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Abstract Hydroclimatic drought conditions can affect the hydrological services offered by
mountain river basins causing severe impacts on the population, becoming a challenge for
water resource managers in Andean river basins. This study proposes an integrated method-
ological framework for assessing the risk of failure in water supply, incorporating probabilistic
drought forecasts, which assists in making decisions regarding the satisfaction of consumptive,
non-consumptive and environmental requirements under water scarcity conditions. Monte
Carlo simulation was used to assess the risk of failure in multiple stochastic scenarios, which
incorporate probabilistic forecasts of drought events based on a Markov chains (MC) model
using a recently developed drought index (DI). This methodology was tested in the
Machángara river basin located in the south of Ecuador. Results were grouped in integrated
satisfaction indexes of the system (DSIG). They demonstrated that the incorporation of
probabilistic drought forecasts could better target the projections of simulation sce-
narios, with a view of obtaining realistic situations instead of optimistic projections
that would lead to riskier decisions. Moreover, they contribute to more effective
results in order to propose multiple alternatives for prevention and/or mitigation under
drought conditions.
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1 Introduction

In Andean river basins, drought events are affecting water availability for the multiple uses of
lowland residents, causing harmful social, economic and ecological impacts. The development
of methodologies for the characterization and forecasting of drought events provides a good
support for water managers with a view to make appropriate decisions for a reliable water
supply and adverse to the risk of failure (Avilés et al. 2016).

In order to improve the ability to characterize and predict drought events, water managers
use information expressed in index form (Svoboda et al. 2004; Shukla and Wood 2008).
Different hydrological and climatic conditions in a river basin discourage the use of some
indexes, given the specific information and calculation process to develop these indicators
(Mishra and Singh 2010; Barua et al. 2012). In fact, the characterization of droughts
requires indicators that are generally applicable, but also indicators specific for a
region in order to capture the type of droughts with the available information
(Staudinger et al. 2014). Moreover, these indicators must reflect the succession of
several events of water scarcity during different time periods (Kao and Govindaraju
2010). Consequently, this study uses the drought index (DI) developed by Avilés et al.
(2015), which presents the advantage of grouping available information on variables
related to water including different time scales in a single index that identifies the
frequency and severity of several drought events.

On the other hand, reliable and timely drought events forecasts play an important role in
decision-making in order to reduce the impacts of this phenomenon on water resource systems
(Madadgar and Moradkhani 2013, 2014). A large number of models provide a prediction of
drought states without considering the uncertainty associated with forecasting (Hwang and
Carbone 2009). This aspect can be handled with probabilistic forecasts, which offer a
prediction associated with its uncertainty quantitatively (Hwang and Carbone 2009; Avilés
et al. 2016). Several authors have developed probabilistic drought forecast models, but few of
them are able to predict probabilistically future droughts given the information of previous
events (for instance, using the conditional probability). Such is the case of the large majority of
common models based on MC (Ochola and Kerkides 2003; Paulo and Pereira 2007;
Cancelliere et al. 2007; Nalbantis and Tsakiris 2009; Avilés et al. 2015, 2016; Khadr 2016;
Mahmoudzadeh et al. 2016) and the most sophisticated models based on Bayesian networks
(BN) (Madadgar and Moradkhani 2013, 2014; Avilés et al. 2016; Chen et al. 2016; Phan et al.
2016). These two approaches were compared recently by Avilés et al. (2016) through the
ranked probability skill score (Wilks 2011), who concluded that models based on MC proved
to be equally efficient to predict probabilistically drought events as models based on BN.
Nevertheless these authors highlight the best performance of the first order MC model
(MCFO) with a view to predict wet and dry periods. For this reason, this study uses
the MCFO model in order to predict probabilistically drought events, which have the
advantage of being one of the most used models in stochastic processes of discrete
time series, highlighting its simple calculation approach and lower computational
costs.

