"Optimización del método para la obtención de grenetina a partir de residuos avícolas para su aplicación en la elaboración de gelatinas saborizadas"

Trabajo de Titulación previo a la obtención de Título de Ingeniero Químico

AUTORA:

AIDA CRISTINA RAMÓN NIEVES
C.I.: 010536594-4

DIRECTOR:

Ing. Quím. SERVIO RODRIGO ASTUDILLO SEGOVIA
C.I.: 010148860-9

CUENCA-ECUADOR
2018
El presente trabajo de investigación tiene como objeto la optimización del método para la obtención de la grenetina a partir de residuos avícolas (patas de pollo) para su aplicación en la elaboración de gelatina saborizadas.

La obtención de dicha sustancia se puede realizar mediante dos métodos: el método térmico y el método químico. Para el tratamiento térmico se probó con la extracción de grenetina durante varias horas una temperatura la misma que varía en un rango de 60 a 80°C; con el fin de optimizar el proceso se realizó la extracción de la grenetina en un reactor en donde se pudo controlar el tiempo y la presión optimizando así estos parámetros.

Para la implementación del método químico se plantea el uso del diseño experimental R^k; para el planteamiento de dicho diseño se toma como variables: concentración de reactivos, tiempo de residencia y tiempo de extracción.

Realizado los experimentos para ambos métodos se analizaron para determinar cuál fue el experimento que a más de presentar el mejor rendimiento presenta las mejores propiedades organolépticas para continuar con la siguiente parte del proyecto mismo que consiste en elaborar gelatinas saborizadas, una vez realizado los experimentos se determinó que el mejor experimento es el MQ1 el cual presentaba un rendimiento 3.25% al igual que sus propiedades organolépticas fueron las más idóneas para continuar con la siguiente etapa; dicho experimento corresponde al método químico.

Mediante diferentes pruebas bromatológicas se determinó a calidad del producto elaborado, cuyos parámetros físicos, químicos y microbiológicos cumplen con la normativa vigente.

Por su parte el análisis sensorial determino la aceptación del consumidor hacia la gelatina saborizada.

Palabras claves:

PATAS DE POLLO, DISEÑO EXPERIMENTAL. GRENETINA, GELATINA.
ABSTRACT
The present research project has the objective to optimize the method for obtaining grenetina from poultry waste (chicken feet) for application in the elaboration for flavored jellies.

The obtaining of said substance can be performed by two methods: thermal method and Chemical method. For the thermal method, it was tested with the extraction of grenetina for several hours at temperature the same that varies in a range of 60 to 80°C; in order to optimize the process, the extraction of the grenetina in a reactor where time and pressure could be controlled thus optimizing these parameters.

For the implementation of the Chemical method, the use of experimental design is considered; for the approach of said design, it is taken as variables reagent concentration, residence time, and extracción time.

Made the experiments for both methods were analyzed to determine which was the experiment that presented the best performance, and the more represents the best organoleptic properties to continue with the next part of the project that consists in making flavored gelatinos. Once the experiments were done, it was determined that the best experiment, is MQ1 which presented a 3.25% yield as well as its organoleptic properties were the most suitable to continue with the next stage; said experiment corresponds to the chemical method.

Through different bromatological tests, the quality of the elaborated product was determined, whose physical, chemical, and microbiological parameters comply with current regulations.

For its part, the sensory analysis determined the acceptance of the consumer to the flavored gelatinos.

