Prevalencia del Antígeno Kell en donantes del Banco de Sangre del Hospital Vicente Corral Moscoso, Enero – Diciembre 2017

Proyecto de investigación previa a la obtención del título de Licenciado en Laboratorio Clínico

Autoras:
Pamela Maribel Lascano Oñate
CI: 1400592307

Erika Thalia Zhagui Bermeo
CI: 0105572267

Directora:
Dra. Sandra Gioconda Peña Patiño
CI: 0103439816

Cuenca – Ecuador
Abril 2019
RESUMEN

ANTECEDENTES: La sangre está compuesta por glóbulos rojos en cuya superficie presentan varios antígenos que permiten determinar los diferentes grupos sanguíneos según sus fenotipos, genotipos y anticuerpos.

El sistema ABO y Rh han sido los principales grupos sanguíneos tomados en cuenta al momento de las transfusiones sanguíneas, sin embargo con el paso de los años y los estudios que se han dado, se llega a la conclusión que también existen otros sistemas sanguíneos que son capaces de producir reacciones pos transfusionales como son el sistema Kell, Kidd, Duffy y Lewis.

OBJETIVO GENERAL: Determinar la prevalencia del antígeno Kell en muestras de sangre obtenidas de los donantes que acudieron al Banco de Sangre del Hospital Vicente Corral Moscoso durante el periodo de Enero- Diciembre del 2017.

METODOLOGÍA: Investigación de tipo observacional, descriptivo y transversal, en los donantes del Banco de Sangre del Hospital Vicente Corral Moscoso mediante la recolección de los resultados obtenidos en el año 2017 del área de inmunohematología, utilizando el software SPSS versión 25 para su tabulación.

RESULTADOS: Durante el año 2017 en el Banco de Sangre del Hospital Vicente Corral Moscoso acudieron a donar 9764 personas, utilizando un tamaño de muestra de 6154, de esta muestra se encontró que la prevalencia de casos positivos de Antígeno Kell es del 0,8%.

CONCLUSIONES: Los resultados demuestran que los Donantes de Sangre del Hospital Vicente Corral Moscoso de la ciudad de Cuenca presentan una prevalencia inferior a las reportadas en otros estudios realizados en Ecuador y en el extranjero.

ABSTRACT
BACKGROUND: The blood is composed of red blood cells in which surface have several antigens that allow different blood groups to be determined according to their phenotypes, genotypes and antibodies. The ABO and Rh system have been the main blood groups taken into account at the time of blood transfusions, however with the passage of time and the studies that have been given, it is concluded that there are also other blood systems that are capable of producing post-transfusion reactions such as the Kell, Kidd, Duffy and Lewis systems.
GENERAL OBJECTIVE: To determine the prevalence of Kell antigen in blood samples obtained from donors who attended the Blood Bank of the Hospital Vicente Corral Moscoso during the period of January-December 2017.
METHODOLOGY: Observational, descriptive and cross-sectional research in the donors of the Blood Bank of the Hospital Vicente Corral Moscoso through the collection of the results obtained in 2017 from the area of immunohematology, using the SPSS software version 25 for tabulation.
RESULTS: During the year 2017 in the Blood Bank of the Hospital Vicente Corral Moscoso came to donate 9764 people, using a sample size of 6154, this sample was found that the prevalence of positive cases of Kell Antigen is 0.8%
CONCLUSIONS: The results show that the blood donors of the Hospital Vicente Corral Moscoso in the city of Cuenca have a lower prevalence than those reported in other studies carried out in Ecuador and abroad.

ÍNDICE

RESUMEN .. 2

ABSTRACT .. 3

CAPITULO I .. 13

1.1 INTRODUCCIÓN .. 13

1.2 PLANTEAMIENTO DEL PROBLEMA .. 14

1.3 JUSTIFICACIÓN ... 16

CAPITULO II .. 19

2.1 FUNDAMENTO TEÓRICO ... 19

2.1.1 Generalidades .. 19

2.2 ANTECEDENTES ... 20

2.3 EPIDEMIOLOGÍA .. 21

2.4 DESCRIPCIÓN .. 21

2.4.1 Sistema sanguíneo Kell .. 21

2.5 GENÉTICA ... 22

2.6 HERENCIA ... 23

2.7 ETIOLOGÍA ... 24

2.7.1 Antígenos del Sistema Kell .. 24

2.7.2 Antígenos y anticuerpos cuerpos del Sistema Kell 24

2.7.3 Anticuerpos irregulares .. 25

2.8 PATOLOGÍA .. 26

2.8.1 Reacciones transfusionales .. 26

2.9 DIAGNÓSTICO .. 27

CAPITULO III ... 29

3. OBJETIVOS ... 29

3.1 OBJETIVO GENERAL .. 29

3.2 OBJETIVOS ESPECÍFICOS .. 29

CAPITULO IV ... 30

4. DISEÑO METODOLÓGICO ... 30

4.1 TIPO DE ESTUDIO .. 30

4.2 AREA DE ESTUDIO ... 30
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>UNIVERSO Y MUESTRA</td>
<td>30</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Universo</td>
<td>30</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Muestra</td>
<td>30</td>
</tr>
<tr>
<td>4.4</td>
<td>CRITERIOS DE INCLUSION Y EXCLUSION</td>
<td>31</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Criterios de inclusión</td>
<td>31</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Criterios de exclusión</td>
<td>32</td>
</tr>
<tr>
<td>4.5</td>
<td>VARIABLES</td>
<td>32</td>
</tr>
<tr>
<td>4.6</td>
<td>MÉTODOS, TÈCNICAS E INSTRUMENTOS</td>
<td>32</td>
</tr>
<tr>
<td>4.7</td>
<td>PROCEDIMIENTO</td>
<td>33</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Autorización</td>
<td>33</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Capacitación</td>
<td>33</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Supervisión</td>
<td>33</td>
</tr>
<tr>
<td>4.8</td>
<td>PLAN DE TABULACIÓN Y ANÀLISIS</td>
<td>33</td>
</tr>
<tr>
<td>4.9</td>
<td>ASPECTOS ÈTICOS</td>
<td>34</td>
</tr>
<tr>
<td>5.</td>
<td>RESULTADOS Y TABLAS</td>
<td>35</td>
</tr>
<tr>
<td>6.</td>
<td>DISCUSSION</td>
<td>45</td>
</tr>
<tr>
<td>7.</td>
<td>CONCLUSIONES Y RECOMENDACIONES</td>
<td>49</td>
</tr>
<tr>
<td>7.1</td>
<td>Conclusiones</td>
<td>49</td>
</tr>
<tr>
<td>7.2</td>
<td>Recomendaciones</td>
<td>51</td>
</tr>
<tr>
<td>8.</td>
<td>REFERENCIAS BIBLIOGRÁFICAS</td>
<td>52</td>
</tr>
<tr>
<td>9.</td>
<td>ANEXOS</td>
<td>54</td>
</tr>
<tr>
<td>9.1</td>
<td>Anexo N°1. PERMISOS</td>
<td>54</td>
</tr>
<tr>
<td>9.2</td>
<td>Anexo N° 2. Ficha de recolección de datos</td>
<td>57</td>
</tr>
<tr>
<td>9.3</td>
<td>Anexo N°3. GRÁFICOS</td>
<td>58</td>
</tr>
</tbody>
</table>
Cláusula de licencia y autorización para Publicación en el Repositorio Institucional

Pamela Maribel Lascano Oñate en calidad de autora y titular de los derechos morales y patrimoniales del proyecto de investigación Prevalencia del Antígeno Kell en donantes del Banco de Sangre del Hospital Vicente Corral Moscoso, Enero – Diciembre 2017 de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este proyecto de investigación en el Repositorio Institucional, de conformidad a lo dispuesto en el Art. 114 de la Ley Orgánica de Educación Superior.

Cuenca, 04 de abril del 2019

..

Pamela Maribel Lascano Oñate
CI: 1400592307
Cláusula de propiedad intelectual

Pamela Maribel Lascano Oñate, autora del proyecto de investigación **Prevalencia del Antígeno Kell en donantes del Banco de Sangre del Hospital Vicente Corral Moscoso, Enero – Diciembre 2017** certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son responsabilidad de su autora.

Cuenca, 04 de abril del 2019

[Signature]

Pamela Maribel Lascano Oñate
CI: 1400592307
Cláusula de licencia y autorización para Publicación en el Repositorio Institucional

Erika Thalia Zhagui Bermeo en calidad de autora y titular de los derechos morales y patrimoniales del proyecto de investigación Prevalencia del Antígeno Kell en donantes del Banco de Sangre del Hospital Vicente Corral Moscoso, Enero – Diciembre 2017 de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este proyecto de investigación en el Repositorio Institucional, de conformidad a lo dispuesto en el Art. 114 de la Ley Orgánica de Educación Superior.

