“Optimización de puntos críticos del proceso de obtención de harina de maca (Lepidium meyenii) en función de la calidad microbiológica del producto final”

Tesis previa a la obtención del Título de Bioquímica Farmacéutica

AUTORAS:

Gabriela Natalí Otavalo Quito
C.I: 010536668-6

Mayra Alexandra Mogrovejo Loza
C.I: 010540439-6

DIRECTORA:

Dra. Silvia Johana Ortiz Ulloa, PhD
C.I: 030108289-7

Cuenca-Ecuador

2018
RESUMEN

En el presente trabajo de titulación se optimizaron dos puntos críticos del proceso de obtención de harina de maca (Lepidium meyenii) para consumo humano en base a la calidad microbiológica del producto final. La harina de maca evaluada fue provista por la empresa “caso estudio” ubicada en el sector de Baguanchi, Azuay en el periodo comprendido entre marzo a julio del 2018. Los puntos críticos estudiados fueron desinfección y deshidratado. Los cambios propuestos para el mejoramiento del proceso de la obtención de la harina de maca se evaluaron mediante un diseño experimental factorial 2². Se analizaron cuatro paquetes experimentales combinando las etapas tradicionales: desinfección (vinagre 5 ppm durante 10 minutos) y deshidratado (≈200 º C durante 40 minutos) con las propuestas: desinfección (ácido peracético 70 ppm durante 2 minutos) y deshidratado (70 º C durante 12 horas). Los experimentos se realizaron por triplicado. Las variables respuesta experimentales fueron los recuentos microbiológicos de mohos, Escherichia coli y Salmonella spp. que corresponden a lo contemplado en la Norma Técnica Sanitaria N° 071-MINSA/DIGESA/V.01 para harinas en general. Luego de pruebas preliminares, se constató la ausencia de E. coli por lo que se consideró como variable respuesta al recuento de coliformes. Para los cultivos de mohos y coliformes se emplearon placas Compact Dry® y el Kit Reveal® 2.0 se utilizó para la identificación de Salmonella spp. Al aplicar los métodos alternativos de desinfección (ácido peracético 70 ppm durante 2 minutos) y deshidratado (70 º C durante 12 horas) se obtuvieron recuentos microbiológicos con niveles indetectables (<10 UFC/ml) para mohos y coliformes, así como ausencia de Salmonella spp. Con esto se puede evidenciar que la optimización de los puntos críticos seleccionados permite mejorar el proceso de obtención de harina de maca en función de la calidad microbiológica del producto final.

PALABRAS CLAVE: OPTIMIZACIÓN, HARINA DE MACA, CONTROL MICROBIOLÓGICO, DESINFECCIÓN, DESHIDRATADO.
ABSTRACT

This present academic work emphasises two critical steps in the process of obtaining maca root powder (*Lepidium meyenii*) for human consumption based on the microbiologic quality of the final product. The maca root powder was provided by the company “study case” located in the Baguanchi area, in Azuay, between March and July 2018. The two critical steps deeply analyzed were sterilization and dehydration. The changes recommended in order to improve the process of obtaining maca root powder were evaluated by means of factorial experimental design 2^2. Four experimental packages were analyzed by combining the two traditional stages, sterilization (vinegar 5 ppm during 10 minutes) and dehydration ($\approx 200^\circ C$ during 40 minutes) with the recommended: sterilization (peroxyacetic acid 70 ppm during 2 minutes) and dehydration ($70^\circ C$ during 12 hours). The experiments were tripled. The experiment response variables were the microbiologic recount of mold, *Escherichia coli* y *Salmonella spp.* which suits the Sanitary Technical Regulation N° 071-MINSA/DIGESA/V.01 for powders in general. After preliminary tests, the absence of *E. coli* was proved, thus the recount of coliforms as a response variable was considered. Compact Dry® for mold and coliforms sheets were used for the cultivating process. The Kit Reveal® 2.0 was used for the identification of *Salmonella spp.* After applying the alternative sterilization (peroxyacetic acid 70 ppm during 2 minutes) and dehydration ($70^\circ C$ during 12 hours) methods, microbiologic recounts with undetectable levels (<10 UFC/ml) for mold and coliforms were obtained, as well as absence of *Salmonella spp.* With this it can be evidenced that the optimization of the selected critical steps allows to improve the process of obtaining maca root powder considering the microbiologic quality of the final product.

KEY WORDS: OPTIMIZATION, MACA ROOT POWDER, MICROBIOLOGIC CONTROL, STERILIZATION, DEHYDRATION.
ÍNDICE DE CONTENIDOS

RESUMEN .. 2
ABSTRACT .. 3
ÍNDICE DE CONTENIDOS .. 4

1. CONTENIDO TEÓRICO ... 17
 1.1 Maca (Lepidium meyenii) ... 17
 1.2 Composición y propiedades de la maca .. 17
 1.3 Factores implicados en la contaminación de hortalizas .. 18
 1.4 Harina de maca ... 18
 1.4.1 Normativa para control microbiológico de la harina de maca 19
 1.5 Etapas del procesamiento de la harina de maca .. 19
 1.5.1 Recepción y pesado ... 19
 1.5.2 Selección y clasificación .. 20
 1.5.3 Lavado .. 20
 1.5.4 Desinfección .. 20
 1.5.4.1 Métodos físicos de desinfección ... 21
 1.5.4.2 Métodos químicos de desinfección ... 21
 1.5.5 Enjuague ... 23
 1.5.6 Deshidratación ... 23
 1.5.6.1 Tipos de deshidratación para alimentos ... 24
 1.5.7 Molienda .. 27
 1.5.8 Tamizado ... 28
 1.5.9 Empacado ... 28
 1.6 Calidad microbiológica ... 29
 1.6.1 Control de la calidad microbiológica mediante la reducción del agua libre 29
 1.6.2 Microorganismos indicadores de calidad .. 29
 1.6.2.2 Coliformes totales ... 30
 1.6.2.3 Coliformes fecales ... 31
 1.6.2.4 Salmonella .. 31

2. METODOLOGÍA .. 33
 2.1 Tipo de diseño de investigación ... 33
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Área de estudio</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Muestreo</td>
<td>33</td>
</tr>
<tr>
<td>2.4</td>
<td>Equipos, insumos y reactivos</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>Métodos analíticos</td>
<td>35</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Pruebas preliminares para el procesamiento de las muestras de harina de maca</td>
<td>35</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Fase pre-experimental</td>
<td>35</td>
</tr>
<tr>
<td>2.5.2.1</td>
<td>Determinación de puntos críticos del proceso tradicional para obtención de harina de maca</td>
<td>35</td>
</tr>
<tr>
<td>2.5.2.2</td>
<td>Evaluación microbiológica de la materia prima (hipocótilos de maca) y del producto final obtenido mediante el proceso tradicional</td>
<td>37</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Fase experimental</td>
<td>38</td>
</tr>
<tr>
<td>2.5.3.1</td>
<td>Diseño experimental</td>
<td>38</td>
</tr>
<tr>
<td>2.5.3.2</td>
<td>Preparación de las muestras para el análisis microbiológico</td>
<td>39</td>
</tr>
<tr>
<td>2.5.3.3</td>
<td>Métodos y técnicas de análisis microbiológico</td>
<td>39</td>
</tr>
<tr>
<td>2.5.3.4</td>
<td>Determinación del contenido de humedad en la harina de maca</td>
<td>45</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Cálculos</td>
<td>46</td>
</tr>
<tr>
<td>2.5.4.1</td>
<td>Cálculo del % de Humedad</td>
<td>46</td>
</tr>
<tr>
<td>2.5.4.2</td>
<td>Cálculo del número de UFC/ml</td>
<td>46</td>
</tr>
<tr>
<td>2.6</td>
<td>Análisis estadístico</td>
<td>47</td>
</tr>
<tr>
<td>3.</td>
<td>RESULTADOS Y DISCUSIÓN</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Pruebas preliminares: Homogenización de la muestra</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Caracterización microbiológica de la materia prima (hipocótilos de maca) y del producto final obtenido mediante el proceso tradicional</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Evaluación del procesamiento de harina de maca mediante el diseño experimental</td>
<td>49</td>
</tr>
<tr>
<td>4.</td>
<td>CONCLUSIONES Y RECOMENDACIONES</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Conclusiones</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>Recomendaciones</td>
<td>57</td>
</tr>
<tr>
<td>5.</td>
<td>BIBLIOGRAFÍA</td>
<td>58</td>
</tr>
<tr>
<td>6.</td>
<td>ANEXOS</td>
<td>64</td>
</tr>
</tbody>
</table>
LISTA DE FIGURAS

Figura 1. Planta e hipocótilo de maca (Lepidium meyenii). .. 17
Figura 2. Esquema de un deshidratador de bandejas. .. 26
Figura 3. Esquema de la máquina tostadora rotativa horizontal continua.................. 27
Figura 4. Molino de cuchillas. ... 28
Figura 5. Flujograma o diagrama de bloques de proceso de producción de harina de maca (L. meyenii) correspondiente al proceso tradicional de la empresa “caso estudio”. 37
Figura 6. Tirilla reactiva Reveal® 2.0 Salmonella Neogen. .. 42
LISTA DE TABLAS

Tabla 1. Norma Técnica Peruana Nº 071-MINSA/DIGESA/V.01 Harinas en general. Requisitos Microbiológicos. ..19
Tabla 2. Diseño experimental de tipo factorial 2^2. ..39
Tabla 3. Interpretación de las pruebas bioquímicas para Salmonella spp.45
Tabla 4. Resultados de los análisis microbiológicos y humedad obtenidos a partir de las corridas experimentales. ..51
Tabla 5. Comparación del proceso tradicional y propuesto para la desinfección y deshidratado ($n=6$ para cada medición). ..53
Cláusula de licencia y autorización para publicación en el Repositorio Institucional

Gabriela Natali Otavalo Quito en calidad de autor/a y titular de los derechos morales y patrimoniales del trabajo de titulación “Optimización de puntos críticos en el proceso de obtención de harina de maca (Lepidium meyenii) en función de la calidad microbiológica del producto final”, de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el repositorio institucional, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Cuenca, octubre del 2018.

[Signature]

Gabriela Natali Otavalo Quito
C.I: 010536668-6
Cláusula de licencia y autorización para publicación en el Repositorio Institucional

Mayra Alexandra Mogrovejo Loza en calidad de autor/a y titular de los derechos morales y patrimoniales del trabajo de titulación “Optimización de puntos críticos en el proceso de obtención de harina de maca (Lepidium meyenii) en función de la calidad microbiológica del producto final”, de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el repositorio institucional, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Cuenca, octubre del 2018.

[Signature]

Mayra Alexandra Mogrovejo Loza

C.I.: 010540439-6
Cláusula de Propiedad Intelectual

Gabriela Natalí Otavalo Quito, autor/a del trabajo de titulación “Optimización de puntos críticos en el proceso de obtención de harina de maca (Lepidium meyenii) en función de la calidad microbiológica del producto final”, certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor/a.

Cuenca, octubre del 2018.

Gabriela Natalí Otavalo Quito

C.I: 010536668-6
Cláusula de Propiedad Intelectual

Mayra Alexandra Mogrovejo Loza, autor/a del trabajo de titulación "Optimización de puntos críticos en el proceso de obtención de harina de maca (Lepidium meyenii) en función de la calidad microbiológica del producto final", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor/a.

Cuenca, octubre del 2018.

Mayra Alexandra Mogrovejo Loza

C.I.: 010540439-6
AGRADECIMIENTOS

En este trabajo de investigación queremos expresar nuestros más sinceros agradecimientos a Dios por darnos sabiduría para poder superar los inconvenientes presentados.

A nuestra directora la Dra. Silvia Johana Ortiz Ulloa, PhD, que supo guiar este trabajo con paciencia, esfuerzo y dedicación, brindándonos su invaluable tiempo respondiendo siempre nuestras dudas de la manera más cordial. Le agradecemos por cada corrección, palabra de motivación, por orientarnos y exigirnos la excelencia en lo que hacemos.

A nuestras familias por su apoyo incondicional, por su paciencia y amor con el que nos han acompañado durante el trayecto para cumplir esta meta.

A la Dra. Gabriela Astudillo y Dra. Michelle Castro investigadoras del Laboratorio de Alimentos y Nutrición del Departamento de Biociencias, por su asesoría durante la realización de este trabajo.

De una manera muy especial queremos agradecer a la Dra. Mariana Saa por orientarnos con su experiencia y educarnos con el ejemplo. La tendremos en nuestros corazones con gran aprecio por ser una persona noble y por enseñarnos a ser profesionales rectos y justos.

Al gerente y personal que labora en la empresa “caso estudio” por darnos la apertura y colaboración en la realización de este trabajo.

Gabriela y Alexandra
DEDICATORIA

Con mucho cariño y amor dedico este trabajo de titulación a Dios por su infinita bondad, por regalarme una hermosa familia y por poner a lo largo de mi camino a personas maravillosas que han llenado mi vida y alma.

A mi madre Anita, una mujer excepcional cuya fortaleza me ha servido de ejemplo para nunca desfallecer en el camino y cumplir cada meta que me propongo. Las palabras no alcanzan para agradecerle su inmenso apoyo, sus consejos y sobretodo su paciencia y amor, este logro es de las dos.

A mis hermanos Vanessa y José Andrés por su amor y apoyo incondicional, por ofrecerme su mano cada vez que lo he necesitado.

A todos los docentes y amigos quienes con su sabiduría y palabras de aliento nos han guiado y motivado para la culminación de este trabajo.

Gabriela
DEDICATORIA

Con cariño y gratitud dedico este trabajo de investigación al motor de mi vida, mi familia, a mis padres Oswaldo y Sandra que me han enseñado a conseguir cada cosa con dedicación y sacrificio. Ustedes han sabido guiarme con amor, me han acompañado y han estado conmigo apoyándome en aquellas largas noches de estudio teniendo siempre una palabra de aliento. Padres les dedico este logro, por haber confiado en mi capacidad, por formar mi carácter y por darme la oportunidad de cumplir esta meta.

A Dios por tener a mi familia conmigo, por haberme permitido compartir estos años con mis amigos y profesores que me ayudaron a crecer con valores y formarme con criterio.

A mis hermanos Jorge, Cinthya y Darwin, espero ser su guía y brindarles un buen ejemplo de perseverancia y sacrificio para que puedan realizar sus metas.

A una persona muy especial en mi vida por su paciencia y apoyo, por colaborar con sus conocimientos, motivarme y corregirme siempre con cariño.