The characterization and forecasting of drought events could improve the management and
operation of water resource systems. However, obtaining indicators that quantify the risk of
failure and the satisfaction of a set of demands could represent a reliable option to improve the
information for decision-making, which aims to minimize or mitigate the effects of drought on
water resources systems in regulated river basins (Haro et al. 2014). For this purpose Monte
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Carlo simulation is perhaps the most widely employed method to evaluate the risk of failure
and to quantify the deficit in water supply. This approach has been exposed in several studies
(Sánchez et al. 2001; Cancelliere et al. 2009; Rossi et al. 2012; Andreu et al. 2013; Avilés and
Solera 2013; Rossi and Cancelliere 2013; Haro et al. 2014; Haro-Monteagudo et al. 2017;
Vogel 2017), which consists of the generation of multiple probable scenarios by using
synthetic generation models. In this study we chose the first-order multivariate periodic
autoregressive models (MPAR1) to generate multiple hydrological synthetic series. These
models offer the advantage of representing adequately the temporal (autocorrelation)
and spatial correlation (cross-correlation) of time series, and they can also be charac-
terized by different dependency structures for each season of the year (Sveinsson et al. 2007;
Cancelliere et al. 2009).

Some water managers generally prefer not to deviate from their usual practices (Gong et al.
2010). This may result in decisions towards the average conditions and a distancing from
extreme conditions, with the consequent decrease in effectiveness of decision-making. In this
sense, managers sometimes prefer to incorporate forecasts of hydrometeorological variables
within their management tools. The purpose of this approach is to understand the sensitivity of
the water resource system with respect to the satisfaction of demands and to improve the
evaluation of the possible risks of shortages, achieving more certainty in their decisions
(Brown et al. 2010; Gong et al. 2010). The forecasts combined with multiple simulation tools
could condition and limit future scenarios, facilitating water availability prediction and the
simulation of water supply to different demands (Brown et al. 2010). Therefore, the
purpose of this study is to develop an integrated methodological framework for
assessing the risk of failure in water supply through the incorporation of probabilistic
drought predictions. This approach could help to address possible scenarios and to
analyze more realistic situations of risk of failure in water resource allocation for the
different uses. Moreover, this methodology may provide support to water managers
and reduces uncertainty in decision-making to enhancing measures to prevent or
mitigate the impacts of water scarcity.

2 Methods

Following the methodology based on Montecarlo simulation, the assessment of the risk of
failure was developed by analyzing multiple situations of water resources management. For
the application of this methodology AQUATOOL Decision Support System (DSS) (Andreu
et al. 1996) was employed and, more specifically the module for the simulation of water
resources systems management (SIMGES) (Andreu et al. 2007) and the module for risk
management evaluation (SIMRISK) (Sánchez et al. 2001). The simulation process in SIMGES
consists of a conservative flow network that is optimized monthly by linear programming with
the Out-of-Kilter algorithm (Bazaraa et al. 2011), to maximize a target function (satisfaction of
demands and storage of reservoirs) subject to restrictions of mass conservation and physical
limits of flow transport in channels and reservoir capacities. This simulation process for several
scenarios is done by running SIMRISK model. It is based on the Monte Carlo simulation and
assesses the risk of failure in water supply. The outputs of this model are probabilistic
information that allows analyzing the number of failures in the system and their severity.
Through this information, decision makers are able to formulate prevention and/or mitigation
measures to address risk and maximize system performance (Cancelliere et al. 2009;
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Haro et al. 2014). This methodology is presented in the Fig. 1 by the non-shadowed
forms and it consists of the following steps:

i) Using a stochastic model of monthly river flow time series, a synthetic hydrological
generation is completed conditioned to the previous observations, which generates mul-
tiple scenarios of possible future river flows;

ii) With the multiple generated scenarios, the current features of the water exploitation
system and the management rules of the system, multiple simulations of future manage-
ment are performed;

iii) The results of the multiple simulation are analyzed statistically in order to obtain the
probabilities of failure of the demands;

iv) The information provided in the previous step determines the state of the system and
supports the decision-making process about the admissibility or not of the risk;

v) When the risk is not accepted, then new alternatives of management are formulated,
which feedback the multiple simulation model (step 2). The following steps are repeated
until making a new decision about whether the risk is acceptable or not. This process is
replicated repeatedly until the risk associated with the decision is appropriate.

This study proposes an integrated methodological framework that is shown in Fig. 1 by the
non-shadowed and shadowed forms, the latter are described below:

i) The generation of probabilistic drought forecasts is performed by the development of a
drought index (DI) and the previous drought states using a drought forecast model.

