trabajo.

PADC. Carbonato de polialildiglicol.

POE. Personal ocupacionalmente expuesto.

SCAN. Subsecretaría de Control y Aplicaciones Nucleares.

SI. Sistema Internacional de Medidas

SSNTM. Solid State Nuclear Track Methodology (Metodología de Trazas Nucleares en Sólidos).

TLD. Dosímetros termoluminiscentes.

9.1.2 DEFINICIONES

Las siguientes definiciones fueron tomadas en su mayoría del libro “PROTECCIÓN RADIOLÓGICA” (Ministerio de Energía Atómica, 2012). Documento base en los cursos impartidos por el Ministerio como requisito para obtención de licencias ocupacionales.
ACTIVIDAD DE UNA FUENTE RADIATIVA. Número de desintegraciones nucleares por unidad de tiempo. \(A = \frac{dN}{dt} \). En el Sistema Internacional (SI), la unidad de medida de la radiactividad es el Becquerel (Bq) \(Bq = 1 \) desintegración por segundo. En el sistema tradicional su unidad es el Curie (Ci), definida como la cantidad de cualquier radionucleido que produce \(3.7 \times 10^{10} \) desintegraciones por segundo. \(1 \text{Ci} = 3.7 \times 10^{10} \text{Bq} \)

ÁTOMO. Porción material menor de un elemento químico que interviene en las reacciones químicas y posee las propiedades características de dicho elemento. Se compone de partículas más pequeñas, como protones, neutrones y electrones. Los protones y neutrones forman el núcleo. Los electrones se mueven en una órbita alrededor de él. El protón tiene carga positiva y masa de uno. El neutrón tiene la misma masa atómica pero no tiene carga eléctrica. El electrón por el contrario carece de masa y su carga es negativa.

ÁTOMOS ENERGÉTICOS. Átomos con más energía de la normal, que debe ser dispersada en forma de ondas, de partículas o ambos.

BLINDAJE. Son sistemas para atenuar un campo de radiación por la interposición de un medio material entre la fuente y las personas. Los blindajes variarán en función del poder de penetración de las radiaciones con las que se trabaje.

DISTANCIA A LA FUENTE. La exposición a la radiación decrece con el incremento de la distancia a la fuente. Para una fuente puntual la intensidad de la radiación en cada punto es inversamente proporcional al cuadrado de la distancia del mismo respecto a la fuente de emisión.

DOSÍMETRO PERSONAL. Detector de radiaciones ionizantes cuyo objetivo es integrar la dosis recibida por el trabajador expuesto al agente de riesgo, según su ocupación, durante un determinado periodo de tiempo.

DOSÍMETROS TERMOLUMINISCENTES (TLD). Dispositivos que están formados por sustancias cristalinas como el fluoruro de litio, fluoruro del calcio y sulfato de calcio, entre otros, que emiten luz al calentarse a temperaturas menores a las de la incandescencia por haber estado expuestos a radiación.
La cantidad de luz emitida durante el calentamiento es proporcional a la dosis de radiación absorbida.

DOSIS ABSORBIDA. Energía que deposita cualquier radiación ionizante por unidad de masa de material irradiado \(D=dE/\,dm \). En el Sistema Internacional la unidad de medida es el Gray (Gy). 1 Joule/kg =Gy. En el sistema tradicional su unidad es el Rad (rad) 1 rad = 0.01.

DOSIS EFECTIVA. Considera que la probabilidad de que se den efectos estocásticos debidos a una dosis equivalente, depende también del órgano o tejido irradiado. Para este efecto se considera que la dosis efectiva \(E \) es igual a la suma de las dosis equivalentes ponderadas en todos los órganos y tejidos del cuero. \(E=\Sigma WT \times HT \, T \). Donde \(WT \) es el factor de ponderación tisular (ver Tabla A1) y \(HT \) es la dosis equivalente del tejido \(T \). En el Sistema Internacional la unidad de medida es el Sievert (Sv) 1 Joule/kg =Sv. En el sistema tradicional su unidad es el rem (rem) 1 Sv = 100 rem.