Alexandra
INTRODUCCIÓN

Lepidium meyenii, popularmente conocido como maca, ha cumplido un papel muy importante en la alimentación de diferentes pueblos indígenas originarios de los Andes Centrales Peruanos. En esta área se cuenta con las condiciones propicias para su cultivo que incluyen altitudes comprendidas entre 3800-4500 m.s.n.m. (Úbeda, Palacios, & Muñoz, 2007) y temperaturas variables, llegando a ser muy altas en el día y bajo cero en la noche (Espín et al., 2003; Sifuentes, León, & Paucar, 2015).

En Ecuador existen diferentes zonas ubicadas en las provincias de Loja, Cañar, Azuay que cumplen con las condiciones agroecológicas adecuadas para cultivar la maca. En particular, en la zona de Tinajillas, perteneciente al cantón Girón, se han registrado 80 Ha de cultivos de maca (Espín et al., 2003; Sifuentes et al., 2015).

En nuestro país, el cultivo de maca y su procesamiento se han desarrollado sin apoyo tecnológico ni productivo (Alvarado, 2017). Más bien, su desarrollo se debe al emprendimiento a pequeña escala de particulares que trabajan juntamente con su familia. Al aumentar el interés y la demanda de la población por este "superalimento" (denominado así por su alto valor nutritivo), las empresas productoras de alimentos se han visto obligadas a desarrollar tecnología propia y nuevas estrategias que las lleve a una mayor productividad (Espín et al., 2003; Instituto Boliviano de Comercio Exterior [IBCE], 2009). Actualmente se realizan estudios sobre el mejoramiento de los procesos de elaboración de alimentos a pequeña escala. Dichos estudios incluyen la instauración de mejoras adecuadas orientadas a incrementar la producción, reducir el tiempo invertido en los procesos, y sobre todo alcanzar niveles competitivos en los mercados nacionales e internacionales (Harrington, 2001). Esto se traduce en ganancias económicas para la empresa generando oportunidades de trabajo para agricultores y sus familias (Acevedo, 2015; Calle & Jarrín, 2010).

Por lo general, la optimización de procesos para este tipo de productos se evalúa en base a parámetros bromatológicos sin considerar variables respuesta de tipo microbiológico. Sin embargo, estas últimas tienen gran relevancia por la susceptibilidad de diversos productos a contaminarse durante el procesamiento no industrializado (Acevedo, 2015; Calle & Jarrín, 2010). De aquí parte la necesidad de realizar la optimización de puntos críticos identificados durante el procesamiento de la
harina de maca (*Lepidium meyenii*) evaluados en función de la calidad microbiológica del producto final.

Debido al incremento de la demanda en la producción y consumo de maca se ha planteado este trabajo de titulación que potencialmente permitirá evaluar alternativas para mejorar el procesamiento a nivel artesanal de la maca cultivada en la región del Austro ecuatoriano, colaborando directamente con la empresa que lo realiza localmente a la que se ha denominado “caso estudio”.

Hipótesis

La modificación de dos de los puntos críticos identificados en el procesamiento de la harina de maca (*Lepidium meyenii*) mejora la calidad microbiológica del producto final porque reducen el riesgo de contaminación en la cadena de producción.

OBJETIVOS DEL ESTUDIO

Objetivo general

Optimizar los puntos críticos identificados en el procesamiento de la harina de maca (*Lepidium meyenii*) en función de la calidad microbiológica del producto final.

Objetivos específicos

- Establecer los puntos críticos en el procesamiento de la harina de maca (*Lepidium meyenii*) usado por la empresa “caso estudio” perteneciente a la ciudad de Cuenca.

- Evaluar la eficacia de modificar el proceso tradicional usado para el procesamiento de la harina de maca en función de la calidad microbiológica (recuentos de mohos, *E. coli* y *Salmonella spp.*) aplicando un diseño experimental factorial.
1. CONTENIDO TEÓRICO

1.1 Maca (*Lepidium meyenii*)

Lepidium meyenii es un tubérculo perteneciente a la familia *Brassicaceae* que crece en los Andes sobre los 4000 metros de altitud. La adaptación de esta planta a lugares muy hostiles determina que su morfología incluya una porción de reserva bastante voluminosa denominada hipocótilo que se encuentra en el interior de la tierra de cultivo, y que la parte aérea sea bastante pequeña. *L. meyenii* posee cuatro ecotipos que se los clasifica dependiendo del color externo: amarillo, negro, rojo y morado (Carrión, León, & Santiago, 2009; Gonzales, Villaorduña, Gasco, Rubio, & Gonzales, 2014).

Figura 1. Planta e hipocótilo de maca (*Lepidium meyenii*).

![Figura 1. Planta e hipocótilo de maca (*Lepidium meyenii*)](image)

Fuente: (Gallery Seeds, 2012).

1.2 Composición y propiedades de la maca

L. meyenii ha sido considerado desde hace muchos años como un producto que posee abundantes propiedades nutricionales para humanos y animales, así lo
comprueban diferentes estudios realizados en la harina de maca. La maca es un tipo de hortaliza rica en carbohidratos que puede alcanzar valores entre el 55-75% (Sifuentes et al., 2015). Presenta un 11,9% de proteinas, 2,7% de lípidos, se ha observado que además contiene un 8,3% de fibra y un 4,8% de cenizas. En la maca se han podido identificar varias vitaminas, entre ellas algunas del complejo B, la vitamina D3, niacina, etc. En cuanto al contenido de minerales presenta una gran gama que incluye al calcio, hierro, magnesio, cobre, potasio, sodio, entre otros (Guevara, Nolazco, Cancino, & Oliva, 2016; IBCE, 2009).

Además, estudios científicos realizados en torno a esta especie vegetal la identifican como un alimento funcional. Entre sus propiedades se destacan su papel en la función sexual, depresión y ansiedad, efecto energizante, preventivo de la pérdida de masa ósea, efectos en el metabolismo como regulación de las concentraciones séricas de glucosa, regulación de la presión arterial, entre otros (Sifuentes et al., 2015).

1.3 Factores implicados en la contaminación de hortalizas

Existen diversos factores que favorecen a que las hortalizas se contaminen con microorganismos patógenos, tales como el empleo de agua de riego contaminada con excretas de animales o humanos, falta de higiene de los operadores, deficientes métodos de desinfección, empaquetado en condiciones inadecuadas y el manejo incorrecto durante el almacenamiento y transporte. Una vez ocurrida la contaminación de las hortalizas, existe varios microorganismos patógenos que pueden sobrevivir por períodos largos de tiempo en estos productos; incluso algunos tienen la capacidad de sobrevivir a procesos como la desinfección y multiplicarse en el producto que ha sido almacenado (Campos & Manzano, 2007).

1.4 Harina de maca

Se entiende por harina al producto en forma de polvo fino que ha sido elaborado a partir de cereales, tubérculos, legumbres y materias sólidas mediante procesos de trituración o molienda hasta conseguir un grado adecuado de finura (Organización de las & Naciones Unidas para la Agricultura y la Alimentación [FAO], 2008). En el mercado existen diferentes tipos de harina de maca dentro de las cuales destacan la harina cruda, pretostada y gelatinizada. La diferencia entre estas radica en su obtención siendo la primera aquella que tiene un proceso más sencillo comparada con las dos últimas (Puris & Yali, 2006).
1.4.1 Normativa para control microbiológico de la harina de maca

Debido a que en Ecuador no se cuenta con una normativa concerniente a requisitos microbiológicos para harinas en general, se utilizó como referencia la Norma Técnica Peruana Nº 071 para harinas y sémolas (Tabla 1).

Tabla 1. Norma Técnica Peruana Nº 071-MINSA/DIGESA/V.01 para harinas en general. Requisitos Microbiológicos.

<table>
<thead>
<tr>
<th>Agente microbiano</th>
<th>Límite microbiológico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Mohos</td>
<td>10^4</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>10</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>Ausencia/25 g</td>
</tr>
</tbody>
</table>

Fuente: (Ministerio de Salud de Perú [MINSA], 2008).

1.5 Etapas del procesamiento de la harina de maca

Para la obtención de harina de maca pretostada el procesamiento consta de las siguientes etapas: recepción y pesado; selección y clasificación; lavado; desinfección; enjuague; deshidratado; molienda; tamizado; empacado y almacenado.

1.5.1 Recepción y pesado

La materia prima (hipocótilos secos de maca) llega a la empresa para ser procesada, en condiciones apropiadas de humedad (\leq 15%). El transporte se realiza en sacos de yute (Puris & Yali, 2006). Una vez que se recibe la materia prima se procede a pesarla para posteriormente calcular el rendimiento de cada lote que ingresa y el porcentaje de pérdida durante el procesamiento. Es importante la materia prima se reciba en una zona ubicada fuera de las instalaciones de la planta procesadora, para evitar algún tipo de contaminación (Porres, 2008; Vilchez, Guevara, & Encina, 2012).
1.5.2 Selección y clasificación

Inicialmente se realiza la selección de cada uno de los hipocótilos que se encuentran en buen estado. Se descartan aquellos que presentan algún daño físico, ya sea por plagas, insectos o durante el transporte y que por consiguiente no cumplan con las características organolépticas apropiadas. Posteriormente se realiza la clasificación de los hipocótilos de maca según su color (amarillo, rojo, negro, etc.), lo que define la calidad del producto final (Porres, 2008; Vilchez et al., 2012).

1.5.3 Lavado

Se utiliza agua potable o destilada, el objetivo de esta etapa es eliminar mediante inmersión residuos que se encuentran adheridos a la materia prima ya sean hojas, tallos, insectos, tierra, entre otros (Porres, 2008; Vilchez et al., 2012). Se debe considerar que el agua en sí misma podría ser un medio de contaminación, por lo que su inocuidad también debería garantizarse (Administracion de Alimentos y Medicamentos [FDA], 2001).

1.5.4 Desinfección

El proceso de desinfección corresponde a la reducción, por medio de agentes químicos, métodos físicos o ambos, del número de microorganismos presentes en un alimento (Organización Panamericana de la Salud [OPS], 2014). Durante el proceso de desinfección no se llega a destruir a todos los microorganismos, sino que se reduce su número a un nivel aceptable que no resulte nocivo para la salud del consumidor (López García & Berga Monge, 2007).

En la industria alimentaria, la desinfección representa una etapa clave que permite reducir la carga microbiana que queda en un producto después que este ha sido lavado. Esto asegura en cierto modo la inocuidad de la materia prima que ingresa y que posteriormente será procesada (Porres, 2008; Puris & Yali, 2006; Vilchez et al., 2012). Para desinfectar la maca se pueden utilizar los métodos físicos o químicos aplicables a hortalizas en general.
1.5.4.1 Métodos físicos de desinfección

Son métodos de fácil aplicación que causan daños de los tejidos de especies sensibles al calor por acción de altas temperaturas por determinados tiempos. Entre estos métodos está el curado y la inmersión en agua caliente.

Curado: corresponde a un tratamiento térmico en el que mediante humedades y temperaturas relativas altas aplicadas por algunos días se logra minimizar la carga microbiana presente el producto (Garmendia & Vero, 2006).

Inmersión en agua caliente: es un proceso corto en el cual se sumerge los productos en agua caliente a temperaturas de 50 a 70 °C. Este método se utiliza para lograr una sanitización superficial en los vegetales. (Garmendia & Vero, 2006).

1.5.4.2 Métodos químicos de desinfección.

Para este tipo de desinfección se emplean agentes químicos que reciben el nombre de desinfectantes que son sustancias capaces de reducir, a niveles insignificantes, la tasa de patógenos y demás microorganismos (Campos & Manzano, 2007). En la actualidad, los desinfectantes más utilizados para las hortalizas según el grupo químico al que pertenece incluyen compuestos halogenados (cloro, dióxido de cloro, yodo y bromo); compuestos iónicos (ácidos orgánicos) y oxígeno activo (peróxido de hidrógeno, ácido peracético y ozono) (Campos & Manzano, 2007; Garmendia & Vero, 2006). La desinfección con estos agentes se realiza mediante la preparación de una solución acuosa en la cual los productos alimenticios van a ser tratados mediante sumersión o aspersión. La eficacia de estos depende de varios factores entre ellos el pH de la solución, la concentración, la temperatura del agua usada para preparar la solución desinfectante, el tiempo de contacto con el alimento y el tipo de microorganismo sobre el que van a actuar (FDA, 2001; Garmendia & Vero, 2006).

- **Compuestos halogenados.** Dentro de este grupo destaca el cloro que debido a su bajo costo es el desinfectante más empleado en la industria alimentaria, así como también para la desinfección del agua y superficies en contacto con alimentos. La desinfección con cloro es efectiva para la eliminación de células bacterianas, levaduras, mohos y virus. Sin embargo, no lo es contra esporas fúngicas y bacterianas que son mucho más resistentes (Block, 2001). Las soluciones de cloro contienen moléculas de ácido hipocloroso que son activas frente a microorganismos. La actividad biocida del cloro depende de la cantidad
disponible de ácido hipocloroso así como del pH de la solución desinfectante. Aunque su mecanismo de acción no esté completamente dilucidado se cree que inhibe reacciones enzimáticas y desnaturaliza proteínas (Montoya & Gavilán, 2007), y debido a su alto poder oxidante, actúa sobre muchos grupos funcionales presentes en la materia orgánica (Garmendia & Vero, 2006).

- **Ácidos orgánicos.** Son muy utilizados para prevenir el desarrollo microbiano en los alimentos. Su uso se centra en lograr que la solución desinfectante alcance un bajo pH el mismo que impida la proliferación de los microorganismos. Los ácidos orgánicos tienen acción microbiana por sí mismos, sin embargo, su eficacia varía de acuerdo con el tipo de ácido y microorganismo que se pretende eliminar. Su empleo puede otorgar al alimento efectos negativos en el sabor y aroma (Nascimento, Silva, & Midori, 2003).

- **Ozono.** Es un gas que ha sido considerado en EEUU desde 1997 como sustancia GRAS (Generally Recognized as Safe) para las aplicaciones en contacto con los alimentos (Rice & Graham, 2001). El ozono (O₃) es un agente oxidante 1,5 veces más potente que el cloro, aunque muy corrosivo y letal para el hombre a concentraciones superiores a 4 ppm. Aun así, no causa efectos crónicos, no se acumula en los tejidos grasos y tampoco es considerado cancerígeno o mutagénico (Aguayo, Gómez, Artés-Hernández, & Artés, 2017).