Fig. 1 Integrated methodological framework for assessing the risk of failure in water resource systems
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ii) The probabilistic drought predictions are introduced in the synthetic generation of
hydrological time series.

iii) The previous drought states are also introduced in the simulation of the future manage-
ment of multiple scenarios;

iv) The results of the multiple simulations provide several indicators of risk of failure in
water supplies through a statistical analysis. These indicators are grouped to build
integrated demand satisfaction indexes, which will serve to make decisions on the
management of the system;

v) When satisfaction index is not acceptable, management alternatives are re-formulated and
the simulation of future management with multiple scenarios is run again (step 3);

vi) This process is repeated until an acceptable satisfaction index is achieved.

Each step of the methodology is detailed below.

2.1 Drought Index

For the construction of the DI, a similar calculation exposed by Keyantash and Dracup (2004)
is used, where the available information of the r water-related variables are subjected to a
Principal Component Analysis (PCA). The PCA-derived eigenvectors establish the relation-
ship between the principal components (PCs) and the original data:

S ¼ D*E ð1Þ

where S is the matrix (w x r) of the PCs (where w is the number of observations), D is the
matrix (w x r) of the original standardized information, and E is the matrix (r x r) of
the eigenvectors. The DI is the first major component (PC1), normalized by its
standard deviation:

DIi;k ¼ Si;1;k
σk

ð2Þ

where DIi,k is the value of the DI for month k in year i, Si,1,k is the PC1 during year
i, for month k, and σk is the standard deviation of the sample of Si,1,k. Once the DI
values are calculated for each year and each month, they are rearranged in chrono-
logical order in a single time series.

The DI is a standardized index capable of capturing the anomalies of the average moisture
conditions in a river basin based on the available information of water related variables (Kao
and Govindaraju 2010; Madadgar and Moradkhani 2013). Any phenomenon that can be
continually quantified, such as the drought index, can be treated as a discrete variable by
categorizing the time series considering the thresholds for each drought state (Avilés et al.
2016). Therefore, the DI, as a standardized variable, is divided into categories to characterize
the drought states, using the same thresholds as the World Meteorological Organization (2012).
Regarding this latter reference, the categories considered are the following: DI > 0 = category 0
(not drought); −1 < DI ≤ 0 = category 1 (mild drought); DI ≤ −1 = Category 2 (moderate, severe
and extreme drought). The three states of category 2 are taken as a single state called drought.
This monthly time series of categorical values is the input of the MC model.
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2.2 Markov Chain Model

The behavior of MC models is governed by a set of transition matrices that indicate the
probabilities of occurrence of the states of a system for a future time interval given the current
status information and/or past interval states, depending on the order of the model. The
Markovian property of the mth order MC model is:

P YtnjYtn−1;Ytn−2;Ytn−3;…;Y1

� � ¼ P YtnjYtn−1;Ytn−2;…;Ytn−m
� � ð3Þ

Considering a MCFO model, that is, m = 1, the transition probabilities provide the proba-
bilistic state forecast one step forward based on the current state, applying the following
formula:

pij ¼ P Ytn ¼ jjYtn−1 ¼ ið Þ ð4Þ

where pij represents the transition probability that Ytn is equal to category j given that Ytn − 1

equals category i. The estimated transition probability p̂ij can be calculated by taking into

account the conditional relative frequencies of the transitions (fij):

p̂̂ij ¼
f ij

∑ j f ij
i; j ¼ 1;…; s ð5Þ

where fij is the frequency that Y is equal to category i at time tn − 1 and equal to category j at
time tn. The value of s is the number of states of the system. The numerator presents the
number of transitions from category i to category j and the denominator represents the sum of
the number of transitions from category i to any other category.

2.3 Incorporation of Probabilistic Drought Forecasts in the Generation
of Hydrological Synthetic Series

The MPAR1 model is used to generate multiple hydrological synthetic series. These models
can be expressed as:

ℤυ;τ ¼ ϕ1;τ ℤυ;τ−1 þ ευ;τ ð6Þ

where, ℤυ,τ is a column vector [q × 1] of the q inflows (normalized and standardized) to the
reservoirs in the water exploitation system with zero mean and unit variance for year ν and
month τ. ϕ1, τ, are the matrices [q x q] of periodic autoregressive parameters of order 1 for
each month, and ευ,τ is the column vector [q × 1] of the normally distributed independent noise
terms with mean zero and matrices [q x q] of variance-covariance Gτ.