Cuenca, 04 de abril del 2019

..
Erika Thalia Zhagui Bermeo

CI: 0105572267
Cláusula de propiedad intelectual

Erika Thalia Zhagui Bermeo, autora del proyecto de investigación Prevalencia del Antígeno Kell en donantes del Banco de Sangre del Hospital Vicente Corral Moscoso, Enero – Diciembre 2017 certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son responsabilidad de su autora.

Cuenca, 04 de abril del 2019

...
Erika Thalia Zhagui Bermeo

CI: 0105572267
DEDICATORIA

Dedico este proyecto de tesis a Dios principalmente por todas las grandezas y bendiciones que me ha dado y sobre todo por darme la familia maravillosa que tengo.

A mis padres por darme la vida, impulsarme siempre a conseguir lo que quiero y permitirme forjar un buen futuro al apoyarme.

A mi tía por ser mi apoyo incondicional en los momentos difíciles.

A mi pareja por apoyarme en mis proyectos y sobre todo a mi hijo por ser quien me da la fuerza para salir adelante siempre y buscar un mejor futuro.

Pamela Maribel Lascano Oñate
DEDICATORIA

Dedico esta tesis primeramente a Dios por darme fuerzas y guíarme a lo largo de vida para alcanzar siempre mis metas y no decaer.

A mis padres quienes estuvieron a mi lado brindándome su apoyo, aconsejándome siendo el pilar fundamente en mi formación personal.

A mi hija Samantha que desde el primer momento que llego a mi vida es fuente de motivación, inspiración y superación en mi vida.

A mis amigas Doris, Lorena, Bhetsy, Evelyn que me compartieron sus conocimientos, sus tristezas y alegrías formando una verdadera amistad.

“Los grandes logros nacen de grandes sacrificios, y nunca son fruto del egoísmo”.

Erika Thalia Zhagui Bermeo
AGRADECIMIENTOS

Primeramente, a Dios por darnos la sabiduría, fortaleza en aquellos momentos de dificultad y de debilidad, por permitirnos culminar con éxito y obtener nuestro título profesional.

A la Universidad de Cuenca, a sus docentes especialmente a los de la carrera de Laboratorio Clínico, por habernos compartido sus conocimientos a lo largo de nuestra formación profesional.

A nuestra directora y asesora de tesis la Dra. Sandra Peña por orientarnos, dedicarnos su tiempo y paciencia para la realización de nuestro proyecto de investigación.

Al Banco de Sangre del Hospital Vicente Corral Moscoso, por darnos apertura al Sistema Informático de los Donantes de Sangre.

A nuestros padres por ayudarnos y apoyarnos a culminar con nuestra carrera, por la paciencia y el apoyo incondicional en los momentos duros de nuestras vidas.

Erika Thalia Zhagui Bermeo

Lascano Oñate Pamela Maribel
CAPITULO I

1.1 INTRODUCCIÓN

El Banco de Sangre, del Hospital Vicente Corral Moscoso de la ciudad Cuenca, es una organización dedicada a recolectar, almacenar, procesar y/o suministrar sangre humana, todo esto se da gracias a las donaciones voluntarias que día a día se dan en esta institución. Muchas provincias del Ecuador como Cañar, Morona Santiago, Loja, El Oro y el Azuay se benefician de los componentes sanguíneos que se obtienen, las cuales llegaron a 17.626 en el año 2016(1). Esta institución cubre las demandas del propio hospital como el de otros organismos de Salud tanto públicos y privados.

El Banco de Sangre cuenta con las áreas de recepción, selección del donante, flebotomía - plaquetoféresis, triaje (tipificación y rastreo de anticuerpos), Inmunohematología, fraccionamiento, despacho y serología(2). Todas estas áreas son importantes para asegurar la calidad de la sangre que posteriormente se transfundirá a los pacientes que lo requieran.

Las transfusiones sanguíneas que se realizan en pacientes con alteraciones o deficiencias en sus componentes sanguíneos se dan a partir de la extracción de sangre total a un donante, cuya sangre será fraccionada en sus diferentes componentes sanguíneos ya sea glóbulos rojos, plasma y plaquetas a los cuales se les realiza diversos exámenes de laboratorio para asegurar cada componente sanguíneo.

Uno de los elementos formes más abundantes que componen la sangre son los eritrocitos dentro de los cuales existen más de 50 anticuerpos eritrocitarios.
irregulares que son capaces de producir enfermedades hemolíticas. El sistema ABO y Rh tiene carácter hereditario y presenta proteínas que forman parte de la membrana plasmática del eritrocito que es responsable de la diversidad de sistemas sanguíneos, las cuales varían en su composición química.

Debido a su alto polimorfismo y los antígenos fuertemente inmunogénicos el antígeno Kell es el más importante sistema luego del sistema ABO y Rh por lo que realizar el triaje a las unidades de sangre luego de ser obtenidas es indispensable. El sistema Kell se encuentra formado por 35 antígenos de los cuales se encuentran con mayor frecuencia el K (Kell 1 o K1) y el k (Kell2, K2 o Cellano). Cuando el Kell es positivo hace referencia al antígeno K (KK o Kk).

La inmunización anti-Kell se produce cuando una persona que carece del antígeno Kell entra en contacto con dicho antígeno ocasionando hemólisis, por lo que su detección también debe incluir el rastreo de anticuerpos irregulares y pruebas cruzadas para asegurar la compatibilidad de la sangre y evitar sensibilizaciones en las transfusiones sanguíneas (3).

La importancia de detectar el antígeno Kell en la muestra de los donadores radica en los efectos postransfusionales que puede generar en el paciente que en mayor medida corresponde a reacciones hemolíticas producidas por su alto polimorfismo.

1.2 PLANTEAMIENTO DEL PROBLEMA

El uso de los componentes sanguíneos como terapias en los pacientes que presentan alteraciones en los mismos se conoce desde hace muchos años, la
diferencia es que en esta época se utilizan métodos más actualizados que permiten obtener componentes sanguíneos como: concentrado de glóbulos rojos, plaquetas, plasma fresco congelado y plasma fresco refrigerado; sin embargo cuando existe un desconocimiento del uso adecuado de estos componentes se llegan a presentar dificultades poniendo en riesgo la vida del paciente.

Debido a la falta de conocimientos sobre las reacciones y complicaciones de las transfusiones sanguíneas por parte del personal de salud, es de vital importancia para los Bancos de Sangre realizar pruebas serológicas mediante biología molecular, pruebas cruzadas o de compatibilidad y fenotipificación para que sean un apoyo y así reducir las reacciones adversas inmediatas y tardías en los pacientes.

El primer paso luego de la extracción sanguínea es la realización del triaje que consiste en la determinación del grupo ABO (A, B, AB y O), Rh (Rh+ y Rh-), así como también la fenotipificación de cada una, en donde se incluye el antígeno Kell, con el fin de utilizar grupos sanguíneos con el factor Rh negativos, luego se procede a realizar las pruebas infecciosas como sífilis, hepatitis B, C, Virus de la inmunodeficiencia humana adquirida en técnicas de Quimioluminiscencia y Biología Molecular, etc.

Para evitar reacciones postransfusionales y enfermedad hemolítica del recién nacido (EHRN) se requiere que los hematíes a transfundirse no presenten en su membrana anticuerpos anti-K, anti Kp y anti-Jsb. Por lo que la detección del antígeno Kell en los Bancos de Sangre debe ser considerado como campo
obligatorio dentro de las determinaciones al igual que los otros sistemas sanguíneos, debido a posibles reacciones pos transfusionales como reacciones hemolíticas y sensibilizaciones.

1.3 JUSTIFICACIÓN

El Banco de Sangre del Hospital Vicente Corral Mosco de la ciudad de Cuenca es el encargado de recolectar, procesar y proveer los diferentes componentes sanguíneos en toda la Zona 6, además es el único Banco a nivel público del país que cuenta con la determinación de Ampliación de Ácidos Nucleicos (NAT), desde Diciembre del año 2016. Esta institución se encuentra regida bajo la Ley Orgánica que regulariza las responsabilidades del Ministerio de Salud en donde en el capítulo 1, artículo 6 menciona que “(...) 8. Regular, controlar y vigilar la donación, obtención, procesamiento, almacenamiento, distribución, transfusión, uso y calidad de la sangre humana, sus componentes y derivados, en instituciones y organismos públicos y privados, con y sin fines de lucro, autorizados para ello; 9. Regular y controlar el funcionamiento de bancos de células, tejidos y sangre; plantas industriales de hemoderivados y establecimientos de aféresis, públicos y privados; y, promover la creación de éstos en sus servicios de salud” (4).