- **Ácido peracético (PAA).** Corresponde a la mezcla de ácido acético, peróxido de hidrógeno y agua. Es un fuerte agente oxidante, que ha sido aprobado por la FDA para su uso en frutas y hortalizas a una concentración que va de 40-80 ppm (FDA, 2001). El ácido peracético se ha convertido en una alternativa muy interesante en la industria alimentaria como desinfectante tanto de frutas, verduras y hortalizas. Este ácido podría reemplazar fácilmente al hipoclorito de sodio debido a que posee un gran espectro biocida frente a diferentes microorganismos tales como Salmonella spp, Escherichia coli y Listeria monocytogenes. El mecanismo de acción del ácido peracético se centra en el poder oxidante que presenta frente a proteínas y enzimas, ocasionando que la membrana citoplasmática pierda su funcionalidad y finalmente se destruya la célula. Este desinfectante es amigable con el medio ambiente ya que se descompone en ácido acético, oxígeno, agua y dióxido de carbono, compuestos inocuos para el ser humano, pues no presentan efectos.
cancerígenos como los trihalometanos (cloroformo), compuestos que forma el cloro al combinarse con la materia orgánica (Aguayo et al., 2017). Una ventaja importante que presenta este desinfectante es que requiere tiempos cortos de contacto con los alimentos para ejercer su acción (70 segundos - 5 minutos). Además, este desinfectante puede actuar en un amplio rango de temperaturas (0-40°C) y pH (3-7.5) (Aguayo et al., 2017).

- **Peróxido de hidrógeno.** Es un fuerte agente oxidante y productor de especies citotóxicas. Tiene actividad bacteriostática y bactericida. Cuando se lo emplea como agente químico desinfectante en la industria alimentaria debe ser eliminado por métodos físicos y químicos durante el procesamiento de los alimentos. En el caso de las hortalizas y las frutas, la eliminación de peróxido residual no es necesaria ya que dichos productos contienen cantidades suficientes de la enzima catalasa para descomponer los residuos de agua y oxígeno de manera rápida (Alegre, 2012).

- **Fosfato trisódico (FTS).** Se encuentra clasificado dentro de los compuestos alcalinos. La efectividad de este desinfectante depende del pH de la solución preparada, ya que para ejercer su acción bactericida debe alcanzar un pH alcalino. Su mecanismo de acción se centra en causar la pérdida de la viabilidad celular, ya que ataca la integridad de la membrana. El factor que limita el uso de este desinfectante a gran escala es su amenaza contra el medio ambiente. Sin embargo, muestra ser efectivo una concentración de 100-200 ppm, para reducir la carga microbiana hasta en un 99,999 % de *Escherichia coli* O157H7 en pocos segundos (Echeverría, Jho y Parco, 2011; Garmendia & Vero, 2006).

1.5.5 **Enjuague**

Esta etapa pretende eliminar trazas del desinfectante que haya sido usado y que puedan estar presentes en el producto, para esto se utiliza agua potable o destilada mediante inmersión (Porres, 2008; Puris & Yali, 2006; Vilchez et al., 2012).

1.5.6 **Deshidratado**

Esta etapa pretende reducir el agua que ha sido incorporada al producto en los procesos de lavado, desinfección y enjuague. Hasta el momento se ha considerado
que este proceso tiene como principal objetivo lograr la inhibición de la acción enzimática que da como resultado un defecto en la calidad del alimento, debido al deterioro que sufren las características tanto organolépticas como físicas y químicas (Gascón, Muravnick, & Andreuccetti, 2013) y no se ha evaluado exhaustivamente el efecto de este en la inactivación microbiana (Bourdoux, Li, Rajkovic, Devlieghere, & Uyttendaele, 2016).

El deshidratado tiene como función la eliminación de agua, por lo que las células bacterianas sufren estrés afectando diferentes componentes celulares. Así, en esta etapa se puede degradar el ADN y el ARN, desnaturalizar proteínas, dañar la membrana citoplasmática y pared celular (Bourdoux et al., 2016). En el procesamiento de los alimentos puede ser considerado como un punto crítico ya que se ha informado que el proceso de deshidratado reduce las poblaciones de ciertos microorganismos debido a que disminuye la humedad relativa o la actividad del agua, condiciones en las cuales los microorganismos no crecen y la mayoría de las reacciones químicas y enzimáticas de alteración quedan detenidas (Gascón et al., 2013; Lievense & Riet, 1994).

Para la deshidratación se pueden utilizar diversos equipos disponibles en el mercado. En el caso específico de un deshidratador, el producto es colocado en éste durante un tiempo de 6 -12 horas a una temperatura que varía de 50 a 70° C.(Porres, 2008; Puris & Yali, 2006; Vílchez et al., 2012).

1.5.6.1 Tipos de deshidratación para alimentos

- **Deshidratación al aire libre.** Este tipo de deshidratación está limitada únicamente a aquellas regiones que cuentan con climas templados o cálidos en donde el viento y la humedad del aire son adecuados. Este tipo de deshidratación se aplica a semillas y frutas, pero también frecuentemente se emplea en ciertas hortalizas como tomates y pimientos (Rozano, Quiróz, Acosta, Pimentel, & Quiñones, 2004).

- **Deshidratación por rocío.** En este caso se requiere de la instalación de un ventilador que cuente con la potencia apropiada, así como también de un sistema de calentamiento de aire, una cámara de desecación, un atomizador y los medios necesarios que servirán para retirar el producto una vez que este seco. Presenta una gran ventaja que es su rapidez (Rozano et al., 2004).
• **Deshidratación al vacío.** Este sistema presenta una ventaja muy importante, ya que, logra evaporar el agua de una forma más fácil usando bajas presiones. Los secadores mediante vacío realizan la transferencia de calor por mecanismos de radiación y conducción (Rozano et al., 2004).

• **Deshidratación por aire caliente.** También llamado secado convectivo al aire. Consiste en el flujo de aire caliente sobre o a través del material del que extrae agua por vaporización. Se emplea por lo general en productos de pequeño tamaño y en hortalizas que han sido previamente desecadas (Bourdoux et al., 2016; Rozano et al., 2004). El deshidratado al aire de frutas y verduras puede realizarse a presión atmosférica en varias secadoras de 40 a 80 °C (ej. secadora de bandejas, secadora de cinta transportadora o secadora de túnel) (Bourdoux et al., 2016).

• **Deshidratadores o secadores de bandejas.** Estos equipos poseen diferentes pisos. Están formados una cámara de forma rectangular que tiene soportes móviles en donde se apoyan las bandejas que se cargan con el material a ser secado. (Maupoey, Grau, Sorolla, & Baviera, 2001) (Figura 1). A continuación, se detalla el mecanismo de deshidratado en una secadora de bandejas y tostador, ya que la empresa “caso estudio” cuenta con éstos. El proceso de secado consta de tres fases: 1) **precalentamiento:** el alimento se encuentra a una temperatura inferior a la que el agua se evapora, por lo que el gradiente de temperatura que existe entre el aire y el alimento es grande lo que ocasiona una alta transferencia de calor; 2) **fase de velocidad constante:** en esta fase se da la mayor reducción del contenido del agua del alimento. El flujo de calor intercambiado entre el aire y el alimento se emplea únicamente para la evaporación del agua y esta se mantiene mientras la superficie del alimento contenga agua líquida proveniente de su interior por el fenómeno de capilaridad (Santana & Cubillos, 2016); 3) **fase de velocidad decreciente:** aquí la velocidad de secado disminuye debido a que el volumen de agua en el interior del alimento es bajo. Esta fase termina cuando el alimento haya alcanzado la humedad de equilibrio (Santana & Cubillos, 2016).
Figura 2. Esquema de un deshidratador de bandejas.

Fuente: (Santana & Cubillos, 2016).

- **Tostadores.** En el mercado, se encuentra una variedad de tostadores que son empleados en la industria alimentaria, principalmente destinados al tueste de granos y cereales. En particular, el tostador rotativo horizontal continuo es una máquina que emplea un sistema de alimentación continua, por lo que se debe colocar el producto varias veces en un mismo ciclo de producción (Figura 2).

Este equipo posee una cámara de tostado en donde se realiza el proceso que consta de cuatro fases: 1) **desección**, caracterizada por el desprendimiento de vapor de agua, comienza con una temperatura de 50 °C y alcanza los 100 °C; 2) **crecimiento**, que alcanza temperaturas de 120-130 °C dando lugar a la reacción de Maillard; 3) **disgregación**, que alcanza 180 °C y el producto adquiere un olor característico además de una coloración marrón a causa de la caramelización de los azúcares y las reacciones Maillard; y 4) **culminación** en la que se obtiene el tostado completo del producto que se caracteriza por la reducción del 1,5 al 3,5% del contenido de agua en peso (R. García & Servin, 2014).
Figura 3. Esquema de la máquina tostadora rotativa horizontal continua.

Fuente: (Enríquez & Mosquera, 2013).

1.5.7 Molienda

Existen equipos que permiten la molienda y tamizado de la harina de maca de modo que se llegue a la obtención de un tamaño uniforme. Para ello se pueden emplear molinos. En estos equipos se debe realizar al menos dos o tres pasadas de la materia prima para lograr reducir el tamaño de las partículas progresivamente hasta un diámetro de 0,8 mm aproximadamente (Porres, 2008; Puris & Yali, 2006; Vilchez et al., 2012).

Así por ejemplo, el molino de cuchillas se utiliza para reducir el tamaño de diferentes materiales tanto orgánicos como inorgánicos. Su principio de funcionamiento se basa en el impacto que generan las cuchillas contra el producto que se encuentra dentro de la cámara de trituração la misma que limita el recorrido del producto hasta que la secuencia de impactos logre el tamaño ideal y le permita pasar por el filtro metálico apropiado (Kresich, 2016).
1.5.8 Tamizado

Esta etapa se realiza con el fin de lograr la homogeneización del tamaño de las partículas. Para esto se utiliza un tamiz de tambor de acero inoxidable que tiene un diámetro de poro de 0,425 mm (Porres, 2008; Puris & Yali, 2006; Vílchez et al., 2012).

1.5.9 Empacado

Para el empacado de la harina se pueden emplear bolsas de polietileno o polipropileno mínimo de 2,5 milésimas de pulgada de espesor. Esto asegura que el producto tenga una vida útil de 12 meses. La capacidad de las bolsas pueden ser de 250 g a 1000 g (Porres, 2008; Puris & Yali, 2006; Vílchez et al., 2012).

1.5.10 Almacenado

Luego que el producto ha sido empacado adecuadamente se procede a llevarlo al lugar de almacenamiento hasta su distribución al mercado. Esta zona debe proporcionar características de humedad adecuada en un ambiente fresco y seco. El producto debe ser colocado en cajas de cartón y posteriormente en tarimas de madera a una altura mínima de 25 cm sobre el suelo (MINSA, 2008).
1.6 Calidad microbiológica

1.6.1 Control de la calidad microbiológica mediante la reducción del agua libre

Los microorganismos requieren agua para trasportar, metabolizar sus nutrientes y para eliminar desechos celulares. El total de agua (agua libre y fija) de un alimento se representa como el porcentaje de humedad. El agua fija está unida a colides y solutos hidrófilos, debido a esto no está disponible para realizar funciones biológicas. Por lo tanto, el agua libre es la única que tiene importancia en la proliferación bacteriana y en las reacciones básicas de deterioro. La actividad de agua (A_w) expresa principalmente la cantidad de agua libre, es decir que no está ligada químicamente a ninguna sustancia o molécula. La A_w y el porcentaje de humedad guardan una estrecha relación e influyen en la proliferación de los microorganismos, es por esto que se han convertido en dos factores muy importantes para el control microbiológico (Gascón et al., 2013).

Se considera que existe un límite mínimo de A_w para el crecimiento microbiano. En la mayoría de las bacterias es de 0,90, para el desarrollo de levaduras 0,87 y para los mohos se necesita un valor de 0,80. Por tanto, en las harinas el desarrollo microbiano se dificulta ya que poseen una baja A_w (alrededor de 0,80 para una humedad de 14,5%). Sin embargo, existen microorganismos capaces de permanecer en estado latente en los alimentos cuya cantidad de agua es baja, pudiendo reactivarse después que el alimento ha sido rehidratado. Existen diferentes métodos para reducir el agua libre de un alimento ya sea por extracción de líquidos (deshidratación) o por la adición de solutos. Estos métodos buscan generar un choque osmótico, plasmólisis en los microorganismos y con esto frenar e impedir el crecimiento microbiano (Gascón et al., 2013).

1.6.2 Microorganismos indicadores de calidad

Un producto o lote de un alimento es considerado aceptable basado en la ausencia o presencia de microorganismos, en la cantidad de estos y sus toxinas/metabolitos expresados por unidad de masa, volumen o superficie (FAO, 2016). Los criterios microbiológicos son aportados por los diferentes microorganismos indicadores que se encuentran presentes en los alimentos y se los suele dividir en dos grupos:
• Indicadores de alteración del producto (aerobios mesófilos, mohos, levaduras y coliformes totales).
• Indicadores de higiene (coliformes fecales, E. coli, Enterococcus y Clostridium perfringens, Salmonella spp).

1.6.2.1 Mohos

Son hongos filamentosos, multicelulares que se encuentran ampliamente distribuidos en el ambiente. Su crecimiento en los alimentos se puede observar a simple vista por su aspecto aterciopelado. Estos microorganismos son aerobios estrictos, su nutrición se da por absorción, son heterótrofos, miceliales, y se desarrollan en un amplio rango de pH (2-9) y temperatura (10-35 °C). En cuanto a la disponibilidad de agua, estos microorganismos pueden desarrollarse en condiciones de A_w relativamente bajas (menores a 0,85). Su forma de reproducción es variable, la mayoría de especies tienen una reproducción vegetativa por gemación, sin embargo existen otras cuya reproducción es sexual mediante ascosporas (Zaragoza & Derrickson, 2011).

Los mohos y las levaduras tienen la capacidad de causar deterioro a los alimentos. Particularmente, los hongos además generan metabolitos tóxicos (micotoxinas) causantes de intoxicaciones graves. Estos microorganismos son también responsables de causar reacciones alérgicas e infecciones en adultos mayores y niños (Departamento de Agricultura de los Estados Unidos [USDA], 2010; Zaragoza & Derrickson, 2011).

1.6.2.2 Coliformes totales

Los coliformes totales corresponden a todas las bacterias entéricas que se caracterizan por ser anaerobios facultativos, bacilos cortos Gram negativos, no esporulados, oxidasa negativa, fermentadores de lactosa a 37 ºC en 48 horas con producción de gas y ácido láctico. Su hábitat principal es el intestino de los humanos y animales de sangre caliente. Sin embargo, pueden estar presentes en el agua, suelo, semillas vegetales, entre otros. En este grupo se encuentran 4 géneros: Enterobacter, Escherichia, Citrobacter y Klebsiella (Cabrera & Ospina, 2006; Castro, 2009; Universidad Nacional Autónoma de México, 2004).
1.6.2.3 Coliformes fecales

Como su nombre lo indica están relacionados con la flora intestinal de humanos y animales, poseen la característica particular de ser termotolerantes que los diferencia del resto del grupo coliforme. Estos microrganismos son fermentadores de lactosa de 44,5-45,5 °C a las 48 horas. La principal bacteria representante de este grupo es *Echerichia coli* (Cabrera & Ospina, 2006; Camacho, Giles, Ortegón, Palao, & Velázquez, 2009; Universidad Nacional Autónoma de México, 2004).