DOSIS EQUIVALENTE. Es la dosis absorbida promediada para un tejido u órgano y ponderada (corregida) por la diferente eficacia biológica de las diferentes clases de radiación sobre el medio vivo considerado. \(HTR=WR \times DTR \) Donde \(DTR \) es la dosis absorbida promediada para todo el tejido u órgano \(T \) debida a la radiación \(R \) y \(WR \) es el factor de ponderación radiológica (ver Tabla A2). En el Sistema Internacional la unidad de medida es el Sievert (Sv) 1 Joule/kg =Sv. En el sistema tradicional su unidad es el rem (rem) 1 Sv = 100 rem.
TABLA A1. Factores de ponderación del tejido

<table>
<thead>
<tr>
<th>Tejido u órgano</th>
<th>Factor de ponderación del tejido, WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gónadas</td>
<td>0.20</td>
</tr>
<tr>
<td>Médula ósea</td>
<td>0.12</td>
</tr>
<tr>
<td>Colon</td>
<td>0.12</td>
</tr>
<tr>
<td>Pulmones</td>
<td>0.12</td>
</tr>
<tr>
<td>Estómago</td>
<td>0.12</td>
</tr>
<tr>
<td>Vejiga</td>
<td>0.04</td>
</tr>
<tr>
<td>Mama</td>
<td>0.05</td>
</tr>
<tr>
<td>Hígado</td>
<td>0.05</td>
</tr>
<tr>
<td>Esófago</td>
<td>0.04</td>
</tr>
<tr>
<td>Tiroides</td>
<td>0.05</td>
</tr>
<tr>
<td>Superficie ósea</td>
<td>0.01</td>
</tr>
<tr>
<td>Piel</td>
<td>0.01</td>
</tr>
<tr>
<td>Resto</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Fuente: Ministerio de Electricidad y Energía Renovable/Subsecretaría de Control y Aplicaciones Nucleares, 2012

TABLA A2. Factores de ponderación de la radiación

<table>
<thead>
<tr>
<th>Tipo de radiación</th>
<th>Valor*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotones de todas las energías</td>
<td>1</td>
</tr>
<tr>
<td>Electrones y muones de todas las energías</td>
<td>1</td>
</tr>
<tr>
<td>Neutrones Energía:</td>
<td></td>
</tr>
<tr>
<td>< 10 keV</td>
<td>5</td>
</tr>
<tr>
<td>10 - 100 keV</td>
<td>10</td>
</tr>
<tr>
<td>100 keV - 2 MeV</td>
<td>20</td>
</tr>
<tr>
<td>2 - 200 MeV</td>
<td>10</td>
</tr>
<tr>
<td>> 200 MeV</td>
<td>5</td>
</tr>
<tr>
<td>Protones, menos los de retroceso, energía > 2 MeV</td>
<td>5</td>
</tr>
<tr>
<td>Partículas alfa, fragmentos de fisión, núcleos pesados</td>
<td>20</td>
</tr>
</tbody>
</table>

* Todos los valores están relacionados con la radiación que incide sobre el cuerpo o, en el caso de fuentes internas, con las emitidas por dichas fuentes

Fuente: Ministerio de Electricidad y Energía Renovable/Subsecretaría de Control y Aplicaciones Nucleares, 2012

EXPOSICIÓN. Se da por el uso de fuentes de radiación. Las exposiciones se pueden clasificar de acuerdo al lugar en el que se encuentren en exposiciones
externas o internas. Según la naturaleza de la relación entre la persona y la fuente, las exposiciones pueden ser ocupacional, médica o de público.

EXPOSICIÓN EXTERNA. Irradiación del organismo por una fuente que se encuentra en el exterior del cuerpo humano, por ejemplo, el diagnóstico con rayos X.