En los últimos años, la medicina transfusional ha ido avanzando y mejorando sus técnicas y procesamientos, utilizando la sangre periférica como elemento principal que luego será dividida en sus diferentes componentes sanguíneos los mismos que tendrán que pasar por una serie de exámenes para asegurar la calidad de los mismos. Existen varios métodos inmunohematológicos que
permiten la detección de antígenos eritrocitarios y plaquetarios, como también de anticuerpos monoclonales, que han permitido la mantener los sistemas de hemovigilancias (5).

En las unidades de salud uno de los mayores problemas de las transfusiones sanguíneas son las reacciones hemolíticas que se presentan debido a la presencia de diversos antígenos, como es el caso de los antígenos del sistema Kell que se encuentra presente en los glóbulos rojos, los mismos que se heredan de forma codominante, presentándose con mayor frecuencia en las mujeres.

En un estudio realizado por Ulloa Andrea en la Ciudad de Quito en el año 2013 reveló que en el total de registros de 213132 donantes entre los años 2009-2012, la frecuencia del anti-K fue del 12% en relación al anti-D y anti-E (6).

En otro estudio realizado por Granda Samanta en la Ciudad de Quito en el año 2014 con 120000 donantes, se determinó una prevalencia de 4,75% del antígeno K en la población de estudio, además se encontró la presencia de un donante que presentaba el síndrome Mc Leod. Otro dato importante que presentó esta investigación es la existencia de 11 tipos diferentes de genotipos del sistema Kell distribuidos en diferentes provincias del país (7).

Los estudios sobre la prevalencia del antígeno Kell en el Ecuador son escasos, siendo la ciudad de Quito la única que presenta estudios anteriores sobre el tema, que fueron realizados en la Cruz Roja Ecuatoriana.

Debido a todo esto se establece la importancia de este trabajo que pretende recolectar y aportar conocimientos sobre la detección del antígeno Kell en la
sangre de los donantes, que servirá como fuente bibliográfica y de ayuda para otras investigaciones. Este trabajo de investigación también beneficia al personal de la salud del Hospital Vicente Corral Moscoso ya que permite reconocer el porcentaje de donantes antígeno Kell positivas dentro del Hospital mediante el cual se lograría evitar la mayor parte de reacciones adversas transfusionales como anemia aplásica al inhibir la eritropoyesis, reacciones hemolíticas, así como también enfermedad hemolítica del recién nacido.
CAPITULO II

2.1 FUNDAMENTO TEÓRICO

2.1.1 Generalidades

El descubrimiento de los grupos sanguíneos A B O y Rh por Karl Landsteiner, han sido un gran aporte en la medicina transfusional, permitiendo hallazgos de nuevos sistemas sanguíneos. En la actualidad los Bancos de Sangre que son identidades dedicadas a recolectar, almacenar y proporcionar componentes sanguíneos, tienen bajo su responsabilidad realizar diferentes pruebas inmunohematológicas a cada unidad recolectada, principalmente se realiza la determinación del sistema ABO y sistema Rh. (8)

Existen otros sistemas de grupos sanguíneos como el Kell, Kidd, Duffy y Lewis, que demuestran gran relevancia en las terapias transfusionales y la recuperación después de esta, ya que pacientes politransfundidos se van a presentar aloanticuerpos contra los antígenos de estos sistemas (9).

Cuando se realiza una trasfusión sanguínea existe la probabilidad de una incompatibilidad con uno de los 4 antígenos del sistema Rh, con los antígenos del sistema Kell o con antígenos de otros sistemas sanguíneos. Al ocurrir una incompatibilidad en primera instancia ocurre una aloinmunización a mediano plazo, es decir la formación de anticuerpos específicos contra los antígenos que están ausentes en el receptor. Si llegara a existir un segundo contacto con el mismo antígeno, la unión antígeno-anticuerpo desencadena reacciones hemolíticas intra o extravasculares, con intervención del sistema de
complemento, que varían en intensidad y frecuencia, en dependencia del sistema sanguíneo involucrado (10).

2.2 ANTECEDENTES

El descubrimiento de los grupos sanguíneos fue un paso importante en la medicina transfusional porque permitió la clasificación de la sangre y así trasfundir el hemocomponente adecuado a la necesidad de cada paciente. En un principio se creía que solo existían 3 grupos sanguíneos el A, B y O pero años más tarde se descubrió un cuarto grupo al que denominaron AB, este grupo sanguíneo genera anticuerpos naturales contra los antígenos del grupo ABO por lo que este descubrimiento disminuyó los casos de incompatibilidad.

EL sistema Rh ocupa el segundo lugar en importancia clínica, se encuentra constituido por 56 antígenos, los más relevantes son el D, C, c, E, e. El antígeno D es el más inmunogénico si lo comparamos con los otros antígenos del sistema Rh. Los antígenos Rh aparecen en etapas tempranas de la diferenciación eritropoyética y se expresan a partir de la sexta semana de vida intrauterina (11).

Luego del descubrimiento del antígeno Kell se determinó que era el tercero más polimórfico conocido hasta la actualidad considerándolo uno de los que presentan mayor relevancia clínica frente a la aparición de reacciones inmunológicas. En Ecuador los estudios son escasos pero demuestran que los casos de antígeno Kell positivo son menores al 5%.
2.3 EPIDEMIOLOGÍA

De acuerdo a los datos obtenidos, en Latinoamérica no existen muchos estudios sobre la prevalencia del Antígeno Kell. Según datos obtenidos en Latinoamérica, uno realizado por la Universidad de San Buenaventura Cartagena sobre la prevalencia de Fenotipos del sistema Rh y sistema Kell en donantes de Cartagena dio como resultado que existe un 3,12% de frecuencia del antígeno Kell (8).

Un estudio realizado en la Universidad de San Carlos de Guatemala el 2,4% de la población de estudio presento antígeno Kell positivo, aunque en ambos estudios la prevalencia es baja es muy importante su detección debido a su poder inmunogénico (12).

De acuerdo a otro estudio realizado por Chargoy Vivaldo sobre la prevalencia del antígeno Kell en muestras obtenidas en banco de sangre expone resultados del 2% positivo para antígeno Kell (13).

En Ecuador en un estudio realizado en Quito en el año 2015 sobre la detección del sistema Kell en donantes de sangre que acuden al hemocentro de la Cruz Roja Ecuatoriana en la ciudad de Quito, durante el periodo de Junio-Diciembre 2014, se reportó una prevalencia de 4,75% de antígeno Kell positivo.

2.4 DESCRIPCIÓN

2.4.1 Sistema sanguíneo Kell
El sistema sanguíneo Kell en medicina transfusional ocupa el tercer lugar en importancia clínica en los bancos de sangre, se encuentra constituido por 35
antígenos, numerados de 1 al 38 que se encuentran en una proteína de los eritrocitos desde el nacimiento, algunos de ellos se encuentran en pares que van a determinaran en nivel de incidencia en las poblaciones debido a sus fenotipos, genotipos y anticuerpos. Los más relevantes son 2 tipos de antígenos el Kell (K o K1) que en el año de 1946 fue descubiertos por Coombs, Mourant y Race y otro alelo llamado Cellano (k o K2) descubierto por Levine. Los antígenos considerados como Kell positivo son los que poseen Kk, mientras los antígenos kk van a ser Kell negativos (8) (12).

Los antígenos K y k resultan de un cambio de base (C -> T) en el exón 6 de la cadena de ADN, los antígenos Kp\(^a\), Kp\(^b\),Kp\(^c\), surgen del cambio de bases del exón 8.

La estructura de la glicoproteína Kell comprende un anclaje citoplasmático, en su estructura de dominio extracelular hay 15 residuos de cisteína que genera una configuración de plegamiento de la proteína mediante 7 enlaces disulfuros, por lo cual estos antígenos son inactivados cuando las células son tratadas con agentes reductores como el bromuro de isoaminoetil tiouranio o dithiothreitol.

La proteína Kell se expresa en fases muy precoces del proceso de maduración eritroide y ello permite que los anticuerpos Anti-K puedan inhibir la eritropoyesis y provocar una anemia aplásica (13).

2.5 GENÉTICA

El gen codificador del sistema Kell es altamente polimórfico, por lo que encontramos varios polimorfismos que se originan de la sustitución de una base nucleotídica produciendo un cambio de aminoácido en la proteína Kell, este
polimorfismo ocurre en Thr193Me. El gen Kell se encuentra en el brazo largo del cromosoma 7q32-q36, el cual codifica una proteína glicosilada de 93 kilodaltons que pertenece a la familia de las glicoproteínas transamenbrana tipo II, que son las encargadas de generar varios tipos de antígenos Kell y las combinaciones del mismo (14) (15).