- *Escherichia coli*. Son bacilos cortos, móviles, Gram negativos, clasificados dentro de la familia Enterobacteriaceae, que se encuentra como comensal en el tracto intestinal de los humanos y de los animales de sangre caliente, aunque existen varias cepas patógenas que ocasionan enfermedades diarréicas. El hallazgo de este microorganismo en los alimentos indica una posible contaminación fecal y además la presencia de patógenos entéricos que representen un peligro para la salud de los consumidores. Sin embargo, cabe mencionar que la ausencia de *E. coli* no asegura la ausencia de estos patógenos (Andino & Castillo, 2010; Camacho et al., 2009).

1.6.2.4 *Salmonella*

Son bacilos cortos, Gram negativos, móviles, aeróbios facultativos, fermentan la glucosa y manitol, pero no la lactosa, utilizan el citrato como una fuente de carbono, produciendo sulfuro de hidrógeno, descarboxilación de la lisina y ornitina. Pertenecen a la familia Enterobacteriaceae (Cabrera & Ospina, 2006; Robledo, 2015). La temperatura óptima para su crecimiento es de 35-37°C, sin embargo, se puede desarrollar desde los 5-46°C. Son microorganismos sensibles a un pH bajo (≤ 4,5) y mueren al someterlos a una temperatura superior a los 70 °C. Este microorganismo está distribuido de manera amplia en la naturaleza, además, puede estar presente en el tracto gastrointestinal de humanos y animales como comensal o patógeno. Este tipo de bacterias desarrollan formas para sobrevivir a condiciones de estrés como a la deshidratación y congelación durante periodos largos de tiempo (Cabrera & Ospina, 2006; Robledo, 2015).

Se han identificado más de 2500 serovariedades de *Salmonella*, divididas en dos especies; *Salmonella bongory* y *Salmonella enterica*. Entre los serotipos más comunes causantes de gastroenteritis están la *Salmonella entérica* serotipo Enteritis y Typhimurium, bacterias consideradas como las más importantes trasmitidas de
animales a humanos en todo el mundo (Organización Mundial de la Salud [OMS], 2011; Zaragoza & Derrickson, 2011).

Una gastroenteritis por salmonelosis se puede presentar de 24-48 horas después de ingerir alimentos contaminados y se manifiesta con diarrea, fiebre, náusea y vómito. En varios estudios se revela que la dosis infectiva de *Salmonella* puede ser muy baja, tan solo 10 células bacterianas o 1 UFC/g (unidad formadora de colonia por gramo) puede causar una infección, sin embargo, depende de las características del consumidor (edad y estado inmunológico), del tipo de alimento y el serotipo de *Salmonella* (J Álvarez, 2013; Robledo, 2015). Aunque en la mayoría de los casos registrados las salmonelosis son leves, algunas pueden llegar a ocasionar la muerte si no son tratadas adecuadamente (Andino & Castillo, 2010; OMS, 2011).
2. METODOLOGÍA

2.1 Tipo de diseño de investigación

Estudio cuantitativo analítico experimental de tipo factorial 2^2.

2.2 Área de estudio

Este estudio microbiológico se realizó en el producto final (harina de maca) proveniente de la empresa “caso estudio” ubicada en el sector de Baguanchi perteneciente a la parroquia de Monay-Cuenca, en el periodo comprendido entre marzo a julio del 2018. Esta empresa recepta materia prima (hipocótilos de maca) de los cantones Santa Isabel y Girón. Las muestras fueron tomadas al finalizar los procesos de producción y los análisis fueron realizados en el Laboratorio de Alimentos del Departamento de Biociencias, Universidad de Cuenca.

2.3 Muestreo

El muestreo de la materia prima se realizó siguiendo la Norma Técnica Ecuatoriana 1233:95 para cereales y granos, específicamente para productos al granel. La muestra fue tomada al momento de descarga de manera completamente aleatoria siguiendo el procedimiento indicado en la (Anexo 1) (INEN, 1995).

El muestreo del producto final se realizó siguiendo la Norma Técnica Ecuatoriana 1233:95, de igual forma que en la materia prima. La muestra elemental de producto final fue tomada previo al empaquetado mediante un cuarteo de forma manual, mezclando bien el producto para formar una sola muestra compuesta, tal como se describe en la (Anexo 1) (INEN, 1995).

Posteriormente las muestras fueron empacadas en bolsas de polietileno de 2,5 milésimas de pulgada y de 1 Kg de capacidad. Los paquetes se etiquetaron y marcaron correctamente con fecha y proceso (variables) al cual fueron sometidos.

2.4 Equipos, insumos y reactivos

Todos los análisis se realizaron en el Laboratorio de Alimentos del Departamento de Biociencias, Universidad de Cuenca.
Universidad de Cuenca

Gabriela Otavalo – Alexandra Mogrovejo

34

Equipos

- Estufa MEMMERT INB 200, Alemania
- Autoclave semiautomática TUTTNAUER 2340mk, Israel
- Cámara de flujo laminar LABCONCO Logic Purifier, Estados Unidos
- Balanza electrónica de precisión SARTORIUS ED224S, Estados Unidos
- Micropipeta BOECO de 1000 µl, Alemania
- Agitador Horizontal VWR SHAKER 3500 ADV, Estados Unidos
- Baño María MEMMERT WBN 10, Alemania

Reactivos

- Ácido peracético
- Agua de peptona bufferada
- Agar XLD
- Agar Hektoen
- Agar Bismuto sulfito
- Agar Kligger
- Agar LIA
- Placas con medio sólido Compact Dry® para mohos y Escherichia coli.
- Kit Reveal® 2.0 para determinación de Salmonella spp.

Insumos

- Frascos volumétricos de 100, 250 y 500 ml
- Lámparas de alcohol
- Asas de inoculación
- Puntas descartables para micropipetas de1000 µl
- Vasos de precipitación de 100, 250, 500 ml
- Probetas de vidrio de 100 ml
- Tubos de ensayo de 10 y 20 ml
- Varillas
- Espátulas
- Bolsas Whirl-Pak herméticas para toma de muestras
- Alcohol antiséptico e industrial
2.5 Métodos analíticos

2.5.1 Pruebas preliminares para el procesamiento de las muestras de harina de maca

Se realizaron varias pruebas preliminares antes de la fase experimental con el fin de evitar complicaciones con la preparación de la muestra. Se determinó el correcto homogenizado de las muestras de harina de maca comparando la utilización de bolsas plásticas estériles de polietileno Whirl Pak® versus la homogenización en frascos de vidrio con tapa rosca el equipo Agitador Horizontal VWR SHAKER 3500 ADV®.

Prueba 1: La homogenización se realizó en frascos de vidrio con tapa rosca de 100 ml durante 10 minutos a una velocidad de 250 rpm. La siembra microbiológica se realizó con el líquido sobrenadante después de un tiempo de decantación de 20 minutos.

Prueba 2: La homogenización se realizó igual que en la prueba 1. La siembra microbiológica se realizó con la muestra en suspensión.

Prueba 3: Se usaron bolsas estériles de polietileno Whirl-Pak® para homogenización de 18 onzas durante 10 minutos a una velocidad de 250 rpm. La siembra microbiológica se realizó con el líquido sobrenadante después de un tiempo de decantación de 20 minutos.

Prueba 4: La homogenización se realizó igual que en la prueba 3. La siembra microbiológica se realizó con la muestra en suspensión.

2.5.2 Fase pre-experimental

La evaluación de los puntos críticos del proceso de obtención de harina de maca se llevó a cabo en la empresa “caso estudio”. En base a esta evaluación se propusieron modificaciones para mejorar su eficacia medida en función de la calidad microbiológica del producto final.

2.5.2.1 Determinación de puntos críticos del proceso tradicional para obtención de harina de maca

En este trabajo de titulación se empleó la denominación de “puntos críticos” a las etapas importantes para eliminar o prevenir un peligro relacionado con la inocuidad de los alimentos (Agro & Food Integrity [AFI], 2014). Cabe indicar que los puntos críticos seleccionados para este trabajo se basan en la investigación bibliográfica de aquellas etapas que pueden ser modificadas para obtener una mejor calidad microbiológica. Así
por ejemplo, la desinfección fue seleccionada como un punto crítico ya que la empresa “caso estudio” no emplea una concentración adecuada de desinfectante para reducir o minimizar la carga microbiana presente en la materia prima (J. García, Medina, Mercado, & Báez, 2017). El segundo punto crítico seleccionado fue el proceso de deshidratado de la materia prima (hipocótilos de maca) que disminuye la humedad relativa o la actividad del agua. En la empresa este proceso es realizado en un tostador sin el control de temperatura y cantidad de agua eliminada.

En la identificación del proceso tradicional para obtención de harina de maca de la empresa “caso estudio” se elaboró un flujograma de procesos de tipo vertical en el cual el orden de las actividades está direccionado de arriba hacia abajo (Biafore, 2007). Dentro de estos flujogramas destaca el diagrama de bloques en secuencia de procesos de producción el cual indica la materia prima empleada y cantidad de procesos ejecutados para la elaboración del producto alimenticio (Pardo, 2012). Para la realización del flujograma se siguieron los pasos descritos a continuación (Biafore, 2007):

1. Se definió el alcance del proceso, desde recepción de materia prima hasta almacenamiento de producto terminado.

2. Se identificó y enlistó las principales fases que conforman el proceso, así como se estableció su orden cronológico.

3. Se identificaron los puntos críticos del proceso.

4. Se construyó el diagrama empleando cajas de texto y flechas, las etapas del proceso se colocaron en secuencia cronológica.

5. Se estableció el título del diagrama, se verificó que sea claro y que esté completo.

Una vez construido el flujograma se identificaron todos los puntos críticos del proceso relacionados con la calidad microbiológica del producto final. De éstos, se seleccionaron sólo dos procesos por motivos logísticos y cuestiones de presupuesto: la desinfección (PC1) y el deshidratado (PC2).
En cada punto se identificaron a su vez las variables a ser modificadas, siendo para PC1: tipo de desinfectante, concentración del desinfectante y tiempo de desinfección; y para PC2: tiempo y temperatura de deshidratado (Figura 4).

Figura 5. Flujoograma o diagrama de bloques de proceso de producción de harina de maca (L. meyenii) correspondiente al proceso tradicional de la empresa “caso estudio”.

(PC1) * y (PC2) *: puntos críticos seleccionados para el desarrollo del trabajo de titulación.

Fuente: Autoras.

2.5.2.2 Evaluación microbiológica de la materia prima (hipocótilos de maca) y del producto final obtenido mediante el proceso tradicional

Con el fin de caracterizar la materia prima del proceso, se realizó la evaluación microbiológica de un lote determinado que fue utilizado luego en la fase experimental. El análisis microbiológico se llevó a cabo por duplicado evaluando los recuentos de
mohos, *E. coli* y *Salmonella spp.* de acuerdo con la Norma Técnica Sanitaria N° 071-MINSA/DIGESA/V.01 (MINSA, 2008).

El análisis microbiológico del producto final se realizó en un lote diferente seleccionado al azar. Este análisis sirvió para obtener una línea de base de los recuentos microbiológicos previa a la fase experimental. Además, se verificaron las características físicas del producto (apariencia homogénea, color habano y ausencia de material extraño ajeno a la naturaleza del producto).

2.5.3 Fase experimental

2.5.3.1 Diseño experimental

El diseño experimental que se siguió fue de tipo factorial 2^2 en el que las corridas experimentales correspondieron a la combinación de los dos puntos críticos identificados a partir del “proceso tradicional” que se llevó a cabo en la empresa “caso estudio” medidos a dos niveles. El nivel bajo (-1) correspondió a las condiciones del proceso tradicional para la desinfección (tiempo de contacto y concentración) y para el deshidratado (tiempo y temperatura). El nivel alto (+1) correspondió a los valores alternativos que fueron propuestos para mejorar el proceso en función de la calidad microbiológica final (Tabla 2).

La materia prima para todos los experimentos procedió del mismo lote y los experimentos se realizaron por triplicado para reducir el error experimental. Cabe indicar que la totalidad del lote se dividió en 4 fracciones para ejecutar cada una de las cuatro corridas experimentales. Las etapas del procesamiento que no fueron modificadas y las condiciones ambientales constituyeron las constantes experimentales.

Las variables respuesta correspondieron al recuento de los microorganismos que contempla la Norma Técnica Sanitaria N° 071-MINSA/DIGESA/V.01 (MINSA, 2008). Se realizaron 24 siembras en placas Compact Dry® correspondientes a la investigación de coliformes y mohos, además de 12 ensayos para identificación de *Salmonella spp.* Mediante el Kit Reveal® 2.0 que fueron realizados en producto final (harina de maca).
Tabla 2. Diseño experimental de tipo factorial 2^2.

<table>
<thead>
<tr>
<th>N° de corrida experimental</th>
<th>Variable X_1</th>
<th>Variable X_2</th>
<th>Variables respuestas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>$W_{-1,-1}; Y_{-1,-1}; Z_{-1,-1}$</td>
</tr>
<tr>
<td>2</td>
<td>+1</td>
<td>+1</td>
<td>$W_{+1,+1}; Y_{+1,+1}; Z_{+1,+1}$</td>
</tr>
<tr>
<td>3</td>
<td>+1</td>
<td>-1</td>
<td>$W_{+1,-1}; Y_{+1,-1}; Z_{+1,-1}$</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>+1</td>
<td>$W_{-1,+1}; Y_{-1,+1}; Z_{-1,+1}$</td>
</tr>
</tbody>
</table>

X_1: Desinfección (primer factor/variable identificado como punto crítico PC1)

X_2: Deshidratado (segundo factor/variable identificado como punto crítico PC2)

(-1): Condiciones del proceso tradicional para la desinfección (vinagre 5 ppm durante 10 minutos) y deshidratado ($º T \approx 200 º C; t = 40$ minutos)

(+1): Condiciones del proceso propuesto para la desinfección (ácido peracético 70 ppm durante 2 minutos) y deshidratado ($º T 70 º C; t = 12h$)

W: Recuento de mohos

Y: Recuento de E. coli

Z: Ausencia/presencia de Salmonella spp.