EXPOSICIÓN INTERNA. La irradiación del organismo se da desde el interior de cuerpo por una fuente que ha sido ingerida, inhalada o ha ingresado por vía percutánea.

EXPOSICIÓN MÉDICA. Radiación recibida de forma intencional por los pacientes como resultado de procedimientos médicos, de diagnóstico o terapia.

EXPOSICIÓN OCUPACIONAL. Aquella que reciben los trabajadores como consecuencia de sus actividades laborales.

EXPOSICIÓN DEL PÚBLICO. Exposición debido a cercanía circunstancial o permanente a fuentes de radiación.

FUENTES ABIERTAS. Fuentes que están en contacto con el ambiente en que se encuentran para ser fácilmente manipuladas o están en contenedores intencionalmente débiles para que emerja la radiación. Este tipo de fuentes presenta peligros externos e internos para el personal que trabaja con ellas.

FUENTES RADIACTIVAS ARTIFICIALES. Fuentes creadas por el hombre.

FUENTES RADIACTIVAS NATURALES. Aquellas que se encuentran en la naturaleza.

FUENTES SELLADAS. Fuentes en las que la sustancia radiactiva se encuentra dentro de una coraza metálica o capas de materiales no radiactivos. Este tipo de fuentes conlleva peligro únicamente externo para el trabajador que las utiliza.

NEUTRONES. Son partículas sin carga eléctrica con gran poder de penetración en la materia. No producen ionización directamente, pero cuando interactúan con los átomos pueden generar rayos alfa, beta, gamma o X, que si son ionizantes. Los neutrones solo pueden interceptarse con masas gruesas de hormigón, agua o parafina.
PARTÍCULAS ALFA. Partículas con carga eléctrica positiva fácilmente interceptadas por una hoja de papel o piel.

PARTÍCULAS BETA. Son electrones y tienen más poder de penetración que las partículas alfa. Se interceptan por capas delgadas de agua, vidrio o metal.

PRÁCTICAS. Actividades que incrementan la exposición de personas o aumenten la probabilidad de sufrir exposición.

RADIACIÓN. Manera en que la energía se mueve de un lugar a otro ya sea por ondas, como en el caso del sonido, luz o calor; o por un chorro o haz de partículas diminutas, como la radiación eléctrica.

RADIACIÓN. Desintegración espontánea de radioisótopos (núcleos inestables), lo que resulta en la emisión de partículas radiactivas.

RAYOS GAMMA. Radiaciones electromagnéticas similares a las ondas luminosas y de radio, pero con longitudes de onda más cortas, lo que hace que sean rayos muy penetrantes que requieren materiales de blindaje como plomo o el hormigón para ser interceptados.

TIEMPO DE EXPOSICIÓN. La dosis de un trabajador en un área con una intensidad de radiación es directamente proporcional al tiempo que permanece en dicha área. La dosis total del individuo será igual al producto de la intensidad de radiación o tasa de dosis y la cantidad de tiempo que permanece en el área.

VIDA MEDIA. Tiempo que se requiere para que la mitad del total de material radiactivo cambie.
9.2. ANEXO. DETECTORES CR-39TM MARCA LANTRAK

Fuente: La Autora

Fuente: La Autora
9.3. ANEXO. METODOLOGÍA EXPERIMENTAL

Fuente: La Autora
9.4. ANEXO. MEDIDOR NUCLEAR DE DENSIDAD Y HUMEDAD MARCA TROXLER MODELO 3430

Fuente: La Autora

Fuente de neutrones

Fuente: Troxler Electronic Laboratories, 2003
9.5. ANEXO. CONVERTIDOR DE ^{10}B

a) Pastilla de ^{10}B

Fuente: La Autora

b) Cinta engomada

Fuente: La Autora
9.6. ANEXO. MODELO USADO EN PROCESO DE EXPOSICIÓN

Fuente: La Autora