Además esta proteína glicosilada (glicoproteína Kell) se une segunda proteína que contiene el antígeno Kx, mediante un puente de disulfuro del aminoácido 72 de la glicoproteína kell y el aminoácido 237 de la proteína XK, llegando a formar un complejo funcional. La ausencia proteína XK se da debido una deleción genética que produce la disminución de la expresión del antígeno Kell en la superficie de la membrana del eritrocito (16).

2.6 HERENCIA

La herencia del antígeno Kell se hereda en forma mendeliana, codominante con su alelo k, se encuentra relacionado con el cromosomas X, por eso es más común en los hombres que en las mujeres, ya que para su expresión se necesita que la madre sea portadora y el padre presente el fenotipo. La herencia se va producir mediante 2 alelos en donde el locus Kell se puede presentar de forma K (KELL 1) y k (KELL 2), dando como resultados alelos iguales KK y alelos diferentes Kk (15).
2.7 ETIOLOGÍA

2.7.1 Antígenos del Sistema Kell
El sistema Kell es causante de enfermedades hemolíticas, esto se debe que en el momento de la eritropoyesis, se va expresar en la superficie de los glóbulos rojos una proteína glicosilada que pertenece a los antígenos Kell, los cuales en ocasiones van hacer que exista la producción de anticuerpos anti-Kell.

En el año de 1946 Coombs, Murant, Race descubrieron el primer antígeno Kell (K) en un recién nacido con enfermedad hemolítica y anticuerpos anti-\(k\) en la madre. Años después descubren un segundo antígeno denominado Cellano (k) y en el año de 1957 se identificaron los antígenos Kp\(^a\) y Kp\(^b\) s luego se encontró también la presencia de los antígenos Js\(^a\) y Js\(^b\), siendo los 6 antígenos los principales y más prevalentes del sistema Kell, además estos son muy inmunogénicos responsables del 20% de las reacciones postransfusionales cuando entran en contacto los antígenos K(+) con un receptor de fenotipo K(−) (16).

2.7.2 Antígenos y anticuerpos cuerpos del Sistema Kell
Los anticuerpos del sistema Kell con mayor frecuencia son de clases IgG, en donde su subclase IgG1 se fija al complemento que son la principal causa de las reacciones hemolíticas, también en menor frecuencia vamos a tener los que son tipo IgM. Los anticuerpos más comunes son el Anti-k que se fijan al complemento y los menos frecuentes son los anti-K, anti –Kpb, anti Js\(^b\) que llegan a ocasionar reacciones hemolíticas postransfusionales y otros pueden atravesar la placenta provocando la enfermedad hemolítica del recién nacido (EHRN), también este...
sistema se encuentra relacionado con enfermedades como anemia fetal mediante 2 mecanismos la hemolisis de eritrocitos y la inhibición de la producción de células hematopoyéticas en la medula ósea del feto, haciendo así que se disminuya el número de reticulocitos y glóbulos rojos (17) (18).

Otros anticuerpos como el anti –Ku producen la destrucción de los glóbulos rojos transfundidos a excepción de los del propio paciente, esto ocurre después de que haya existido sensibilización, también tenemos los anti - Kx y anti – Km que suelen aparecer después de haber pasado por la enfermedad granulomatosa crónica o el síndrome de McLeod que es una patología ligada al cromosoma X, con mayor predominio en los hombres y se asocia a acantosistosis, problemas musculares, y una variedad de síntomas neurológicos y psiquiátricos (15). En este síndrome la expresión de los antígenos Kell está deprimida y los antígenos Km y Kx está ausente, los individuos en este síndrome cuando se sensibilizan producen un anticuerpo Anti-Kx mas Anti-Km que hace difícil encontrar hematíes de idéntico fenotipo para la transfusión (13).

2.7.3 Anticuerpos irregulares
Los anticuerpos irregulares son aquellos anticuerpos que aparecen debido a diversos factores como la exposición a antígenos eritrocitarios en las transfusiones sanguíneas o trasplantes, también se presentan a causa de una incompatibilidad materno – fetal. Se ha encontrado que algunos anticuerpos irregulares pueden asociarse a la exposición de antígenos ambientales, bacterianos o virales ya que estos factores pueden llegar a tener características bioquímicas muy parecidas a los antígenos eritrocitarios.
Los anticuerpos irregulares que se presentan con mayor frecuencia en los donantes de sangre son: anti-Lea, anti-K y anti-E, mientras que en los receptores son: anti-D, anti-E y anti-K (12).

2.8 PATOLOGÍA

2.8.1 Reacciones transfusionales

Las reacciones transfusionales se van a deber a una reacción antígeno-anticuerpo que ocurre entre los antígenos presentes en glóbulo rojos del donante y los anticuerpos del receptor, haciéndose que se produzca la hemólisis de los eritrocitos con la liberación de citosinas proinflamatorias, que pueden llevar a la muerte del paciente. En el caso del antígeno Kell se dice que es el causante de varias reacciones transfusionales hemolíticas, principalmente se han reportado, coagulación intravascular diseminada, seguida por un fallo renal agudo y finalmente la muerte, en receptores que han sido transfundidos con unidades de componentes sanguíneos Kell positivo (19).

Existen reacciones transfusionales inmediatas del sistema Kell las cuales se van a presentar dentro de las 24 horas posterior a la transfusión la más relevante es la hemólisis intravascular con la liberación de la hemoglobina y la presencia del síndrome de respuesta inflamatorio sistémico el cual inicia con picos febriles que induce que en el torrente sanguíneo se liberen citosinas e interleucinas provocando así una coagulación intravascular diseminada, posterior un fallo renal agudo y la muerte (18).

Las reacciones transfusionales tardías del sistema Kell son aquellas que se presentan después de las 24 horas realizada la transfusión que se dan por la
exposición de antígenos presentes en el componente sanguíneo que se colocó al paciente provocando la formación de aloanticuerpos, en la primera instancia puede no hallarse la presencia de ningún síntoma y pero en un segundo contacto existen reacciones inmediatas y graves porque cuando hubo el primer contacto el organismo creo una memoria inmunológica que mediante las células de defensa como macrófagos y neutrófilos atacaran a los eritrocitos transfundidos.

La isoinmunización anti-Kell produce tanto una hemolisis como una supresión de la eritropoyesis por lo que se considera a la terapia con eritropoyetina una buena elección y se da por contacto del antígeno Kell en diversos eventos como son: transfusiones sanguíneas, trasplantes y por contacto materno fetal en donde los aloanticuerpos anti-K de IgG1 atraviesan la placenta produciendo graves problemas en el embarazo como hidropesía, muerte uterina, mientras que en el recién nacido se produce enfermedad hemolítica mediante 2 mecanismos: la hemolisis de los eritrocitos y la supresión de los precursores eritropoyéticos a nivel de la médula ósea (3).

2.9 DIAGNÓSTICO

La detección de sistema el Kell se puede realizar por varios métodos como tenemos técnicas en tubo, en placa y gel, su principio está basado en que al colocar el reactivoo Anti– Kell va a producir una aglutinación directa de los glóbulos rojos portadores del Antígeno Kell, resultando una prueba positiva, mientras si existe ausencia de aglutinación, significa que no está presente el antígeno K y por ende será una prueba negativa. Para cada uno de las técnicas necesitamos previamente glóbulos rojos diluidos 3 al 5 % en una solución salina
isotónica (20).

Método en tubo: se va dar una reacción cuando se expone los glóbulos rojos del donante con el reactivo que contiene el suero con anticuerpos policlonales o monoclonales del antígeno Kell produciéndose una aglutinación, en donde los anticuerpos se pegaran al glóbulo rojo por la presencia de antígenos en estos.

Método en gel: al igual que el anterior método se va a producir una reacción antígeno anticuerpo la diferencia es aquí los anticuerpos van a estar presentes en el gel de la tarjeta, para poder interpretar si existe aglutinación tenemos que fijarnos si los eritrocitos se encuentran encima del gel o están a lo largo del gel será un resultado positivo, mientras que cuando los eritrocitos van a fondo del gel será un resultado negativo.

Método molecular: en esta técnica se utiliza la reacción de cadena de polimerasa la cual va utilizar primers para la detección de los antígenos en donde se observara la presencia del gen que codifica la proteína Kell ubicada en el brazo largo del cromosoma 7.
CAPITULO III

3. OBJETIVOS

3.1 OBJETIVO GENERAL

- Determinar la prevalencia del antígeno Kell en muestras de sangre obtenidas de los donantes que acudieron al Banco de Sangre del Hospital Vicente Corral Moscoso en el año 2017.