2.5.3.2 Preparación de las muestras para el análisis microbiológico

En condiciones asépticas se pesaron porciones analíticas de las muestras empleando una Balanza electrónica de precisión SARTORIUS ED224S. Estas porciones analíticas correspondieron a 25 gramos para el análisis de Salmonella spp. y 10 gramos para los análisis tanto de coliformes como de mohos. Se realizaron diluciones 1/10 (10 gramos de harina de maca y 90 ml de agua de peptona tamponada) para los cultivos de coliformes y mohos. La homogenización de las diluciones se efectuó mediante el uso en frascos de vidrio con tapa rosca en el Agitador Horizontal VWR SHAKER 3500 ADV durante 10 minutos a una velocidad de 250 rpm. Las siembras microbiológicas se realizaron con el líquido sobrenadante, después de un tiempo de decantado de 20 minutos.

2.5.3.3 Métodos y técnicas de análisis microbiológico

A nivel de laboratorio se analizaron los microorganismos que están contemplados en la Norma Técnica Sanitaria Nº 071-MINSA/DIGESA/V.01 para harinas en general:
mohos, *E. coli* y *Salmonella spp.* mediante los métodos que se describen a continuación:

- **Sistema de placas Compact Dry®.** Este tipo de placas permiten al analista identificar y cuantificar microorganismos que se encuentran tanto en productos alimenticios como en cosméticos, fármacos, superficies de contacto, entre otros (HyServe GmbH & Co. KG, 2010).

 Fundamento: estas placas poseen en su interior un medio de cultivo microbiológico cromogénico. La identificación de los microorganismos se realiza gracias a que el medio cuenta con un indicador de tipo redox y un sustrato cromogénico, por lo que las colonias bacterianas crecen con coloraciones específicas que facilitan su cuantificación (HyServe GmbH & Co. KG, 2010).

 Modo de uso: se debe abrir la tapa con cierre giratorio, colocar 1 ml de muestra sobre la placa y esperar hasta que el contenido se difunda sobre toda la superficie en forma homogénea, posteriormente se procede a incubar las placas a una temperatura que va desde los 20°C hasta los 42°C, dependiendo del microorganismo que se quiere analizar (HyServe GmbH & Co. KG, 2010).

 Almacenamiento: pueden ser almacenadas a temperatura ambiente, durante al menos 2 años, se pueden apilar sin ningún riesgo de que se resbalen (HyServe GmbH & Co. KG, 2010).

- **Placas Compact Dry® para *Escherichia coli* y coliformes.** En estas placas se puede distinguir *E.coli* y coliformes presentes en la muestra ya que el primero presenta colonias de color azul, mientras que, las colonias de coliformes adquieren una coloración roja. Este medio cuenta con dos sustratos enzimáticos cromogénicos Magenta-GAL y X-Gluc que permiten la diferenciación entre los dos tipos de colonias que crecen. La incubación de estas placas se realiza a 37°C +/- 2°C por un tiempo de 24 horas (HyServe GmbH & Co. KG, 2010).

- **Placas Compact Dry® para mohos y levaduras.** Estas placas poseen el sustrato cromógeno X-Phos que permiten diferenciar las levaduras de los
mohos que se tornan de color azul por presentar diferentes reacciones cromáticas. Este medio es selectivo, pues evita el crecimiento bacteriano mediante los antibióticos que posee. Para el caso de los mohos, pueden adquirir diferentes colores y tamaños. La incubación de estas placas se realiza de 22-25°C por un tiempo de 3-7 días (HyServe GmbH & Co. KG, 2010).

- **Kit Reveal® 2.0 para Salmonella spp.** Este kit permite la recuperación rápida de un 98% de serotipos de *Salmonella* entre ellas las más comunes que afectan a los humanos como es el caso de *Salmonella* Enteritis y Typhimurium aisladas de diferentes alimentos, muestras de agua, superficies en contacto, en un periodo de 24 horas. La efectividad de este kit está aprobada por la Asociación Oficial de Analistas Químicos (AOAC). La sensibilidad es la prueba es de 1 UFC/unidad analítica de muestra (Neogen Corporation, 2006; Ruiz, 2014).

Fundamento: el sistema Reveal® 2.0 utiliza dos medios de cultivo, el primero de pre-enriquecimiento Revive® suministra a la muestra posiblemente contaminada con *Salmonella spp.* los nutrientes necesarios para que este microorganismo se recupere de las condiciones de estrés o lesión en las que se encuentra. El medio selectivo de enriquecimiento Rappaport-Vassiliadis (RV) permite el crecimiento de *Salmonella spp.* hasta niveles que puedan ser detectados mediante el dispositivo de prueba inmunocromatográfica. En este dispositivo, la muestra enriquecida es sometida al contacto con anticuerpos específicos contra *Salmonella spp.* que se encuentran conjugados con partículas de oro coloidal. Si los antígenos están presentes en la muestra se formará el complejo antígeno-anticuerpo el cual sube a través de la membrana hasta la zona de anticuerpos anti patógeno, los mismos que van a capturar el complejo formado mostrando una línea visible. En la zona de control está presente un inmunocomplejo el mismo que forma una segunda línea (Figura 5) (Neogen Corporation, 2006; Ruiz, 2014).
Figura 6. Tirilla reactiva Reveal® 2.0 Salmonella Neogen.

Fuente: (Ruiz, 2014).

Modo de uso: inicialmente se realiza un pre-enriquecimiento de la muestra, transfiriendo el contenido de una bolsa de aluminio con el medio Revive® en una bolsa homogenizadora. Luego, se colocan 200 ml de agua destilada estéril precalentada a 42°C, se añaden 25 g de la muestra, se mezcla vigorosamente y se procede a incubar la muestra a 36°C ± 1°C durante 4 horas. Posteriormente se prepara la solución de enriquecimiento colocando el medio selectivo Rappaport-Vassiliadis (RV) en una bolsa homogenizadora con 200 ml de agua destilada precalentada a 36°C ± 1°C y se mezcla vigorosamente. Esta mezcla se coloca en la bolsa anterior que contiene la solución pre-enriquecedora con la muestra y se incuba a 42°C ± 1°C de 16-24 horas. Transcurrido este tiempo se realiza la prueba inmunocromatográfica, para esto se transfririeren 8 gotas de la mezcla enriquecida a un recipiente graduado y se coloca la tirilla reactiva de Reveal® 2.0 con las fechas hacia abajo por un tiempo de 15 minutos a temperatura ambiente (Neogen Corporation, 2006; Ruiz, 2014).

Interpretación: la prueba se considera positiva cuando se puede observar una línea de color roja independientemente de su intensidad debajo de la línea de control a los 15 minutos de haber colocado la tirilla reactiva sobre la muestra. Tras
obtener resultados positivos se debe realizar las pruebas de verificación para *Salmonella spp.* según el Manual Bacteriológico Analítico (BAM) (Neogen Corporation, 2006; Ruiz, 2014).

- **Pruebas de verificación de la técnica de determinación de Salmonella spp.**

Los datos obtenidos mediante el empleo del Kit Reveal® 2.0 para *Salmonella spp.*, fueron verificados mediante el método tradicional según el Manual Bacteriológico Analítico (BAM) para identificación de *Salmonella* en harinas (BAM, 2014).

Procedimiento:

1. Se pesaron 25 g de muestra en un frasco estéril.
2. **Pre-enriquecimiento:** la muestra fue vertida en 225 ml de agua de peptona estéril contenido en un erlenmeyer de 500 ml y se dejó reposar por 1 hora.
3. **Incubación:** el recipiente se dejó en incubación sin mezclar por 24 ± 2 horas a una temperatura de 35 ± 2 °C.
4. **Enriquecimiento:** se agitó la mezcla y se transfirió 1 ml de esta a un tubo de vidrio con 10 ml de Rappaport-Vassiliadis (RV) y 1 ml a otro tubo con 10 ml de caldo de tetraciónato (TT), se homogenizaron los dos tubos enérgicamente.
5. **Incubación:** el medio RV fue incubado por 24 ± 2 horas a 42 ± 2 °C en baño maría, mientras que, el medio TT por 24 ± 2 horas a 35 ± 2 °C.
6. **Aislamiento:** para aislar las colonias típicas y atípicas de *Salmonella spp.* Se preparará agar xilosa lisina desoxicolato (XLD), agar Hektoen entérico (HE) y agar sulfito de bismuto (SB), los dos primeros fueron almacenados en refrigeración, mientras que el último fue preparado un día antes de su uso y almacenado en la oscuridad a temperatura ambiente.
7. **Siembra e incubación:** se realizó por estría simple con un asa estéril a partir de los caldos enriquecidos en los medios sólidos sulfito de bismuto (SB), agar xilosa lisina desoxicolato (XLD) y agar Hektoen entérico (HE). Los medios fueron incubados por 24 ± 2 horas a 35 °C.
8. **Identificación:** las colonias típicas de *Salmonella spp.* fueron identificadas mediante la observación de los distintos medios de cultivo utilizados:
 - **Agar HE:** colonias azul-verdosas que pueden o no tener centros de color negro.
 - **Agar XLD:** colonias rosadas que pueden o no tener centros de color negro.
- Agar SB: colonias marrones, grises o negras, el agar puede pasar de marrón a negro a medida que aumenta el período de incubación. Las placas que no presentaron crecimiento a las 24 ± 2 horas, se dejaron en incubación por 24 ± 2 horas más a $35 \, ^{\circ}C$.

9. **Confirmación de las colonias típicas:** se tomaron 2 colonias con el asa estéril y se procedió a sembrar mediante la técnica de picadura y estría en tubos con agar hierro Kligier (KIA) y agar hierro lisina (LIA). La incubación se realizó por 24 ± 2 horas a $35 \, ^{\circ}C$. KIA es un medio que contiene peptona de carne, cuyo consumo alcaliniza el medio debido a la liberación NH_3, lactosa y glucosa cuya fermentación produce compuestos ácidos, contiene además tiosulfato de sodio, citrato de hierro y amonio, el tiosulfato de sodio se reduce a sulfuro de hidrógeno, el cual reacciona con la sal de hierro produciendo sulfuro de hierro (precipitado negro). Mediante esta prueba se puede determinar (Fernández, García de la Fuente, Saéz, & Valdezate, 2010; McFaddin, Giovanniello, & Rondinone, 2003): a) La capacidad de un microorganismo de metabolizar un hidrato de carbono específico; b) Producción o no de gases: H_2 y CO_2 como productos finales del metabolismo de los hidratos de carbono y c) Producción de ácido sulfhídrico (SH_2). LIA es un medio que sirve para demostrar la producción de dos enzimas: lisina descarboxilasa y lisina desaminasa, además la producción de H_2S se evidencia por la presencia de un precipitado negro por utilización de las sales de hierro. La descarboxilación de la lisina ocurre en medio anaeróbico (fondo del tubo) y se manifiesta por la alcalinización del medio produciendo un viraje del indicador púrpura de bromocresol. La presencia de glucosa en LIA primero permite una reacción de fermentación, la cual acidifica el medio (cambio de color del medio a amarillo) alcanzando un pH favorable para la reacción de descarboxilación que ocurre después, volviendo a su color violeta original el fondo del tubo por la producción de cadaverina (diamina) (Fernández et al., 2010; McFaddin et al., 2003).

10. **Interpretación:** Los resultados obtenidos mediante las pruebas bioquímicas deben ser interpretadas en base a la (Tabla 3).
Tabla 3. Interpretación de las pruebas bioquímicas para Salmonella spp.

<table>
<thead>
<tr>
<th>MEDIO</th>
<th>KIA</th>
<th>LIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpretación para Salmonella spp.</td>
<td>K/A= alcalino/ácido</td>
<td>K/K= alcalino/alcalino</td>
</tr>
<tr>
<td></td>
<td>Produce típicamente una reacción alcalina (roja) y ácida (amarilla) con o sin producción de ácido sulfhídrico. Fermenta solo la glucosa (BAM, 2014).</td>
<td>Produce una reacción alcalina (morado) en el extremo del tubo con o sin producción de ácido sulfhídrico. Es decir produce solamente descarboxilación de la lisina (BAM, 2014).</td>
</tr>
</tbody>
</table>

Nota: Se asumió presencia de Salmonella spp. cuando la tirilla inmunocromatográfica del Kit Reveal® 2.0 da resultado positivo, crecimiento de colonias típicas en los medios de cultivo selectivos diferenciales y pruebas bioquímicas con reacción característica para Salmonella spp. La ausencia de Salmonella spp. cuando la tirilla inmunocromatográfica del Kit Reveal® 2.0 da resultado positivo y ausencia de crecimiento de colonias típicas en los medios de cultivo selectivos diferenciales.

Fuente: (BAM, 2014).

2.5.3.4 Determinación del contenido de humedad en la harina de maca

Se siguió el método de la AOAC 935.29 referente a la humedad en malta (Official Methods of Analysis [AOAC], 2000). Los ensayos se realizaron por triplicado para cada paquete experimental.

Procedimiento:

a) Se colocó arena de mar lavada en cápsulas de porcelana junto a varillas y se desecaron en la estufa durante dos horas a 130 °C.

b) Posterior a esto, se colocaron las cápsulas en un desecador a temperatura ambiente durante 30 minutos.

c) Se pesaron analíticamente las cápsulas con la arena y varillas (m₁).

d) Se pesaron analíticamente 5 g de muestra en cada cápsula (m₂).

e) Se secaron las cápsulas con las muestras, arena y varillas durante dos horas a 130 °C y se enfriaron en un desecador a ° T ambiente (30 minutos).
f) Se pesaron las cápsulas con las muestras, arena y varillas con precisión de 1 mg.

g) Se repitieron los procedimientos descritos en e) y f) 5 veces hasta alcanzar un peso constante (± 1 mg entre dos pesadas consecutivas) …m3).

2.5.4 Cálculos

2.5.4.1 Cálculo del % de Humedad

Para determinación del % de humedad se emplearon las siguientes fórmulas (Official Methods of Analysis [AOAC], 2000):

\[
\%\text{Humedad} = 100 - \% \text{ materia seca}
\]

\[
\%\text{Materia seca} = \frac{m_3-m_1}{m_2-m_1} \times 100
\]

En donde:

m2-m1 = peso (g) de la muestra antes de secar (peso inicial sin cápsula).

m3-m1 = Peso (g) de la muestra después de secar y llegar a peso constante (peso final sin cápsula).