The MPAR1 model is adjusted (parameter estimation) through the method of moments. In
order to ensure the collection of a normally distributed independent noise, a large number of
random numbers must be generated, so that the statistics of the probability distribution are
fulfilled. Therefore, ten thousand random numbers for υ, τ are generated by a truncated
multivariate normal distribution with mean zero and variance-covariance matrices Gτ in three
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intervals: 1) From the maximum value of Zυ, τ of each monthly time series to the value of
Zυ, τ = 0; 2) From the value of Zυ, τ = 0 to the value of Zυ, τ = − 1; and 3) From the value
of Zυ, τ = − 1 to the minimum value of Zυ, τ of each monthly series. These intervals are
analogous to the non-drought, mild drought and drought states, respectively, on the DI scale.
Each interval corresponds a fraction of the 10,000 random numbers, which is equal to the
probabilistic predictions of each drought state (in other words, the probabilistic forecast of the
states: non-drought, mild drought and drought become a percentages of the 10,000 random
numbers for the first, second and third interval, respectively).

For the previous values (τ−1) we assume the following: 1) Value of ℤυ, τ − 1 = 0, equal to
the average value of each monthly time series; 2) Value of ℤυ, τ − 1 = − 1; and 3) Minimum
value of ℤυ, τ − 1 of each monthly time series (analogous to the lower limits of each drought
states on the DI scale). Using Eq. 6 a prediction of the distribution function of the possible
values of ℤτ conditioned to the previous values ℤτ − 1 is obtained. This procedure is carried out
twelve times ahead to obtain 10,000 synthetic series of 12 months each. This considerable
amount of generated series is able to capture all, or a large part, of the variability of water
inflows to reservoirs, addressing a large part of the uncertainty of these variables. The multiple
time series are the input information for the simulation model.

2.4 Multiple Simulation Model for Failure Risk Assessment

The simulation period is 12 months with the purpose of operating and managing the system
within a year. The simulation scenarios for the risk of failure assessment model are built
considering the simulation starting month, initial storage volume of the reservoirs, previous
drought states and the previous hydrological conditions. The latter two conditions are also used
in the generation of synthetic series.

During each month of the simulation period for each scenario, demands may receive a
supply higher or equal to the value required (satisfaction status), or a lower value (dissatis-
faction status). In the latter case, there will have a supply failure with a deficit (D) equal to the
demand value minus the quantity of water supplied. The severity level of the deficit D will
depend on the amount of water supplied with respect to the quantity required; therefore the
supply is divided into different levels representing the fraction of the quantity of water required
by a demand. Level 1 (n1) is the most serious situation, it means that the deficit exceeds 75%
of the demand, this is, the supply is between 0 and 25% of the value required; level 2 (n2)
means that the supply represents between 25 and 50% of the value of the demand; level 3 (n3)
means that supply is between 50 and 75%; and level 4 (n4) is the less serious state, which
means that the supply is between 75 and 100%.

The tolerance to the risk of failure of several demands can become a subjective task.
However, as a support for objectivity, this information can be represented in a single demand
satisfaction index (DSI). The DSI is the result of the number of failures in the supply of the
demands through a reliability index (RI) and the severity of these failures through a severity
index (SI). Following in a similar way as Hashimoto et al. (1982) and Sandoval-Solis et al.
(2011) propose, these indices for a particular demand and for each month in the simulation
period can be calculated as follows:

RI ¼ total number of simulations−number of failuresð Þ
total number of simulations

ð7Þ
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SI ¼ ∑n
j¼1 Dj

� �
total number of simulations*demand value

ð8Þ

DSI ¼ RI* 1−SIð Þ ð9Þ

where n is equal to the number of supply levels and Dj is the deficit at each level
of supply. If there are several demands the DSI can be calculated as a satisfaction
index of a group of demands DSIG by a weighted sum of the particular DSI as
follows:

DSIG ¼ ∑
k

i¼1

Demand i

∑k
i¼1Demand i

*DSIi

 !
*100 ð10Þ

where i is the counter of the individual demands and k is the total number of demands in the
water resource system.