3.2 OBJETIVOS ESPECÍFICOS

- Recolectar los datos de los donantes de sangre que acudieron al HVCM en el año 2017 con la ayuda de un formulario para determinar su prevalencia.
- Relacionar los resultados con las variables edad, sexo, procedencia, tipo de donante, número de donación, grupo sanguíneo y factor Rh, presencia o ausencia de Antígeno Kell.
CAPITULO IV

4. DISEÑO METODOLÓGICO

4.1 TIPO DE ESTUDIO

Observacional, descriptivo y transversal.

4.2 AREA DE ESTUDIO

Donantes voluntarios y compensatorios del Banco de Sangre del Hospital Vicente Corral Moscoso que acudieron durante el periodo de Enero a Diciembre de 2017.

4.3 UNIVERSO Y MUESTRA

4.3.1 Universo

El universo a estudiar es finito y está conformado por un total de 9764 donantes pertenecientes al Banco de Sangre del Hospital Vicente Corral Moscoso, durante Enero a Diciembre del 2017.

4.3.2 Muestra

El tamaño de la muestra se calculó a partir de la siguiente formula:

\[
N \times Z^2 \times p \times q
\]

\[
n = \frac{E^2 \times (N-1)}{Z^2 \times p \times q}
\]
n = Tamaño de la muestra

N = Tamaño de la población (9764)

E = Margen de error 1% (0.01)

Z = Valor crítico de Nivel de Confianza 99% (2.58)

p = Probabilidad de éxito (0.50)

q = Probabilidad de fracaso 1 - p (0.50)

\[n = \frac{9764 \times (2.58)^2 \times 0.50 \times 0.50}{(0.01)^2 \times (9764 - 1) + (2.58)^2 \times 0.50 \times 0.50} \]

Calculo total de muestra: 6154 pacientes tomados como referencia para la investigación según el cálculo realizado.

4.4 CRITERIOS DE INCLUSION Y EXCLUSION

4.4.1 Criterios de inclusión

- Donantes de sangre voluntarios y compensatorios que acudieron al Banco de Sangre del HVCM, mayores de 18 años y menores de 65 años de edad.
- Donantes que fueron aptos en el momento de la entrevista y en la valoración de los signos vitales realizada por el personal de salud.
4.4.2 Criterios de exclusión

- Personas que no pasaron la entrevista así como también aquellas que no cumplieron con los parámetros considerados normales en la valoración de signos vitales.

4.5 VARIABLES

Edad, Sexo, procedencia, tipo de donante, número de donaciones, grupo sanguíneo y factor Rh, presencia o ausencia de Antígeno Kell.

4.6 MÉTODOS, TÈCNICAS E INSTRUMENTOS

4.6.1 METODO

Se utilizara la información obtenida del área de inmunohematología, que se extraerá del sistema informático que utiliza el Banco de Sangre del Hospital Vicente Corral Moscoso.

4.6.2 TÈCNICAS

Obtención de los resultados mediante la utilización del sistema informático del Banco de sangre del Hospital Vicente Corral Moscoso.

4.6.3 INSTRUMENTOS

Análisis de documentos y de contenidos mediante una ficha de recolección de datos. La ficha se utilizara para recolectar los datos suministrados por el sistema informático del Banco de Sangre del Hospital Vicente Corral Moscoso. Estos datos serán aleatorizados mediante un programa en línea denominado
generador de números aleatorio sin repetición, mediante el cual obtendremos la muestra aleatoriamente.

4.7 PROCEDIMIENTO

4.7.1 Autorización
- Se solicitara permiso correspondiente para la realización de esta investigación al centro de docencia e investigación del HVCM, a la Dra. Sandra Peña (Directora del Banco de Sangre del Hospital Vicente Corral Moscoso), comité de ética de la Universidad de Cuenca mediante la entrega de sus respectivos oficios.

4.7.2 Capacitación
Se consultara con el personal de salud experto en el área de inmunohematología que labora en el Banco de Sangre del HVCM, quien tiene acceso al sistema informático, además para la ejecución de esta investigación se capacita con la revisión bibliográfica de fuentes científicas.

4.7.3 Supervisión
La investigación será supervisada por la Dra. Sandra Peña Directora y asesora de tesis.

4.8 PLAN DE TABULACIÓN Y ANÁLISIS
El sistema estadístico que se va utilizar para la tabulación de datos de los donantes de sangre del HVCM serán el programa Excel y software SPSS versión 25 en donde se procederá a analizar las variables utilizando tablas representativas de frecuencias y porcentajes.
4.9 ASPECTOS ÉTICOS

Para esta investigación no se empleó técnicas que conlleven riesgos o intervenciones que puedan afectar de forma fisiológica o psicológica a alguna persona, ni violara los principios éticos de investigación. Los datos fueron obtenidos con la autorización correspondiente de la Directora del Banco de Sangre del Hospital Vicente Corral Moscoso.
CAPITULO V

5. RESULTADOS Y TABLAS

5.1 Descripción de la población de estudio

Se recolectó la información de los donantes de sangre utilizando el sistema informático del Banco de Sangre del Hospital Vicente Corral Moscoso, mediante el cual se obtuvo resultados que nos demuestran que existe una mayor cantidad de donantes provenientes de la Sierra, y en menor frecuencia del Oriente.

Tabla 1: Distribución de los donantes de sangre según su procedencia, del Banco de Sangre del Hospital Vicente Corral Moscoso, 2017

<table>
<thead>
<tr>
<th>Procedencia</th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIERRA</td>
<td>5934</td>
<td>96,4%</td>
</tr>
<tr>
<td>COSTA</td>
<td>148</td>
<td>2,4 %</td>
</tr>
<tr>
<td>ORIENTE</td>
<td>72</td>
<td>1,2 %</td>
</tr>
<tr>
<td>Total</td>
<td>6154</td>
<td>100 %</td>
</tr>
</tbody>
</table>

La tabla muestra la distribución de los donantes según su procedencia siendo la Sierra la de mayor frecuencia con el 96,4% (5934 donantes), seguido por la Costa con 2,4% (148 donantes) y el de menor frecuencia el Oriente con el 1,2% (72 donantes).
Tabla 2: Distribución de los donantes de sangre según el sexo y su procedencia, del Banco de Sangre del Hospital Vicente Corral Moscoso, 2017

<table>
<thead>
<tr>
<th>SEXO</th>
<th>COSTA</th>
<th>ORIENTE</th>
<th>SIERRA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMENINO</td>
<td>32</td>
<td>18</td>
<td>2058</td>
<td>2108</td>
</tr>
<tr>
<td>(0,5%)</td>
<td>(0,03%)</td>
<td>(33,5%)</td>
<td>(34,3%)</td>
<td></td>
</tr>
<tr>
<td>MASCULINO</td>
<td>116</td>
<td>54</td>
<td>3876</td>
<td>4046</td>
</tr>
<tr>
<td>(1,9%)</td>
<td>(0,9%)</td>
<td>(62,9%)</td>
<td>(65,7%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>148</td>
<td>72</td>
<td>5934</td>
<td>6154</td>
</tr>
<tr>
<td>(2,4%)</td>
<td>(1,2%)</td>
<td>(96,4%)</td>
<td>(100%)</td>
<td></td>
</tr>
</tbody>
</table>

Autores: Pamela Lascano; Thalia Zhagui

Se determinó el sexo de cada uno de los donantes que intervinieron en el estudio mediante la revisión de las fichas de donación, observándose que el sexo masculino es el de mayor frecuencia en las tres regiones del Ecuador con un porcentaje de 65,7% (4046 donantes). Determinándose así que existe una mayor cantidad de donantes en la región Sierra de sexo masculino que corresponde al 62,9% (3876 donantes), que donantes de sexo femenino con el 33,5% (2058 donantes).
Tabla 3. Prevalencia del antígeno Kell en donantes del Banco de Sangre del Hospital Vicente Corral Moscoso, 2017

<table>
<thead>
<tr>
<th>ANTÍGENO KELL</th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEGATIVO</td>
<td>2875</td>
<td>46.7%</td>
</tr>
<tr>
<td>POSITIVO</td>
<td>51</td>
<td>0.8%</td>
</tr>
<tr>
<td>SIN REACTIVO</td>
<td>3228</td>
<td>52.5%</td>
</tr>
<tr>
<td>Total</td>
<td>6154</td>
<td>100%</td>
</tr>
</tbody>
</table>

La presencia del Antígeno Kell en los donantes del Banco de Sangre del Hospital Vicente Corral Moscoso, según los datos recolectados del sistema informático de la institución en año 2017 con respecto a los casos positivos se encontró una prevalencia del 0.8% que corresponden a 51 casos, mientras que el 46.7% (2875 donantes) pertenecen casos con Antígeno Kell negativo y en un 52.5% (3228 donantes) corresponden a los donantes de sangre que no se les realizó el rastreo del Antígeno Kell (Gráfico N°1).
5.2 Relación de la presencia del antígeno Kell con la edad, sexo, procedencia, tipo de donante, número de donaciones, grupo sanguíneo y factor Rh.