2.5.4.2 Cálculo del número de UFC/ml

Para calcular el número de UFC/ml se utilizó la siguiente fórmula (Arana, Orruño, & Barcina, 2010):

\[
\text{UFC/ml} = \frac{n}{v} \times f
\]

En donde:

n = número de colonias contadas

f = factor de dilución

v= volumen sembrado (ml)

UFC= unidad formadora de colonias
2.6 Análisis estadístico

Los datos generados en las fases pre-experimental y experimental fueron ingresados y tabulados en Microsoft Excel. La evaluación de la optimización del proceso tradicional para la elaboración de la harina de maca en función de la calidad microbiológica (recuentos de mohos y coliformes y determinación *Salmonella spp.*), a partir del diseño experimental factorial planteado, se realizó mediante un análisis de varianza (ANOVA) y análisis de varianza multifactorial (MANOVA) para las respuestas individuales y en conjunto, respectivamente. Además, para evaluar las diferencias según el análisis de varianza se utilizó la prueba de Scheffe (post-hoc ANOVA). Finalmente se evaluó la diferencia entre los procesos alternativo y tradicional mediante la prueba t de Student y Chi cuadrado para variables continuas y categóricas, respectivamente. Todos los análisis se realizaron con un nivel de significancia del 5% mediante el software estadístico Stata 10.0.

Para realizar el análisis estadístico se codificó de la siguiente manera:

- Desinfección tradicional y deshidratado tradicional = 0-0
- Desinfección propuesto y deshidratado propuesto = 1-1
- Desinfección tradicional y deshidratado propuesto = 0-1
- Desinfección propuesto y deshidratado tradicional = 1-0
- Presencia de *Salmonella spp.* = 1
- Ausencia de *Salmonella spp.* = 0
- Recuentos de mohos y coliformes <10 UFC/ml = 0
3. RESULTADOS Y DISCUSIÓN

3.1 Pruebas preliminares: Homogenización de la muestra

Según los recuentos microbiológicos obtenidos en las pruebas preliminares, el procedimiento óptimo para homogenizar las muestras fue mediante la utilización de frascos de vidrio con tapa rosca de 100 ml. El tiempo de homogenizado y contacto con la muestra, fue de 10 minutos a una velocidad de 250 rpm. Este procedimiento permitió separar los microorganismos adheridos a la harina con mayor facilidad, quedando así suspendidos en el líquido sobrenadante después de un decantado de 20 minutos. El inconveniente que presentan las bolsas de homogenización es que no se puede visualizar fácilmente el líquido sobrenadante y el tiempo que se necesita para que la muestra decante completamente es mayor.

En esta prueba se realizaron tres diluciones 1/10, 1/100 y 1/1000 del líquido sobrenadante y de las muestras en suspensión con el fin de facilitar los recuentos microbiológicos de cada microorganismo analizado. Con esto se definió que las siembras microbiológicas para mohos y coliformes en los experimentos posteriores se realizaran únicamente con la primera dilución (1/10) del líquido sobrenadante. El recuento microbiano de las muestras en suspensión no fue posible, debido a la formación de un aglomerado de partículas de harina en el que no se dificultaba la observación de las colonias.

3.2 Caracterización microbiológica de la materia prima (hipocótilos de maca) y del producto final obtenido mediante el proceso tradicional

La línea de base para el estudio consistió en varias pruebas preliminares realizadas por duplicado para determinar la carga microbiana inicial del lote de la materia prima con la que se trabajó en la fase experimental. Esta línea de base sirvió como punto de referencia tanto para los recuentos microbiológicos como para los microorganismos a considerar en la fase experimental.

En los recuentos microbiológicos de la materia prima se obtuvo un promedio de 7,4 x 10^{2} UFC/ml de coliformes, presencia de Salmonella spp. /25 g de materia prima y ausencia de mohos (Anexo 2). En los análisis microbiológicos de un lote diferente de producto final se obtuvo un recuento promedio de coliformes de 3,5 x 10^{2} UFC/ml, presencia de Salmonella spp. /25 g de harina de maca y ausencia de mohos (Anexo
2). El recuento de mohos del producto final se realizó también mediante el método de siembra en profundidad en agar dextrosa Sabouraud (SDA) más penicilina por 5 días, corroborando los resultados negativos obtenidos mediante las placas Compact Dry®. Esta comprobación se realizó porque los mohos son microorganismos poco exigentes con capacidad de crecer en alimentos con baja humedad, por lo que podrían desarrollarse y crecer en la harina de maca que al final de su procesamiento se espera que la humedad no sea mayor al 14,5% (Puris & Yali, 2006).

Estudios bioquímicos y moleculares realizados a nivel de las semillas de L. meyenii han demostrado la existencia de proteínas de defensa que evitan el desarrollo microbiano. Dentro de estas destaca una fracción proteica de bajo peso molecular con propiedades antifúngicas que es la que posiblemente confiere protección contra los hongos en las primeras etapas del procesamiento (Álvarez & Monteghirfo, 2003). Adicionalmente, durante el deshidratado, las altas temperaturas a las que son sometidos los hipocótilos troceados podría constituir una barrera que impide por completo el crecimiento de estos microorganismos (Álvarez & Monteghirfo, 2003).

En cuanto a la presencia de Salmonella spp. y coliformes en la materia prima y producto final, esto podría deberse a fuentes de contaminación cruzada a las que se expone este producto tal es el caso de los abonos y desechos biológicos de animales (Quiñones Ramirez, Trejo Cadillo, & Juscamaia Morales, 2016). En particular, la presencia de rugosidades o grietas en el hipocótilo favorece la adhesión de agentes patógenos al producto (Rozano et al., 2004). Entre los principales microorganismos patógenos que están asociados al empleo de abonos a base de estiércol se encuentran Escherichia coli O157:H7 y Salmonella spp. (provienen de las excretas de rumiantes como vacas y ovejas) (FDA, 2001). Por otro lado, el deficiente empleo de las buenas prácticas de manufactura podría contribuir a la proliferación de microorganismos en el producto final. Ante la falta de un proceso que asegure su eliminación, los microorganismos permanecen en el alimento e incluso proliferan utilizando sus nutrientes como es el caso de Salmonella spp. (FAO, 2016).

3.3 Evaluación del procesamiento de harina de maca mediante el diseño experimental

En este estudio se realizó una comparación de los procesos de desinfección y deshidratado entre el proceso tradicional utilizado en la empresa “caso estudio” y la alternativa propuesta a estos procesos. Esta evaluación se realizó mediante un diseño
experimental 2^2 en base al análisis microbiológico de mohos, coliformes (ante la ausencia de *E. coli* contemplada en la normativa de referencia) y *Salmonella spp.* en harina de maca. Además, se determinó el contenido de humedad del producto final obtenido en cada corrida experimental.

En total, se realizaron 12 experimentos que resultaron de las 4 combinaciones de las variables (desinfección y deshidratado, tradicionales y alternativos) desarrolladas por triplicado. Los resultados de estos análisis se presentan en la (Tabla 4).
Tabla 4. Resultados de los análisis microbiológicos y humedad obtenidos a partir de las corridas experimentales.

<table>
<thead>
<tr>
<th>N</th>
<th>N° de corrida experimental</th>
<th>Variable X1</th>
<th>Variable X2</th>
<th>Réplica</th>
<th>Coliformes (UFC/ml)</th>
<th>Mohos (UP/ml)</th>
<th>Salmonella spp</th>
<th>Humedad (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>4,8 x 10^2</td>
<td>6,0 x 10^1</td>
<td>Presencia/25g</td>
<td>10,99</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td>4,1 x 10^2</td>
<td>6,0 x 10^1</td>
<td>Presencia/25g</td>
<td>11,07</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>5,2 x 10^2</td>
<td>7,0 x 10^1</td>
<td>Presencia/25g</td>
<td>11,26</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>+1</td>
<td>+1</td>
<td>1</td>
<td><10</td>
<td><10</td>
<td>Ausencia/25g</td>
<td>8,46</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>+1</td>
<td>+1</td>
<td>2</td>
<td><10</td>
<td><10</td>
<td>Ausencia/25g</td>
<td>8,55</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>+1</td>
<td>+1</td>
<td>3</td>
<td><10</td>
<td>1,0 x 10^1</td>
<td>Ausencia/25g</td>
<td>8,56</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>-1</td>
<td>+1</td>
<td>1</td>
<td>3,9 x 10^2</td>
<td>2,0 x 10^1</td>
<td>Ausencia/25g</td>
<td>8,29</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>-1</td>
<td>+1</td>
<td>2</td>
<td>4,8 x 10^2</td>
<td>2,0 x 10^1</td>
<td>Ausencia/25g</td>
<td>8,27</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>-1</td>
<td>+1</td>
<td>3</td>
<td>4,3 x 10^2</td>
<td>2,0 x 10^1</td>
<td>Ausencia/25g</td>
<td>8,39</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>+1</td>
<td>-1</td>
<td>1</td>
<td>5,7 x 10^2</td>
<td>2,0 x 10^1</td>
<td>Ausencia/25g</td>
<td>11,84</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>+1</td>
<td>-1</td>
<td>2</td>
<td>5,1 x 10^2</td>
<td>2,0 x 10^1</td>
<td>Ausencia/25g</td>
<td>11,27</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>+1</td>
<td>-1</td>
<td>3</td>
<td>5,6 x 10^2</td>
<td>2,0 x 10^1</td>
<td>Ausencia/25g</td>
<td>11,42</td>
</tr>
</tbody>
</table>

X1: Desinfección (-1): vinagre 5ppm durante 10 minutos (+1): PAA 70 ppm durante 2 minutos
X2: Deshidratado (-1): ≈200 ° C durante 40 minutos (+1): 70 ° C durante 12 horas
El efecto de la combinación de las variables de estudio sobre cada variable respuesta, con excepción de los datos del análisis de *Salmonella spp.* por ser de tipo categórico y no continuo fueron analizadas mediante los análisis multivariantes de varianza ANOVA y MANOVA. Para los recuentos de mohos, coliformes y humedad del producto final se observaron diferencias estadísticamente significativas entre las 4 combinaciones experimentales, tanto para las respuestas analizadas individualmente (ANOVA, P<0,001) como para las medias de todas las respuestas en conjunto (MANOVA, P<0,001). La identificación de la combinación experimental más efectiva para la disminución de la carga microbiana y del contenido de humedad se realizó mediante la prueba de Scheffe (post-hoc ANOVA). Finalmente se corroboró la linealidad de la combinación de las variables mediante el análisis de varianza multifactorial (MANOVA) que también fue significativa a todos los niveles de análisis (Anexo 3).

El experimento correspondiente a la combinación de los procesos alternativos de desinfección y deshidratación (X1: +1; X2: +1) fue estadísticamente diferente (P<0,001) de los otros experimentos. Esta combinación (X1: PAA 70 ppm durante 2 minutos; X2: 70 ^{º} C durante 12 horas) podría considerarse debido a que se observó una disminución en la media de la humedad (8,52%) y además resultó ser la más recomendada para reducir la carga microbiana de coliformes de 4,7 x 10^{2} UFC/ml y 6,3 x 10^{1} UP/ml de mohos, a niveles indetectables (<10 UFC/ml y <10 UP/ml). Cabe mencionar que el experimento correspondiente a la combinación de los procesos alternativos de desinfección y deshidratación (X1: -1; X2: +1) también dio como resultados valores bajos de humedad (8,32%).

Adicionalmente se compararon los métodos de desinfección y deshidratación, tradicionales versus propuestos, por separado con respecto a cada variable respuesta mediante pruebas t de Student de dos colas. Referente a la desinfección, no se observaron diferencias estadísticamente significativas para el recuento de coliformes (P=0,182) ni para el contenido de humedad del producto final (P=0,748). Por otro lado, el recuento de mohos fue significativamente diferente entre el proceso de desinfección tradicional y propuesto (P=0,018), siendo mejor el propuesto (ácido peracético 70 ppm durante 2 minutos) que el tradicional (vinagre 5 ppm durante 10 minutos). Con respecto a la deshidratación, se observaron diferencias estadísticamente significativas para el recuento de coliformes (P=0,016), mohos (P=0,018) y humedad (P<0,001); siendo también el método propuesto el más apropiado (deshidratado 70 ^{º} C durante 12...
horas) en comparación con el tradicional (deshidratado ≈20 °C durante 40 minutos). (Tabla 5).

Las asociaciones de los procesos tradicionales y propuestos con la presencia de *Salmonella spp.* se evaluaron mediante la prueba de Chi-cuadrado. Tanto para la desinfección como para el deshidratado se observó una asociación estadísticamente significativa (P=0,046 para ambos casos) presentándose un 100% de ausencia de *Salmonella spp.* en la aplicación de los procesos propuestos.

Tabla 5. Comparación del proceso tradicional y propuesto para la desinfección y deshidratado (n=6 para cada medición).

<table>
<thead>
<tr>
<th>Parámetro analizado</th>
<th>Proceso</th>
<th>Media ± DE</th>
<th>Intervalo de confianza (IC)</th>
<th>Valor de P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desinfección</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coliformes</td>
<td>Tradicional</td>
<td>451,7 ± 49,6</td>
<td>(399,652; 503,682)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propuesto</td>
<td>273,3 ± 300,1</td>
<td>(-41,614; 588,281)</td>
</tr>
<tr>
<td></td>
<td>Mohos</td>
<td>Tradicional</td>
<td>41,7 ± 24,0</td>
<td>(16,466; 66,868)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propuesto</td>
<td>11,7 ± 9,8</td>
<td>(1,349; 21,985)</td>
</tr>
<tr>
<td></td>
<td>Humedad</td>
<td>Tradicional</td>
<td>9,7 ± 1,5</td>
<td>(8,107; 11,319)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propuesto</td>
<td>10,0 ± 1,6</td>
<td>(8,287; 11,744)</td>
</tr>
<tr>
<td></td>
<td>Deshidratado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coliformes</td>
<td>Tradicional</td>
<td>508,3 ± 58,5</td>
<td>(446,991; 569,675)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propuesto</td>
<td>216,6 ± 239,1</td>
<td>(-34,205; 467,538)</td>
</tr>
<tr>
<td></td>
<td>Mohos</td>
<td>Tradicional</td>
<td>41,7 ± 24,0</td>
<td>(16,466; 66,868)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propuesto</td>
<td>11,7 ± 9,8</td>
<td>(1,349; 21,985)</td>
</tr>
<tr>
<td></td>
<td>Humedad</td>
<td>Tradicional</td>
<td>11,3 ± 0,3</td>
<td>(10,992; 11,625)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propuesto</td>
<td>8,4 ± 0,12</td>
<td>(8,291; 8,550)</td>
</tr>
</tbody>
</table>

En este estudio se observó que la combinación de los procesos propuestos de desinfección y deshidratado resultó ser la más adecuada para reducir y en otros casos eliminar la carga microbiana. La desinfección de los alimentos, así como de las superficies en contacto directo con estos ha sido muy bien estudiada en los últimos años. Existen varios desinfectantes químicos que presentan un amplio espectro
bactericida y permiten la eliminación o reducción de la carga microbiana a niveles aceptables (FDA, 2001; Campos & Manzano, 2007; Gómez-López, 2012). En particular, el ácido peracético (PAA) es un desinfectante que se caracteriza por ser un oxidante fuerte, cualidad que ha demostrado ser efectiva para eliminación de agentes patógenos en frutas y hortalizas. Este agente es empleado a una concentración máxima de 80 ppm (Aguayo et al., 2017; Alegre, 2012). El PAA se encuentra en el mercado en estado líquido normalmente a una concentración del 15%. Aunque su mecanismo de acción no es muy claro se piensa que actúa sobre lipoproteínas externas de la membrana celular, haciéndolo más efectivo sobre bacterias Gram negativas. Una vez que el PAA atraviesa la membrana, oxida y daña el sistema enzimático, destruyendo con gran eficacia al microorganismo (Donabed, 2017; Leaper, 1984). El PAA posee diferentes características que la hacen un producto idóneo para la desinfección en la industria alimentaria, entre estas características se encuentra que sus productos de descomposición (ácido acético, O₂, CO₂ y H₂O) no son cancerígenos, mutagénicos ni tóxicos lo que lo hace seguro para las personas que lo manipulan y también para el medio ambiente (Neo et al., 2013).