The DSIG could be used to make decisions every month of the year in an operational
context. The value of this index can vary from 0% to 100%, the higher the value of the DSIG
index, the greater the satisfaction of the system.

3 Case Study

The approach proposed in this study was applied to the Machángara river basin
(325 km2) located in the southern Ecuadorian Andes at an altitude of 2440–
4398 m.a.s.l (Fig. 2). This river basin is particular important because it has one of
the few multipurpose water resource systems in southern Ecuador for the benefit of
the local and regional economy and ecology. In the upper part, Chanlud (16 hm3) and
El Labrado (6 hm3) reservoirs are located, which supply water for different uses. The
first one is located in the Machángara Alto river sub-basin and the last one is located
in the Chulco river sub-basin. The competition for the different water uses is caused
by an increasing pressure on water resources due to population growth at an average
annual rate of 2% and an increase in irrigated areas. On the other hand, the future
climate analysis in the river basin shows an intensification of rainfall seasonality
(wetter rainy periods followed by extreme dry seasons) for 2020–2050. These results,
point to less water resources availability during several seasons in the future.

For the development of the DI, we use monthly time series data (1971–2010) of
average precipitation and reservoir inflows. This information derives from the National
Institute of Meteorology and Hydrology of Ecuador (INAMHI) and the Machángara
River Basin Council (CBRM). This methodology includes five time windows (1, 3, 6,
9 and 12 months) for each variable in order to capture the short and medium term of
drought events. In other words, five precipitation time series (PR1, PR3, PR6, PR9
and PR12) are generated for the two sub-basins and five more for the reservoir
inflows (VS1 VS3, VS6, VS9 and VS12). For the purpose of considering the monthly
seasonality, each time series is divided according to each month of the hydrologic
year; in addition, all the information was standardized.
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The information required for the quantification of water demands is provided by the
CBRM. Data reproduce the three most important water uses in the river basin, taking as a
priority use the human consumption in the city of Cuenca (240,000 inhabitants); in the second
place, the water for irrigation (1300 Ha) and finally the hydropower generation (40 MW). An
ecological flow equivalent to 10% of monthly average streamflows is also considered. A
scheme of the water resources system of the Machángara river basin is shown in Fig. 2.

4 Results and Discussion

4.1 DI Calculation

Eigenvalues and eigenvectors are obtained by using PCA for each month and for each sub-
basin (Machángara Alto and Chulco rivers), and the correlation matrices of the ten time series
(PR1, PR3, PR6, PR9, PR12, VS1, VS3, VS6, VS9 and VS12) for each sub-basin. From
Eqs. 1 and 2 we obtain the twelve sets of DI values, which are rearranged chronologically in
order to obtain a single time series for each sub-basin (1971–2010). Figure 3 shows the DI
values for each sub-basin and the drought severity thresholds, where the frequency and duration
of each drought event (non-drought, mild drought and drought) can be observed.

4.2 Probabilistic Drought Forecasts Using the MCFO Model

Taking into account the seasonality and using Eq. 5, twelve transition probability matrices are
built for each sub-basin. These matrices allow us to obtain the probabilistic forecast of the

Fig. 2 Location and scheme of the water resources system of Machángara River Basin
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following month j given the status category of the current month i (Eq. 4). Table 1
shows the probabilistic drought forecasts in the sub-basins of the Machángara Alto
and Chulco rivers.

Fig. 3 Time series of the DI (1971–2010) in the sub-basins of the rivers: (a) Machángara Alto and (b) Chulco

Table 1 Probabilistic forecasts of drought for: (a) Machángara Alto river sub-basin and (b) Chulco river sub-basin

Category current
month i

Category next
month j

Probabilistic forecasts for the next month j

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

(a)
0 0 0.75 0.80 0.94 0.95 0.86 0.80 1.00 0.86 0.84 0.82 0.78 0.89

1 0.25 0.15 0.06 0.05 0.14 0.20 0.00 0.14 0.16 0.18 0.22 0.11
2 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0 0.45 0.18 0.21 0.18 0.20 0.13 0.19 0.08 0.08 0.24 0.22 0.24
1 0.45 0.55 0.58 0.73 0.80 0.74 0.75 0.84 0.92 0.76 0.67 0.47
2 0.10 0.27 0.21 0.09 0.00 0.13 0.06 0.08 0.00 0.00 0.11 0.29