Tabla 4. Prevalencia del antígeno Kell de acuerdo a la edad, del Banco de Sangre del Hospital Vicente Corral Moscoso, 2017

<table>
<thead>
<tr>
<th>EDAD EN AÑOS</th>
<th>18-29</th>
<th>30-41</th>
<th>42-53</th>
<th>54-65</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTÍGENO NEGATIVO KELL</td>
<td>1387</td>
<td>979</td>
<td>436</td>
<td>73</td>
<td>2875</td>
</tr>
<tr>
<td>POSITIVO</td>
<td>23</td>
<td>17</td>
<td>7</td>
<td>4</td>
<td>51</td>
</tr>
<tr>
<td>SIN REACTIVO</td>
<td>1528</td>
<td>1100</td>
<td>503</td>
<td>97</td>
<td>3228</td>
</tr>
<tr>
<td>Total</td>
<td>2938</td>
<td>2096</td>
<td>946</td>
<td>174</td>
<td>6154</td>
</tr>
</tbody>
</table>

Autores: Pamela Lascano ; Thalia Zhagui

Se estudió la prevalencia del Antígeno Kell de acuerdo a las edades, determinándose que los donantes con Antígeno Kell positivo se encuentran en mayor frecuencia en personas jóvenes entre las edades de 18 a 29 años (0,4%), y en menor frecuencia en personas adultas de 54 – 65 años (0,06%) (Gráfico N°2).
Al analizar la prevalencia del Antígeno Kell en relación con el sexo de los donantes, se determinó que existe una mayor frecuencia de Antígeno Kell positivo en el sexo masculino con la presencia de 41 casos (0,6%) que en el sexo femenino con apenas 10 casos (0,2%) (Gráfico Nº3).

<table>
<thead>
<tr>
<th></th>
<th>FEMENINO</th>
<th>MASCULINO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTÍGENO KELL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEGATIVO</td>
<td>989</td>
<td>1886</td>
<td>2875</td>
</tr>
<tr>
<td></td>
<td>(16,1%)</td>
<td>(30,6%)</td>
<td>(46,7%)</td>
</tr>
<tr>
<td>POSITIVO</td>
<td>10</td>
<td>41</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>(0,2%)</td>
<td>(0,6%)</td>
<td>(0,8%)</td>
</tr>
<tr>
<td>SIN REACTIVO</td>
<td>1109</td>
<td>2119</td>
<td>3228</td>
</tr>
<tr>
<td></td>
<td>(18,1%)</td>
<td>(34,4%)</td>
<td>(52,5%)</td>
</tr>
<tr>
<td>Total</td>
<td>2108</td>
<td>4046</td>
<td>6154</td>
</tr>
<tr>
<td></td>
<td>(34,3%)</td>
<td>(65,7%)</td>
<td>(100%)</td>
</tr>
</tbody>
</table>

Autores: Pamela Lascano; Thalia Zhagui
Tabla 6. Prevalencia de los antígenos Kell de acuerdo a la procedencia, del Banco de Sangre del Hospital Vicente Corral Moscoso, 2017

<table>
<thead>
<tr>
<th>PROCEDENCIA</th>
<th>COSTA</th>
<th>ORIENTE</th>
<th>SIERRA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIGENO NEGATIVO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KELL</td>
<td>89 (1,5%)</td>
<td>44 (0,7%)</td>
<td>2742 (44,5)</td>
<td>2875 (46,7%)</td>
</tr>
<tr>
<td>POSITIVO</td>
<td>6 (0,09%)</td>
<td>1 (0,01)</td>
<td>44 (0,7%)</td>
<td>51 (0,8%)</td>
</tr>
<tr>
<td>SIN REACTIVO</td>
<td>53 (0,9%)</td>
<td>27 (0,4%)</td>
<td>3148 (51,2%)</td>
<td>3228 (52,5%)</td>
</tr>
<tr>
<td>Total</td>
<td>148 (96,4%)</td>
<td>72 (1,2%)</td>
<td>5934 (96,4%)</td>
<td>6154 (100%)</td>
</tr>
</tbody>
</table>

Autores: Pamela Lascano; Thalia Zhagui

Se analizó la prevalencia del Antígeno Kell con la procedencia de los donantes de sangre, obteniéndose así los siguientes resultados, en la región Sierra se encuentra la mayor cantidad de casos de Antígeno Kell positivo que corresponde a 44 donantes (0,7%), luego le sigue la Costa con 6 donantes (0,09%) y el Oriente presenta solo un caso de Antígeno Kell positivo (0,01%) (Grafico N°4).

Tabla 7. Frecuencia del Antígeno Kell de acuerdo al tipo de donantes, del Banco de Sangre del Hospital Vicente Corral Moscoso, 2017
En la presente investigación nos encontramos con dos tipos de donantes de sangre, el compensatorio el cual por motivos personales acude al Banco de Sangre y el otro grupo que pertenece a donantes voluntarios los cuales de manera altruista acuden a esta institución. Obteniendo los siguientes resultados de Antígeno Kell positivo, con un mayor dominio están los donantes compensatorios 0,78% (50 casos) y mientras que en los donantes voluntarios existe un solo caso (0,02%) (Gráfico N°5).
Tabla 8. Prevalencia del Antígeno Kell de acuerdo al número de donaciones, del Banco de Sangre del Hospital Vicente Corral Moscoso, 2017

<table>
<thead>
<tr>
<th>CANTIDAD DE DONACIONES</th>
<th>PRIMERA VEZ</th>
<th>REPETITIVO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTÍGENO KELL NEGATIVO</td>
<td>2129 (34,6%)</td>
<td>746 (12,1%)</td>
<td>2875</td>
</tr>
<tr>
<td>POSITIVO</td>
<td>45 (0,7%)</td>
<td>6 (0,1%)</td>
<td>51</td>
</tr>
<tr>
<td>SIN REACTIVO</td>
<td>2370 (38,6%)</td>
<td>858 (13,9%)</td>
<td>3228</td>
</tr>
<tr>
<td>Total</td>
<td>4544 (73,8%)</td>
<td>1610 (26,2%)</td>
<td>6154</td>
</tr>
</tbody>
</table>

En la tabla se puede observar que existe una mayor población que ha donado una sola vez y en menor cantidad las personas que se han convertido en donadores repetitivos, en cuanto a los casos positivos de Antígeno Kell positivo se puede ver que existen 45 donantes (0,7%) que corresponde a donantes por primera vez y tan solo 6 casos (0,1%) de los donantes repetitivos (Gráfico N°6)

Autores: Pamela Lascano; Thalia Zhagui
Tabla 9. Prevalencia del Antígeno Kell de acuerdo al grupo sanguíneo, del Banco de Sangre del Hospital Vicente Corral Moscoso, 2017

<table>
<thead>
<tr>
<th>GRUPO SANGUÍNEO</th>
<th>A</th>
<th>AB</th>
<th>B</th>
<th>O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTÍGENO KELL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEGATIVO</td>
<td>394</td>
<td>7</td>
<td>136</td>
<td>2338</td>
<td>2875</td>
</tr>
<tr>
<td></td>
<td>(6,4%)</td>
<td>(0,1%)</td>
<td>(2,3%)</td>
<td>(37,9%)</td>
<td>(46,7%)</td>
</tr>
<tr>
<td>POSITIVO</td>
<td>14</td>
<td>0</td>
<td>3</td>
<td>34</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>(0,2%)</td>
<td>(0%)</td>
<td>(0,04%)</td>
<td>(0,56%)</td>
<td>(0,8%)</td>
</tr>
<tr>
<td>SIN REACTIVO</td>
<td>376</td>
<td>10</td>
<td>143</td>
<td>2699</td>
<td>3228</td>
</tr>
<tr>
<td></td>
<td>(6,1%)</td>
<td>(0,2%)</td>
<td>(2,3%)</td>
<td>(43,9%)</td>
<td>(52,5%)</td>
</tr>
<tr>
<td>Total</td>
<td>784</td>
<td>17</td>
<td>282</td>
<td>5071</td>
<td>6154</td>
</tr>
<tr>
<td></td>
<td>(12,7%)</td>
<td>(0,3%)</td>
<td>(4,6%)</td>
<td>(82,4%)</td>
<td>(100%)</td>
</tr>
</tbody>
</table>