Diversos estudios han evaluado la eficacia de la acción desinfectante del PAA en diferentes microorganismos. Así, en un estudio se evaluó la eficacia del PAA en la inactivación de agentes patógenos como Salmonella spp. sobre brotes de frijol mungo en donde se observó una reducción de la carga microbiana al someter los brotes a un tratamiento con PAA 70 ppm durante 2 minutos (Neo et al., 2013). En otro estudio se evaluó la acción del PAA a 75 ppm, aplicado a pimientos y pepinos poscosecha para la eliminación de Salmonella spp., en donde se demostró que la contaminación de éstos disminuyó a niveles indetectables (Yuk, Bartz, & Schneider, 2006). Además, se ha demostrado la efectividad del PAA en la reducción de la carga de esporas de mohos (Fusarium graminearum, Alternaria alternata, Aspergillus ochraceus, A. niger, A. flavus y Penicillium expansum) a una concentración de 5000 ppm (Korukluoglu, Sahan, & Yigit, 2006).

El deshidratado correcto es esencial para disminuir la humedad en el producto final y por consiguiente reducir el riesgo de desarrollo o crecimiento microbiano. Se sabe que durante el proceso de deshidratado se puede reducir la carga microbiana de distintas especies por la disminución del metabolismo bacteriano (Bourdoux et al., 2016; Finn, Condell, McClure, Amézquita, & Fanning, 2013). Sin embargo, las células vegetativas y esporas pueden permanecer viables durante meses o inclusive años en alimentos.
secos y también en las instalaciones de producción (Bourdoux et al., 2016). Es importante considerar que los microorganismos presentan comportamientos diferentes durante el deshidratado de los alimentos y esto depende de la temperatura usada. Así, por ejemplo, las bacterias aerobias mesófilas, coliformes y mohos deciden de manera significativa a medida que aumenta la temperatura de deshidratado (Ceballos, 2012). *Salmonella spp.* al ser un patógeno multirresistente y con la capacidad de multiplicarse a una elevada velocidad necesita un método más riguroso y eficaz para su eliminación. Uno de los principales tratamientos para inactivarla durante el procesamiento de los alimentos es el tratamiento con calor a partir de los 70 °C (Álvarez, 2013). Además, puede permanecer viable en medios que se consideran hostiles para otros microorganismos, como el calor, algunos ácidos y peróxido de hidrógeno. Puede también permanecer largos periodos de tiempo inactiva en alimentos refrigerados y congelados. Uno de los factores que afecta de manera considerable el desarrollo de *Salmonella spp.* es la actividad de agua. Su desarrollo y crecimiento óptimo se da entre un A_w de 0,93-0,99; sin embargo, puede sobrevivir en alimentos con baja actividad de agua como es el caso de las harinas que tienen una humedad aproximada de 14,5% y 0,80 de actividad de agua (Ferrer, 2016; INEN, 2015).

Los resultados obtenidos son comparables con otros estudios de deshidratado. Sin embargo, se debe tener en cuenta que durante los procesos de deshidratado no se da solamente la disminución de la actividad del agua, por lo tanto, no es el único factor estresante que afecta a los microorganismos. Dependiendo de las tecnologías empleadas para el deshidratado, los microorganismos pueden estar expuestos a variaciones de presión y temperatura, cambios en la atmósfera o a mayores concentraciones de CO$_2$ o N$_2$. La presencia de estos factores estresantes puede dificultar la interpretación de los resultados de inactivación microbiana porque estas tensiones podrían actuar ya sea de forma sinérgica o antagónica dependiendo del tipo de alimento y microorganismos contaminantes (Bourdoux et al., 2016; Finn et al., 2013).

A pesar de que el deshidratado propuesto incrementa el tiempo de procesamiento de la harina, esta es una etapa necesaria ya que en diversos estudios se ha observado que reduce la carga microbiana en alimentos. Así, por ejemplo, en rebanadas de manzana expuestas a 62,8 °C durante 6 h se observó la reducción significativa de las poblaciones de *Escherichia coli* O157: H7. Resultados similares fueron encontrados...
para otras bacterias como *Salmonella enterica* en tomates, zanahoria y repollo blanco (P. A. DiPersio, Kendall, & Sofos, 2004; P. DiPersio, Kendall, Calicioglu, & Sofos, 2003). Además, se ha reportado que el uso de una temperatura más alta (hasta 70 °C) provoca una mayor reducción de la carga microbiana presente en frutas y verduras (Hawaree, Chiewchan, & Devahastin, 2009).

Es importante que las empresas procesadoras de alimentos aseguren la inocuidad de sus productos implementando diferentes programas de control. Debido a que, la falta de ésta tanto en la producción, manipulación y procesamiento de los alimentos puede aumentar la tasa de enfermedades transmitidas por los alimentos (ETAs). Por ello, se han creado diferentes programas dirigidos al control de la higiene mediante el empleo de Buenas Prácticas Agrícolas (BPA) y Buenas Prácticas de Manufactura (BMP). Además, existen otros programas que buscan la estandarización de los procesos, tales como los Procedimientos Operativos Estandarizados de Saneamiento (POES) y programas que se encargan de identificar y controlan los peligros, como el sistema de Análisis de Peligros y Puntos Críticos de Control (HACCP). Estos programas en conjunto buscan asegurar la calidad e inocuidad de los alimentos cumpliendo cada uno de los requisitos que presentan. La implementación de estos sistemas permite la apertura y aceptación de los productos tanto a nivel nacional como internacional ya que en países extranjeros las exigencias del cumplimiento de los requisitos y estándares tanto de la calidad como de la inocuidad son mayores (Campos & Manzano, 2007; Garcia, Gemma, Vázquez, 2015).
4. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

En este trabajo de titulación se optimizaron dos procesos considerados como puntos críticos de la obtención de harina de maca (*Lepidium meyenii*) en función de la calidad microbiológica del producto final. Como resultado se observó que la combinación del proceso de desinfección con ácido peracético a 70 ppm por 2 minutos y del proceso de deshidratado a 70 º C por 12 horas constituyeron la mejor alternativa en comparación con el proceso tradicional empleado en la empresa “caso estudio”. Dicha combinación logró reducir la carga microbiana de mohos y coliformes a niveles indetectables y eliminar *Salmonella spp.* de la harina de maca.

Cabe mencionar que la humedad fue un parámetro muy importante relacionado con el deshidratado, pues al aumentar el tiempo de deshidratado se obtuvieron menores porcentajes de humedad, lo que permitió a su vez la disminución en los recuentos de los microorganismos estudiados.

4.2 Recomendaciones

A partir de este trabajo de titulación se sugiere que la empresa “caso estudio” lleve a cabo los cambios propuestos en la obtención de la harina de maca tanto en la desinfección (ácido peracético 70 ppm durante 2 minutos) como en el deshidratado (70 º C durante 12 horas). Sin embargo, en el caso de que no se pueda implementar los dos puntos críticos antes mencionados, se recomienda optimizar el proceso de deshidratado, modificando las variables tiempo y temperatura tradicionales por las propuestas.

Se recomienda que futuros estudios analicen los dos puntos críticos (recepción y empaquetado) que en este caso no han sido evaluados ya que se consideran de gran importancia en la calidad microbiológica del producto final. En la recepción de la materia prima se deben realizar controles microbiológicos periódicos para rechazar aquella que presenta niveles altos de contaminación microbiológica o que contenga patógenos como *Salmonella spp.* En el empaquetado existen dos parámetros que deben ser controlados, la humedad del producto (≤ 14,5%) y el material de empaque (bolsas de polietileno o polipropileno) para evitar el desarrollo microbiano y asegurar que el producto cumpla su tiempo de vida útil sin alteraciones de calidad e inocuidad.

elaboración de masas base para empanadas para la comercialización de empanadas. Universidad San Francisco de Quito.

Carrión, J., León, K., & Santiago, J. (2009). Actividad antioxidante de tres ecotipos de maca (Lepidium meyenii walp.) tratada con radiación gamma, 12, 72–77.

Instituto Ecuatoriano de Normalización [INEN]. (2015). NTE INEN 0616: Harina de...
trigo. Requisitos.

Organización de las, & Naciones Unidas para la Agricultura y la Alimentación [FAO].

ANEXOS

Anexo 1.

Esquemas para realizar el muestreo

1.1 Esquema del muestreo de la materia prima

Seleccionar 2 sacos aleatoriamente.

Mezcla de los 2 sacos = 1 lote de 100 Kg.

Cuarteo: dividir en 4 partes iguales y seleccionar dos partes opuestas: A y C

Mezcla de porciones A y C.

Repetir el procedimiento del cuarteo hasta obtener __________ en 3 porciones una cantidad de 1500 g. iguales de 500 g.

Dividir la muestra
1.2 Esquema del muestreo del producto final

Harina de maca previo al empaquetado.

Muestra elemental

Cuarteo: dividir en 4 partes iguales y seleccionar dos partes opuestas: A y C

Mezcla de porciones A y C.

Repetir el procedimiento del cuarteo hasta obtener una cantidad de 1500 g.

Dividir la muestra en 3 porciones iguales de 500 g.
Anexo 2.

Resultados de la caracterización microbiológica (línea de base)

2.1 Materia prima (hipocótilos de maca) obtenido mediante el proceso tradicional

<table>
<thead>
<tr>
<th>Microorganismo</th>
<th>Recuentos Ensayo 1 (UFC/ml)</th>
<th>Recuentos Ensayo 2 (UFC/ml)</th>
<th>PROMEDIO (1/10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dilución 1/10 1/100 1/1000</td>
<td>Dilución 1/10 1/100 1/1000</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>Coliformes</td>
<td>7,6x10² 7x10² 0</td>
<td>7,2x10² 6x10¹ 0</td>
<td>7,4x10²</td>
</tr>
<tr>
<td>Mohos</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Microorganismo</th>
<th>Ausencia/Presencia Ensayo 1</th>
<th>Ausencia/Presencia Ensayo 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella spp.</td>
<td>Presencia de Salmonella spp./25g</td>
<td>Presencia de Salmonella spp./25g</td>
</tr>
</tbody>
</table>

2.2 Producto final obtenido mediante el proceso tradicional

<table>
<thead>
<tr>
<th>Microorganismo</th>
<th>Recuentos Ensayo 1 (UFC/ml)</th>
<th>Recuentos Ensayo 2 (UFC/ml)</th>
<th>PROMEDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dilución 1/10 1/100 1/1000</td>
<td>Dilución 1/10 1/100 1/1000</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>Coliformes</td>
<td>3,6x10² 0 0</td>
<td>3,4x10² 0 0</td>
<td>3,5x10²</td>
</tr>
<tr>
<td>Mohos</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Microorganismo</th>
<th>Ausencia/Presencia Ensayo 1</th>
<th>Ausencia/Presencia Ensayo 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella spp.</td>
<td>Presencia de Salmonella spp./25g</td>
<td>Presencia de Salmonella spp./25g</td>
</tr>
</tbody>
</table>
Anexo 3.

Datos estadísticos obtenidos mediante el programa Stata: Data Analysis and Statistical Software
10. manova coliformes mohos humedad - experimento

<table>
<thead>
<tr>
<th>Source</th>
<th>Statistic</th>
<th>df 1</th>
<th>df 2</th>
<th>F(df1, df2)</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>experimento</td>
<td>W</td>
<td>0.000</td>
<td>3</td>
<td>9.0</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>2.9295</td>
<td>9.0</td>
<td>24.0</td>
<td>118.86</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>175.2662</td>
<td>9.0</td>
<td>14.0</td>
<td>90.88</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>112.2925</td>
<td>3.0</td>
<td>8.0</td>
<td>299.45</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

= exact, a = approximate, u = upper bound on F

11. matrix list e(eigvals_m)

<table>
<thead>
<tr>
<th>e (eigvals_m) [1,3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
</tr>
<tr>
<td>c2</td>
</tr>
<tr>
<td>c3</td>
</tr>
<tr>
<td>rl</td>
</tr>
<tr>
<td>112.29248</td>
</tr>
<tr>
<td>32.641653</td>
</tr>
<tr>
<td>30.33411</td>
</tr>
</tbody>
</table>

12.