2 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.11 0.56 0.25 0.11 0.44 0.20 0.00 0.00 0.25 0.33 0.25 0.20
2 0.89 0.44 0.75 0.89 0.56 0.80 1.00 1.00 0.75 0.67 0.75 0.80

(b)
0 0 0.75 0.79 0.95 0.89 0.85 0.79 0.94 0.89 0.72 0.86 0.78 0.78

1 0.25 0.21 0.05 0.11 0.15 0.21 0.06 0.11 0.28 0.14 0.22 0.22
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0 0.29 0.31 0.08 0.21 0.08 0.06 0.17 0.13 0.07 0.27 0.18 0.33
1 0.50 0.38 0.84 0.65 0.84 0.76 0.72 0.68 0.86 0.59 0.53 0.54
2 0.21 0.31 0.08 0.14 0.08 0.18 0.11 0.19 0.07 0.14 0.29 0.13

2 0 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.20 0.14
1 0.17 0.38 0.33 0.14 0.50 0.25 0.33 0.33 0.57 0.50 0.40 0.29
2 0.83 0.62 0.67 0.86 0.38 0.75 0.67 0.67 0.43 0.50 0.40 0.57
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4.3 Generation of Hydrological Synthetic Series with the Incorporation
of Probabilistic Drought Forecasts

The MPAR1 model (Eq. 6) is able to preserve some statistics of the historical time series of
normalized and standardized reservoir inflows. Table 2 presents the monthly thresholds of the
intervals for the generation of random numbers ( ) and the previous values ℤτ − 1 for the
generation of synthetic series.

For instance, for the generation of ten thousand random numbers for the month of August (the
least rainy month), with a category 2 drought state (drought); during the month of July, and with
the information of the Tables 1b and 2, we would have in the El Labrado reservoir: 0 random
numbers (equal to 0% of 10,000, since the percentage is equal to the probabilistic forecasts of non-
drought state in August) in the interval [0, 3.23], 3300 random numbers (equal to 33% of 10,000,
as the percentage is equal the probabilistic predictions of mild drought state in August) in the
interval [−1, 0] and 6700 random numbers (equal to 67% of 10,000, considering the probabilistic
forecasts of drought state in August) in the interval [−1.66, −1]; adding 10,000 random numbers.
A similar analysis can be performed for the Chanlud reservoir. Therefore, through the two sets of
random numbers, the parameters of MPAR1 model for August, the previous hydrological
conditions of July for both reservoirs (assuming a similarity with the drought states of the two
sub-basins, the previous values of July would be ℤτ − 1= −1.68 for the reservoir of Chanlud and
ℤτ − 1= −1.65 for the reservoir of El Labrado, see Table 2) and by using Eq. 6; 10,000 hydrological
synthetic series are generated with a twelve-month length (simulation period).

4.4 Failure Risk Assessment

The simulation process is performed with 1728 scenarios built on the modification of 12
options for the simulation starting month (January to December), 16 combinations of initial
storage volumes of the reservoirs (Chanlud with 4, 8, 12 and 16 hm3 and El Labrado with 1.5,
3, 4.5 and 6 hm3) and 9 combinations of monthly previous hydrological conditions for each
reservoir (Table 2). These scenarios are the inputs for the failure risk assessment model. Taking
the most unfavorable scenario as an example: August as the simulation starting month,
minimum values of the previous hydrological conditions for the reservoir inflows in the month
of July, category 2 (drought) in the month of July as previous drought status for both sub-
basins and the initial storage volumes for Chanlud equal to 4 hm3 and 1.5 hm3 for El Labrado.