Autores: Pamela Lascano; Thalia Zhagui

En cuanto a los grupos sanguíneos en el presente estudio podemos ver que Grupo Sanguíneo O es el más común en donadores, en segundo lugar le sigue el Grupo A, continuando con el Grupo Sanguíneo B y al finalmente tenemos el Grupo Sanguíneo AB. En el mismo orden se observa la presencia del Antígeno Kell Positivo Grupo Sanguíneo O con el 0,56% (34 donantes), sigue el Grupo sanguíneo A 0,2% (14 donantes), Grupo Sanguíneo B 0,04% (3 donantes), mientras que del Grupo Sanguíneo AB no se encontró ningún caso (Gráfico N°7).
<table>
<thead>
<tr>
<th>RH</th>
<th>POSITIVO</th>
<th>NEGATIVO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTÍGENO</td>
<td>NEGATIVO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KELL</td>
<td>2805</td>
<td>70</td>
<td>2875</td>
</tr>
<tr>
<td></td>
<td>(45,6%)</td>
<td>(1,1%)</td>
<td>(46,7%)</td>
</tr>
<tr>
<td>POSITIVO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>3</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>(0,75%)</td>
<td>(0,05%)</td>
<td>(0,8%)</td>
</tr>
<tr>
<td>SIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REACTIVO</td>
<td>3178</td>
<td>50</td>
<td>3228</td>
</tr>
<tr>
<td></td>
<td>(51,6%)</td>
<td>(0,9%)</td>
<td>(52,5%)</td>
</tr>
<tr>
<td>Total</td>
<td>6031</td>
<td>123</td>
<td>6154</td>
</tr>
<tr>
<td></td>
<td>(98%)</td>
<td>(2%)</td>
<td>(100%)</td>
</tr>
</tbody>
</table>

En la población estudiada se ha identificado que el Factor Rh Positivo es más prevalente que el Factor Rh Negativo. La frecuencia con la que el Antígeno Kell se manifiesta en el Factor Rh Positivo es 48 casos positivos (0,75%), mientras que en Factor Rh Negativo se observan apenas 3 casos positivos (0,05%) (Gráfico N°8).
CAPITULO VI

6. DISCUSION

Este estudio permitió conocer la prevalencia del antígeno Kell, así como su relación con las variables edad, sexo, procedencia, tipo de donante, número de donación, grupo sanguíneo y factor Rh. Cabe mencionar que en el Ecuador no existen muchos estudios que hayan abordado esta temática, por lo que conocer la frecuencia de Antígeno Kell nos permite evitar gran parte de las reacciones adversas transfusionales, siendo la de mayor relevancia las reacciones hemolíticas.

La presente investigación conformada por 6154 donantes de sangre pertenecientes al Banco de Sangre del Hospital Vicente Corral Moscoso, durante el año 2017 que incluyó a todos los donantes que cumplieron los requisitos según la normativa del Banco de Sangre. Se obtuvo una prevalencia de 51 casos (0,8%) de donantes de sangre que fueron portadores del Antígeno Kell positivo, de los cuales se presentó en mayor frecuencia en personas jóvenes que se encuentran entre edades comprendidas de 18 a 29 años, pertenecientes al sexo masculino (0,6%). En relación a la procedencia 44 donantes (0,7%) pertenecen a la región Sierra, seguido con 6 donantes (0,009%) de la Costa y un solo caso en el Oriente,

En el Banco de Sangre existen 2 tipos de donantes los voluntarios y compensatorios de acuerdo a los datos obtenidos se demuestra que existen 50 donantes compensatorios (0,78%), que acudieron a la institución por primera vez motivados por asuntos personales. Se encontró en el presente estudio de
acuerdo al factor Rh que la presencia casos positivos del Antígeno Kell se manifiesta de la siguiente manera Grupo Sanguíneo O con el 0,56%(34 donantes), seguido del Grupo A 0,2% (14 donantes), Grupo Sanguíneo B 0,04%(3 donantes), mientras que del Grupo Sanguíneo AB no se encontró ningún caso, y en cuanto al factor Rh se obtuvo 48 casos (0,75%) de Rh Positivo y apenas 3 casos (0,05%) de Rh Negativo.

Ulloa León A. Quito 2013 (6). En el análisis de resultados realizados en el Hemocentro de la Cruz Roja Ecuatoriana en Quito con una muestra de 1197 de donantes por año, se determinó que en los casos positivos de Antígeno Kell, el Grupo O es el de mayor frecuencia (8,9 %), seguido por el Grupo B (2, 3 %); A (1,8%) y AB (0%); predominando el factor Rh positivo con el 12,1%. Los hallazgos realizados en nuestro estudio con una muestra de 6154 donantes en el año 2017, se establece que la población estudiada es casi análoga con la investigación hecha en Quito con los siguientes resultados Grupo Sanguíneo O igualmente con mayor frecuencia (0,56%), y en el Grupo AB no se encontró ningún caso positivo, y en cuanto al factor Rh Positivo se presenta con el 0,75%, pero existe una discrepancia en nuestro estudio ya que se presenta de manera invertida el número de casos positivos para en Grupo A (0,2 %) a comparación del grupo B (0,04%). La prevalencia de los anticuerpos irregulares (Antígeno Kell), en el Hemocentro de la Cruz Roja Ecuatoriana es de 13% (78 donantes) de los 1197 donantes, un dato casi igual se obtuvo en el Banco de Sangre del HVCM que corresponde al 0,8% (51 donantes) de una muestra de 6154.
Granda Hidalgo S. Quito 2015 (17). Se identificó que existe una prevalencia del Antígeno Kell en un 4,75%, siendo más común en los hombres con un 3,22%, y en las mujeres con 2,77%, que pertenecen a la región Sierra, además de la determinación del antígeno Kell aquí se realizó la genotipificación de este obteniéndose 11 genotipos que se distribuyen de manera heterogénea. Esta investigación al igual que la realizada en Quito demuestra que el existe mayor distribución donantes hombres que pertenecen a la región Sierra. La inclusión de la determinación del antígeno Kell y sus genotipos es de vital importancia ya que es contribuye a implementar una alerta al Sistema Nacional de Sangre del Ecuador, para evitar el aumento de pacientes con aloiunizaciones por antígenos del sistema sanguíneo Kell.

Vásquez Rojas M. Chile 2015 (18). Se determinó que en 200 donantes de sangre del Centro Productivo Regional de Sangre del Maule (CPRSM), el 55,5% de los donantes pertenecían a sexo masculino y un 44,5 % al sexo femenino, que al igual que en nuestra población estudiada se obtuvo datos similares con predominio del 65,7% correspondientes al sexo masculino y 34.3% al sexo femenino. En cuanto a la edad en el estudio realizado en la ciudad de Maule se observó que la población con más donantes pertenece al grupo etario entre 18-26 años (57.5%), mientras que el Banco de Sangre del HVCM de la ciudad de Cuenca, se encontró que la mayor parte de donantes pertenecían al grupo de 18-29 años (47.7%). En esta población de 200 donantes en Chile, se observó que existe una frecuencia del 4% del Antígeno Kell en donde se puede decir que la presencia el antígeno no es tan frecuente, ya que esta investigación se manifestó de la misma manera una baja frecuencia correspondiente 0,8% (51 donantes).
Chargoy Vivaldo E. Mexico 2016 (14). Se determinó en una muestra de 497 donantes del Banco de sangre del Hospital Regional Presidente Juárez, en cuanto al Sistema ABO, la prevalencia del grupo sanguíneo O (77%), de igual forma hay una mayor distribución en la presente investigación con el 82,4%, de manera similar ocurre con la frecuencia de Factor Rh positivo de 99%; Rh negativo 1%, casi igual al del presente estudio Rh positivo de 98%; Rh negativo 2%. En donde se dice que algunos grupos sanguíneos pueden asociarse con determinadas enfermedades o condiciones patológicas como es el caso de la presencia del Antígeno Kell en los dos estudios en el grupo Sanguíneo O el que fue realizado en México con un 2% y en el nuestro con el 0,8%, la importancia de la rastreo de estos anticuerpos irregulares para todos los pacientes y unidades de sangre donadas es crear una estrategia para reducir la aloinmunización que a su vez ayude a disminuir los costos por reacciones adversas presentadas.
CAPITULO VII

7. CONCLUSIONES Y RECOMENDACIONES

7.1 Conclusiones

En este primer estudio que se realiza en la Ciudad de Cuenca, en el Banco de Sangre del Hospital Vicente Corral Moscoso se concluye que la prevalencia del antígeno Kell se presenta en menor porcentaje en comparación con otros estudios realizados en Ecuador así como a nivel Internacional ya que los resultados de antígeno Kell positivo corresponde a solo el 0,8% en relación a los 6154 muestras utilizadas para esta investigación.