13. anova coliformes experimento

<table>
<thead>
<tr>
<th>Source</th>
<th>Partial SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>545691.667</td>
<td>3</td>
<td>181897.222</td>
<td>117.99</td>
<td>0.0000</td>
</tr>
<tr>
<td>experimento</td>
<td>545691.667</td>
<td>3</td>
<td>181897.222</td>
<td>117.99</td>
<td>0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>12333.3333</td>
<td>8</td>
<td>1541.66667</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>558025</td>
<td>11</td>
<td>50729.5455</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

14. oneway coliformes experimento, scheffe

<table>
<thead>
<tr>
<th>Source</th>
<th>Analysis of Variance</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>545691.667</td>
<td>3</td>
<td>181897.222</td>
<td>117.99</td>
<td>0.0000</td>
</tr>
<tr>
<td>Within groups</td>
<td>12333.3333</td>
<td>8</td>
<td>1541.66667</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>558025</td>
<td>11</td>
<td>50729.5455</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

Bartlett's test for equal variances: chi2(2) = 0.4709 Prob>chi2 = 0.790

note: Bartlett's test performed on cells with positive variance:
1 multiple-observation cells not used
Tuesday July 31 16:51:09 2018 Page 4

23.
24. *0-0 menos 1-1 = -6 (1-1 mejor)
25. *0-0 menos 0-1 = -4 (0-1 mejor)
26. *0-0 menos 1-0 = -4 (1-0 mejor)
27. *1-1 menos 0-1 = 1.7 (1-1 mejor)
28. *1-1 menos 1-0 = 1.7 (1-1 mejor)
29.
30. anova humedad experimento

<table>
<thead>
<tr>
<th>Source</th>
<th>Partial SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>25.3253481</td>
<td>3</td>
<td>8.44178269</td>
<td>298.66</td>
<td>0.0000</td>
</tr>
<tr>
<td>experimento</td>
<td>25.3253481</td>
<td>3</td>
<td>8.44178269</td>
<td>298.66</td>
<td>0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>.226122598</td>
<td>8</td>
<td>.028265325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25.5514707</td>
<td>11</td>
<td>2.32286097</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

31. oneway humedad experimento, scheffe

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>25.3253481</td>
<td>3</td>
<td>8.44178269</td>
<td>298.66</td>
<td>0.0000</td>
</tr>
<tr>
<td>Within groups</td>
<td>.226122598</td>
<td>8</td>
<td>.028265325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25.5514707</td>
<td>11</td>
<td>2.32286097</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bartlett's test for equal variances: chi2(3) = 5.8775 Prob>chi2 = 0.118

Comparison of Humedad by experimento (Scheffe)

<table>
<thead>
<tr>
<th>Row Mean-Col Mean</th>
<th>0-0</th>
<th>1-1</th>
<th>0-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>-2.58537</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>-2.7892</td>
<td>-2.03834</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.560</td>
<td></td>
</tr>
<tr>
<td>1-0</td>
<td>.4014</td>
<td>2.98677</td>
<td>3.1906</td>
</tr>
<tr>
<td></td>
<td>0.105</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

32.
33. *0-0 menos 1-1 = -2.6 (1-1 mejor)
34. *0-0 menos 0-1 = -2.8 (0-1 mejor)
35. *1-1 menos 1-0 = 3.0 (1-1 mejor)
36. *0-1 menos 1-0 = 3.2 (0-1 mejor)
37.
38. ****************
Tuesday July 31 16:51:08 2018 Page 3

Comparison of Coliformes by experimento (Scheffe)

<table>
<thead>
<tr>
<th>Row Mean-Col Mean</th>
<th>0-0</th>
<th>1-1</th>
<th>0-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>470</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>-36.6667</td>
<td>433.3333</td>
<td>0.733</td>
</tr>
<tr>
<td>1-0</td>
<td>76.6667</td>
<td>546.667</td>
<td>113.3333</td>
</tr>
</tbody>
</table>

15.
16. (0-0 menos 1-1 = -47 (1-1 mayor)
17. (1-1 menos 0-1 = 43 (1-1 mayor)
18. (1-1 menos 1-0 = 54.6 (1-1 mayor)
19. (0-1 menos 1-0 = 11.3 (0-1 mayor)
20.
21. anova mohos experimento

Anova Analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>Partial SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5933.3333</td>
<td>3</td>
<td>1977.7778</td>
<td>118.67</td>
<td>0.0000</td>
</tr>
<tr>
<td>experimento</td>
<td>5933.3333</td>
<td>3</td>
<td>1977.7778</td>
<td>118.67</td>
<td>0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>133.33333</td>
<td>8</td>
<td>16.666667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6066.66667</td>
<td>11</td>
<td>551.515152</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22. oneway mohos experimento, scheffe

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>5933.3333</td>
<td>3</td>
<td>1977.7778</td>
<td>118.67</td>
<td>0.0000</td>
</tr>
<tr>
<td>Within groups</td>
<td>133.33333</td>
<td>8</td>
<td>16.666667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6066.66667</td>
<td>11</td>
<td>551.515152</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bartlett's test for equal variances: ch12(1) = 0.0000 Prob>chi2 = 1.000

Note: Bartlett's test performed on cells with positive variance.

2 multiple-observation cells not used

Comparison of Mohos by experimento (Scheffe)

<table>
<thead>
<tr>
<th>Row Mean-Col Mean</th>
<th>0-0</th>
<th>1-1</th>
<th>0-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>-60</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>-43.3333</td>
<td>16.6667</td>
<td>0.000</td>
</tr>
<tr>
<td>1-0</td>
<td>-43.3333</td>
<td>16.6667</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Two-sample t test with equal variances

<table>
<thead>
<tr>
<th>Group</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>tradicio</td>
<td>6</td>
<td>451.6667</td>
<td>20.23473</td>
<td>49.56477</td>
<td>399.6516 - 503.6817</td>
</tr>
<tr>
<td>propuest</td>
<td>6</td>
<td>273.3333</td>
<td>122.5198</td>
<td>300.1111</td>
<td>-41.61394 - 588.2806</td>
</tr>
<tr>
<td>combined</td>
<td>12</td>
<td>362.5</td>
<td>65.01894</td>
<td>225.2322</td>
<td>219.3943 - 505.6057</td>
</tr>
<tr>
<td>diff</td>
<td></td>
<td>178.3333</td>
<td>124.1795</td>
<td>225.2322</td>
<td>-98.3559 - 455.0226</td>
</tr>
<tr>
<td>diff = mean(tradicio) - mean(propuest)</td>
<td></td>
<td>t = 1.4361</td>
<td>degrees of freedom = 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ha: diff < 0</td>
<td>Pr(T < t) = 0.9092</td>
<td>Pr(</td>
<td>T</td>
<td><</td>
<td>t</td>
</tr>
</tbody>
</table>
42. ttest mohos, by(desinfección)

Two-sample t test with equal variances

<table>
<thead>
<tr>
<th>Group</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>tradicio</td>
<td>6</td>
<td>41.66667</td>
<td>9.803627</td>
<td>24.01388</td>
<td>16.46564</td>
</tr>
<tr>
<td>combined</td>
<td>12</td>
<td>26.66667</td>
<td>6.779351</td>
<td>23.48436</td>
<td>11.74542</td>
</tr>
<tr>
<td>diff</td>
<td>30</td>
<td>10.5935</td>
<td>6.396213</td>
<td>53.60379</td>
<td></td>
</tr>
</tbody>
</table>

Ho: diff = 0
degrees of freedom: 10

Pr(T < t) = 0.9911
Pr(|T| > |t|) = 0.0178
Pr(T > t) = 0.0089

43. ttest humedad, by(desinfección)

Two-sample t test with equal variances

<table>
<thead>
<tr>
<th>Group</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>tradicio</td>
<td>6</td>
<td>9.7131</td>
<td>.6248702</td>
<td>1.530613</td>
<td>8.10682</td>
</tr>
<tr>
<td>propuest</td>
<td>6</td>
<td>10.01572</td>
<td>.6723803</td>
<td>1.646989</td>
<td>8.287308</td>
</tr>
<tr>
<td>combined</td>
<td>12</td>
<td>9.864408</td>
<td>.4399679</td>
<td>1.524093</td>
<td>8.896046</td>
</tr>
<tr>
<td>diff</td>
<td>-3026168</td>
<td>.9179096</td>
<td>-2.347847</td>
<td>1.742613</td>
<td></td>
</tr>
</tbody>
</table>

Ho: diff = 0
degrees of freedom: 10

Pr(T < t) = 0.3742
Pr(|T| > |t|) = 0.7484
Pr(T > t) = 0.6258

44. tab salmonella desinfección, chi col

<table>
<thead>
<tr>
<th>Salmonella</th>
<th>Desinfección</th>
<th>tradicio</th>
<th>propuest</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>50.00</td>
<td>100.00</td>
<td>75.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>50.00</td>
<td>0.00</td>
<td>25.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Pearson chi2(1) = 4.0000 Pr = 0.046
46. **ttest coliformes, by(deshidratación)**

Two-sample t test with equal variances

<table>
<thead>
<tr>
<th>Group</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>tradición</td>
<td>6</td>
<td>508.3333</td>
<td>23.86304</td>
<td>58.45226</td>
<td>446.9914 - 569.6752</td>
</tr>
<tr>
<td>propuesta</td>
<td>6</td>
<td>216.6667</td>
<td>97.59326</td>
<td>239.0537</td>
<td>-34.2048 - 467.5381</td>
</tr>
<tr>
<td>combined</td>
<td>12</td>
<td>362.5</td>
<td>65.01894</td>
<td>225.2322</td>
<td>219.3943 - 505.6057</td>
</tr>
<tr>
<td>diff</td>
<td>291.6667</td>
<td>100.4683</td>
<td>67.80924</td>
<td>515.5241</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{diff} = \frac{\text{mean(tradición)}}{\text{mean(propuesta)}} - \text{std. err.}
\]

\[
t = \frac{\text{diff}}{\text{std. err.}}
\]

\[
\text{H}_0: \text{diff} = 0 \quad \text{degrees of freedom} = 10
\]

\[
\text{Pr(T < t)} = 0.9921 \quad \text{Pr(|T| > |t|)} = 0.0158 \quad \text{Pr(T > t)} = 0.0079
\]

47. **ttest mohos, by(deshidratación)**

Two-sample t test with equal variances

<table>
<thead>
<tr>
<th>Group</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>combined</td>
<td>12</td>
<td>26.6667</td>
<td>6.779351</td>
<td>23.48436</td>
<td>11.74542 - 41.58792</td>
</tr>
<tr>
<td>diff</td>
<td>30</td>
<td>10.5935</td>
<td>6.396213</td>
<td>53.60379</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{diff} = \frac{\text{mean(tradición)}}{\text{mean(propuesta)}} - \text{std. err.}
\]

\[
t = \frac{\text{diff}}{\text{std. err.}}
\]

\[
\text{H}_0: \text{diff} = 0 \quad \text{degrees of freedom} = 10
\]

\[
\text{Pr(T < t)} = 0.9911 \quad \text{Pr(|T| > |t|)} = 0.0178 \quad \text{Pr(T > t)} = 0.0089
\]

48. **ttest humedad, by(deshidratación)**

Two-sample t test with equal variances

<table>
<thead>
<tr>
<th>Group</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>tradición</td>
<td>6</td>
<td>11.3084</td>
<td>.1230135</td>
<td>.3013204</td>
<td>10.99218 - 11.62462</td>
</tr>
<tr>
<td>propuesta</td>
<td>6</td>
<td>8.420417</td>
<td>.0503845</td>
<td>.1234162</td>
<td>8.290899 - 8.549934</td>
</tr>
<tr>
<td>combined</td>
<td>12</td>
<td>9.864408</td>
<td>.4399679</td>
<td>1.524093</td>
<td>8.896046 - 10.83277</td>
</tr>
<tr>
<td>diff</td>
<td>2.887983</td>
<td>.132932</td>
<td>2.591792</td>
<td>3.184714</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{diff} = \frac{\text{mean(tradición)}}{\text{mean(propuesta)}} - \text{std. err.}
\]

\[
t = \frac{\text{diff}}{\text{std. err.}}
\]

\[
\text{H}_0: \text{diff} = 0 \quad \text{degrees of freedom} = 10
\]

\[
\text{Pr(T < t)} = 1.0000 \quad \text{Pr(|T| > |t|)} = 0.0000 \quad \text{Pr(T > t)} = 0.0000
\]
49. tab salmonella deshidratado, chi col

| Key | frequency | column percentage |

<table>
<thead>
<tr>
<th>frequency:</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deshidratado</th>
<th>tradicio</th>
<th>propuesto</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>50.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50.00</td>
<td>0.00</td>
<td>25.00</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Pearson chi^2(1) = 4.4000 Pr = 0.046

50. log close

log: C:\Users\Johana\Dropbox\Johana\stata desk 300112\varia datos\logfile.ml
log type: smcl

closed on: 31 Jul 2018, 06:29:41
Anexo 4.

Pruebas de laboratorio

Fotografía 1. Pruebas preliminares para el procesamiento de las muestras de harina de maca.

Fotografías 2 y 3. Hipocótilos de maca (materia prima).

Fotografía 4. Verificación de la técnica de determinación de Salmonella spp. en la materia prima (hipocótilos de maca). 1: Materia prima enriquecida con caldo de tetracionato. 2: Materia prima enriquecida con Rappaport Vassiliadis.
Fotografía 5. Pruebas bioquímicas para verificación de Salmonella spp. en producto final (harina de maca).

Fotografía 6. Caracterización microbiológica de la harina de maca para la línea base (Compact Dry® E. coli y coliformes). **A:** diluciones 1/10. **B:** diluciones 1/100.

Fotografía 7. Caracterización microbiológica de la harina de maca para la línea base (Compact Dry® Mohos y levaduras). **A:** diluciones 1/10. **B:** diluciones 1/100.

Fotografías 10, 11 y 12. Análisis microbiológico de los paquetes de la fase experimental.

Anexo 5.

5.1 Procesamiento tradicional para obtención de harina de maca (L. meyenii)

Recepción de la materia prima (hipocótilos de maca) → Lavado → Desinfección → Selección → Deshidratado → Enfriado → Molienda → Tamizado → Empaquetado
5.2 Procesamiento de las muestras para el análisis microbiológico

5.2.1 Flujograma del procedimiento para la preparación de muestras

Pesar 10 g de muestra y añadir 90 ml de agua de peptona.

Homogenizar a 250 rpm durante 10 minutos.

Preparación de diluciones: 1/10 y 1/100.

Preparación de controles.
5.2.2 Flujograma de procedimiento para la siembra en placas Compact Dry®: Escherichia coli y coliformes.

1. Etiquetar las placas.
2. Colocar 1 ml de muestra en la placa y tapar.
3. Incubar de 35-37 °C por 48 ± 2 horas.

5.2.3 Flujograma de procedimiento para la siembra en placas Compact Dry®: Mohos

1. Etiquetar las placas.
2. Colocar 1 ml de muestra en la placa y tapar.
3. Incubar de 22-25 °C de 3-7 días.
5.2.4 Flujograma de procedimiento para la siembra de Salmonella spp mediante el Kit Reveal® 2.0.

Pre-enriquecimiento:
rehidratar el medio REVIVE con 200 ml de agua destilada precalentada a 42 ± 1°C.

Colocar 25 g de la muestra en una bolsa homogenizadora junto con el medio rehidratado.

Mezclar e incubar a 36 ± 1°C por 4 horas.

Enriquecimiento:
rehidratar el medio Rappaport-Vassiliadis (RV) en una bolsa homogenizadora con 200 ml de agua destilada precalentada a 36 ± 1°C.

Transferir el medio Rappaport-Vassiliadis (RV) rehidratado a la bolsa que contiene el medio REVIVE con la muestra.

Mezclar e incubar a 42°C de 16-24 horas.

Test inmunocromotográfico:
transferir 8 gotas a un recipiente graduado y colocar la tirilla reactiva con las fechas hacia abajo.

Esperar 15 minutos a temperatura ambiente.

Interpretación
Positivo: Dos líneas de color rojo.
Negativo: Una línea de color rojo.