Table 2 Thresholds of the historical series of normalized and standardized streamflows in Chanlud and El
Labrado reservoirs

Threshold Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Chanlud reservoir
Max 2.28 1.72 1.68 1.88 2.25 2.15 2.79 3.24 2.23 2.35 1.97 1.69
Mean 0 0 0 0 0 0 0 0 0 0 0 0
Level − 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
Min −1.60 −1.71 −2.40 −3.01 −2.55 −1.77 −1.68 −1.69 −1.76 −1.68 −1.68 −1.94

El Labrado reservoir
Max 2.34 1.71 1.71 1.91 2.22 2.14 2.84 3.23 2.33 2.28 1.97 1.61
Mean 0 0 0 0 0 0 0 0 0 0 0 0
Level − 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
Min −1.47 −1.78 −2.45 −3.00 −2.37 −1.60 −1.65 −1.66 −1.84 −1.66 −1.74 −2.09
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The results obtained are presented in the Fig. 4a, which shows the probabilities of failure of
water demands at the four levels of supply (n1, n2, n3 and n4) and for each month of the
simulation period. It can be observed that there is a significant probability of failure for the
irrigation demands in the month of September (probability of n1 equal to 60% and total
probability equal to 80% approximately). Likewise, in this month urban demand has a
moderate probability of failure (total probability equals approximately 34%). In October, the
probability of irrigation demands falls slightly (total probability equal to approximately 60%),
and there is zero probability of failure for the urban demand. In November and December
irrigation demands have a low probability of failure (total probability less than 10%) and there
is still zero probability of failure for urban demand. This information could be considered as
sufficient evidence for the identification of severe prevention and/or mitigation measures to
reduce the risk of failure of supplies in the months of September and October and other less
severe measures for the months of November and December. The tolerance to the risk of
failure will depend on the subjectivity of decision-makers, however for get a more objective
decision-making DSIG was used in order to concentrate the results of all demands. Using the
Eqs. 7, 8, 9 and 10, the DSIG is calculated for each scenario and for each month of the
simulation period.

Figure 4b shows the DSIG of the scenario described above with different initial storage
volumes. For initial storage volumes equal to 4 hm3 for Chanlud and 1.5 hm3 for El Labrado,
we can see that the DSIG is equal to 30% in the month of September and 60% in the month of
October and in the rest of the months it is greater than 90%. Therefore, the information in this
figure shows, in a more integrative and comprehensible way, that for the months of September

Fig. 4 a Probability of failure of the water demands and DSIG of the water resource system of the Machángara
River Basin for the most unfavorable scenario. With different initial storage volumes applying the methodology:
(b) with the incorporation of drought forecasts and (c) without the incorporation of drought forecasts
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and October some preventive and/or mitigation measures will need to be formulated in
order to operate and manage the system in such a way that the risk of failure is
reduced. In order to show the advantages of the incorporation of drought forecasts,
the failure risk assessment was also performed without the incorporation of drought
predictions (Fig. 4c), where it can be seen that the DSIG values were substantially
increased. Therefore, the incorporation of probabilistic drought forecasts could better
target the projections of simulation scenarios and contribute to more effective
decision-making results in drought conditions.

This improvement of the resulting information for the decision-making discussed
above coincides with some studies that are detailed below: Sankarasubramanian et al.
(2009) showed that there was an improvement in the seasonal and intra-seasonal
allocation of water when the predictions of the climatological probabilities in the
reservoir inflows were used. On the other hand, Pouget et al. (2015) showed im-
proved decision-making when seasonal climate forecasts were integrated into manage-
ment tools. Likewise, the results of Gong et al. (2010) also showed an improvement
in water management practices when forecasts of climate-based flows were incorpo-
rated into reservoir operation tools, reducing the number of drought emergency days.

5 Conclusions

This study proposes an integrated methodological framework for assessing the risk of
failure to the supply of demands in a water resource system by improving traditional
methodologies through the incorporation of probabilistic drought forecasts and by
providing information to support decision-making in the water management during
periods of scarcity. The simulation process was performed for 12 months through the
analysis of 1728 scenarios developed from the variation of the water supply and the
current water demand. Each scenario comprises 10,000 synthetic series of water
inflows to reservoirs (incorporing probabilistic drought forecasts), the main features
of the water resources system, the monthly previous hydrological conditions and the
simulation starting month. This approach was applied to the Machángara river basin,
achieving an ensemble of water resources system satisfaction indexes. These results
showed that the incorporation of drought probabilistic predictions in water manage-
ment simulation could better target the projections of possible scenarios, also allowing
the analysis of more realistic situations of risk of failure in water resource allocation
for the different demands. This approach could be applied with the purpose of
building a portfolio of prevention or mitigation options in order to reduce the risk
of failure during water scarcity conditions.
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