Los donantes de Sangre del Hospital Vicente Corral Moscoso de acuerdo a los datos obtenidos corresponden mayormente a edades comprendidas entre 18 y 29 años seguido por los pacientes entre 30 y 41 años y en menor proporción las edades siguientes, los donantes que se presentaron en mayor cantidad fueron los de sexo masculino y de acuerdo a la procedencia la mayoría de los donantes son de la propia ciudad por lo que la Sierra presenta la mayor cantidad seguido por la Costa y en menor frecuencia por el Oriente, estos resultados pueden deberse a la cantidad de población que conforman las ciudades de la Costa en comparación con las del Oriente.

En relación a la edad la mayor cantidad de donantes son jóvenes, esto puede deberse a que existen muchos mitos sobre las donaciones de sangre los cuales los jóvenes por encontrarse en las Universidades o Colegios conocen toda la información verdadera y no tienen miedo a donar.
El porcentaje superior de donantes masculinos que de femeninos puede deberse a que el sexo femenino requiere aprobar más parámetros al momento de la donación como la menstruación y el parto.

Los donantes compensatorios presentan la mayor prevalencia de antígeno Kell positivo en relación a los voluntarios debido a que la mayor cantidad de donantes son compensatorios, esto quiere decir que realizan sus donaciones para solventar la sangre necesaria para un enfermo en particular ya que la gente no tiene la costumbre de donar voluntariamente sino solo en campañas de donación.

Las donaciones repetitivas son inferiores a las realizadas por primera vez por lo que la prevalencia de Antígeno Kell positivo las presentan los donadores por primera vez.

En relación al Grupo Sanguíneo y factor Rh la mayor prevalencia de Antígeno Kell positivo la presentan los donantes con el Grupo Sanguíneo O y en relación al factor Rh positivo.

Al realizar la detección del antígeno Kell en las sangres donadas se puede disminuir las aloinmunizaciones que agrega costos al sistema de Salud, por lo que los beneficios de las detecciones no solo del antígeno Kell sino de todos los fenotipos y genotipos son mayores a los costos invertidos en su detección.

Por todo lo anterior es importante que la detección del Antígeno Kell se realice en todos los donantes de sangre ya que de esta manera se puede garantizar la salud del paciente y evitar las reacciones postransfusionales.
7.2 Recomendaciones

- El Sistema Nacional de Salud del país, debe implementar como obligación en todos los Bancos de Sangre realizar el rastreo de anticuerpos irregulares, especialmente en búsqueda del antígeno Kell, ya que este ocupa el tercer puesto de importancia clínica en cuanto a las reacciones postransfusionales.

- Se debería además de la detección del Antígeno Kell realizar la genotipificación del Sistema Kell, para poder obtener en nuestro país datos epidemiológicos de la prevalencia no solo del fenotipo sino del genotipo más común presente en los donantes.

- Los establecimientos de salud que cuenten con hemocentros, Banco de Sangre y servicios de medicina transfusional, podrían realizar un control de la presencia de anticuerpos irregulares de los pacientes antes de ser transfundidos, para verificar si existe aloinmunización, creando registros que nos ayuden a identificar a estas personas evitando así el aumento de reacciones postransfusionales que podrían llevar a la muerte del paciente.
CAPÍTULO VIII

8. REFERENCIAS BIBLIOGRÁFICAS

CAPÍTULO IX

9. ANEXOS
Anexo N°1. PERMISOS

UNIVERSIDAD DE CUENCA
FACULTAD DE CIENCIAS MÉDICAS
ESCUELA DE TECNOLOGÍA MÉDICA
CARRERA DE LABORATORIO CLÍNICO

Cuenca, 10 de mayo del 2018

Doctora
Sandra Peña
DIRECTORA DEL BANCO DE SANGRE DEL HVCM

Cuidad
De nuestra consideración.-

Mediante la presente le hacemos llegar un cordial y afectuoso saludo, a su vez deseándole el mejor de los éxitos en sus delicadas funciones diarias.

Por medio de la presente nos dirigimos ante usted: Pamela Maribel Lascano Oñate y Erika Thalia Zhagui Bermeo, para comunicarle que ya existe la aprobación Institucional para realizar el proyecto de Investigación denominado “PREVALENCIA DEL ANTÍGENO KELL EN DONANTES DEL BANCO DE SANGRE DEL HOSPITAL VICENTE CORRAL MOSCOSO, ENERO – DICIEMBRE 2017” tema escogido por nosotras las Internas de la Carrera de Laboratorio Clínico de la Universidad de Cuenca, para lo cual solicitamos autorización de acceso al sistema Interno del Banco de sangre del “Hospital Vicente Corral Moscoso”, con el fin de recolectar datos para el presente estudio que servirá como requisito previo a la obtención del título de Licenciado en Laboratorio Clínico.

Esperando una favorable acogida a mi pedido, de antemano anticipó mis más sinceros agradecimientos.

Antentamente:

PAMELA LASCANO

THALIA ZHAGUI

Pamela Maribel Lascano Oñate
Erika Thalia Zhagui Bermeo
Anexo N° 2. Ficha de recolección de datos
DONANTES DE SANGRE DEL BANCO DE SANGRE DEL HOSPITAL VICENTE CORRAL MOSCOSO EN EL AÑO 2017.

<table>
<thead>
<tr>
<th>N°</th>
<th>Código interno</th>
<th>Edad en años</th>
<th>Sexo</th>
<th>Procedencia</th>
<th>Tipo de donante</th>
<th>Cantidad de donaciones</th>
<th>Grupo Sanguíneo</th>
<th>Factor Rh</th>
<th>Antígeno Kell</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OPERACIONALIZACIÓN DE VARIABLES

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>CONCEPTO</th>
<th>DIMENSIÓN</th>
<th>INDICADOR</th>
<th>ESCALA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>Tiempo de vida desde su nacimiento</td>
<td>Cuantitativa</td>
<td>Razón de proporción</td>
<td>18-29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30-41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42-53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54-65</td>
</tr>
<tr>
<td>Sexo</td>
<td>Diferencia física y constitutiva del ser humano</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>(1) Masculino</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) Femenino</td>
</tr>
<tr>
<td>Procedencia</td>
<td>Lugar de nacimiento de una persona</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>(1) Costa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) Sierra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3) Oriente</td>
</tr>
<tr>
<td>Tipo de donante de sangre</td>
<td>Persona que acepta la extracción sanguínea</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>(1) Voluntario</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) Compensatorio</td>
</tr>
<tr>
<td>Número de donaciones</td>
<td>Número de veces que ha donado una persona</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>(1) Primera vez</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) Repetitiva</td>
</tr>
<tr>
<td>Grupo sanguíneo</td>
<td>Sistema de clasificación de la sangre humana</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>(1) A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3) AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4) O</td>
</tr>
<tr>
<td>Factor Rh</td>
<td>Proteína de la membrana de los glóbulos rojos</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>(1) Positivo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) Negativo</td>
</tr>
<tr>
<td>Antígeno Kell</td>
<td>Antígeno que puede estar o no presente en el eritrocito</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>(1) Positivo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) Negativo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3) Sin reactivo</td>
</tr>
</tbody>
</table>
Anexo N°3. GRÁFICOS

Muestra la prevalencia del Antígeno Kell positivo del 0,8%, seguido por el 46,7% con Antígeno Kell negativo y en un 52,5% que no se realizó el rastreo del Antígeno Kell.

El grupo etario, el Antígeno Kell positivo se encuentra entre las edades de 18 a 29 años y en menor frecuencia de 54 – 65 años.
Se observa que existe una prevalencia del Antígeno Kell positivo en el sexo masculino (0,6%) que en el sexo femenino (0,2%).

El grafico muestra que mayor cantidad de casos de Antígeno Kell positivo en la Sierra (0,7%), seguido por la Costa (0,09%) y el Oriente (0,01%).
Se muestra la existencia de dominio de donantes compensatorios 0,78%, en comparación con los donantes voluntarios (0,02%).

Se observa que los casos positivos de Antígeno Kell positivos son de mayor frecuencia en donantes de sangre por primera vez (0,7%) y en menor cantidad de donantes repetitivos (0,1%).
Se observa la presencia del Antígeno Kell Positivo Grupo Sanguíneo O con el 0,56%, el Grupo A 0,2%, Grupo Sanguíneo B 0,04%, mientras que del Grupo Sanguíneo AB no se encontró ningún caso.

La frecuencia con la que el Antígeno Kell se manifiesta en el Factor Rh Positivo es del 0,75%, y el Factor Rh Negativo se observan 0,05%.
GRAFICO N°9. INFORMACIÓN DEL SISTEMA INFORMATICO DEL BANCO DE SANGRE DEL HOSPITAL VICENTE CORRAL MOSCOSO

GRAFICO N°10. FICHA DE RECOLECCIÓN DE DATOS
GRAFICO Nº11 RECOLECCIÓN DE DATOS

GRAFICO Nº12 RECOLECCIÓN DE DATOS

GRAFICO Nº13 ANÁLISIS DE DATOS