KEYWORDS
CHICKEN FEET, EXPERIMENTAL DESIGN, GRENETINE, JELLY.
INDICE DE CONTENIDO

RESUMEN .. 2
ABSTRAC ... 3
CLAUSULAS DE RESPONSABILIDAD .. 15
DEDICATORIA .. 17
AGRADECIMIENTO ... 18
1. INTRODUCCION .. 19
 1.1. ANTECEDENTES .. 19
 1.2. JUSTIFICACIÓN ... 20
 1.3. OBJETIVOS .. 20
 1.3.1. Objetivo general .. 20
 1.3.2. Objetivo específico ... 20
2. MARCO TEORICO .. 22
 2.1. Grenetina .. 22
 2.1.1. Beneficios del consumo de grenetina ... 22
 2.1.1.1. Campo de la Medicina ... 22
 2.1.1.2. Campo Alimenticio ... 23
 2.1.1.3. Cosmética .. 23
 2.2. Colágeno ... 23
 2.3. Gelatina ... 24
 2.3.1. Gelatina pura comestible ... 24
 2.3.2. Postre de gelatina .. 24
 2.3.3. Tipos de gelatina .. 24
 2.3.3.1. Gelatina animal .. 24
 2.3.3.2. Formas de presentación de la gelatina animal: .. 25
 2.3.3.3. Gelatina vegetal o agar agar ... 25
 2.3.3.4. Gelatinas Artificiales: .. 25
 2.3.4. Gelatina de patas de pollo (Gallus gallus domesticus) .. 25
 2.3.5. Aplicaciones de la gelatina ... 25
 2.3.5.1. Industria alimentaria.. 25
 2.3.5.2. Industria farmacéutica .. 26
2.3.5.3. Industria fotográfica ... 26
2.3.5.4. Nuevas aplicaciones de la gelatina .. 26
2.3.5.5. La gelatina en la terapia con células madre 26
2.4. Materias Primas utilizadas en la obtención de grenetina 26
2.4.1. Patas de pollo (*Gallus gallus domesticus*) 26
2.4.2. Información nutricional de las patas de pollo (*Gallus gallus domesticus*). 27
2.5. Materias primas utilizadas en la elaboración de gelatina 27
2.5.1. Aditivos alimentarios ... 27
2.5.2. Aromatizantes ... 28
2.5.2.1. Clasificación de los aromatizantes ... 28
 Aromatizantes naturales .. 28
 Sustancias aromatizantes .. 28
2.5.3. Colorantes alimentarios .. 28
2.5.3.1. Clasificación de los colorantes .. 28
 2.5.3.1.1. Colorantes naturales ... 28
 2.5.3.2. Colorantes sintéticos .. 29
2.5.4. Edulcorantes .. 30
2.5.4.1. Clasificación de los edulcorantes ... 30
 2.5.4.1.1. Edulcorantes naturales o nutritivos 30
 2.5.4.1.2. Edulcorantes artificiales o no nutritivos 31
2.6. Proceso para la obtención de grenetina a partir residuos avícolas mediante el método térmico ... 33
2.7. Descripción del proceso para la obtención de grenetina partir de los residuos avícolas mediante el tratamiento térmico ... 34
2.7.1. Recepción de la materia prima .. 34
2.7.2. Adecuación .. 34
2.7.3. Desinfectado .. 34
2.7.4. Desengrasado .. 34
2.7.5. Lavado .. 34
2.7.6. Extracción ... 34
2.7.7. Filtrado .. 35
2.7.8. Secado .. 35
2.7.9. Triturado .. 35
2.8. Proceso para la obtención de gelatina a partir de los residuos avícolas mediante el método químico ... 36

2.9. Descripción del proceso para la obtención de grenetina a partir de los residuos avícolas mediante el tratamiento químico .. 37

2.9.1. Recepción de la materia prima .. 37
2.9.1. Adecuación ... 37
2.9.1. Desinfectado .. 37
2.9.2. Desengrasado .. 37
2.9.3. Lavado .. 37
2.9.4. Hidrólisis alcalina .. 38
2.9.5. Lavado .. 38
2.9.6. Neutralizado .. 38
2.9.7. Extracción ... 38
2.9.8. Filtrado ... 38
2.9.9. Secado .. 38
2.9.10. Triturado .. 38

2.10. Proceso para la elaboración de gelatina ... 39

2.11. Descripción del proceso para la elaboración de gelatina 39

2.11.1. Recepción de la grenetina ... 39
2.11.2. Caracterización de grenetina ... 40
2.11.3. Dosificación de aditivos alimentarios ... 40
2.11.4. Corrección de grados Brix y pH .. 40
2.11.5. Gelificación .. 40

2.12. Requisitos con los que debe cumplir la gelatina pura comestible .. 40

2.13. Requisitos con los que debe cumplir el postre de gelatina 41

2.13.1. Requisitos bromatológicos con los que debe cumplir el postre de gelatina 41

2.14. Informe nutricional .. 42

2.15. Semaforización de productos ... 43

2.15.1. Significado de los colores .. 43
 Verde ... 44
 Amarillo .. 44
 Rojo .. 44

2.16. Análisis sensorial ... 44

2.16.1. Atributos sensoriales ... 45
UNIVERSIDAD DE CUENCA

Color... 45
Sabor... 45
Aroma.. 45
Flavor.. 45
Aspecto:... 45
Textura:... 45
2.16.2. Evaluación sensorial .. 45
2.16.3. Métodos de evaluación sensorial .. 46
 2.16.3.1. Pruebas analíticas ... 46
 Pruebas discriminatorias:... 46
 Pruebas escalares... 46
 Pruebas descriptivas: ... 46
 2.16.3.2. Pruebas afectivas ... 46
3. Metodología ... 47
 3.1. Diseño experimental para la optimización del tratamiento térmico 47
 3.2. Diseño experimental para la optimización del tratamiento químico 47
 3.3. Procedimiento para la obtención de grenetina mediante el método térmico .. 50
 3.3.1. Pretratamiento de la materia prima previo a la obtención de grenetina por el método térmico.. 50
 3.3.2. Procedimiento para la obtención de gelatina mediante el método térmico 52
 3.4. Datos experimentales obtenidos en la aplicación del tratamiento térmico 55
 3.5. DPO para la obtención de grenetina a partir del método térmico 56
 Diagrama 4. DPO Obtención de grenetina por el método térmico 56
 3.6. Procedimiento para la obtención de grenetina mediante el método químico . 57
 3.6.1. Pretratamiento de la materia prima previo a la obtención de grenetina ... 57
 3.6.2. Procedimiento para la obtención de grenetina mediante el método químico 59
 3.7. Datos experimentales obtenidos en la aplicación del tratamiento químico 62
 3.8. DPO para la obtención de grenetina a partir del método químico................. 65
 3.9. Procedimiento para la formulación de gelatinas saborizadas 66
 3.10. DPO para la elaboración de gelatina .. 67
 3.11. Pruebas bromatológicas aplicadas a la grenetina obtenida en la optimización del método para la obtención de grenetina ... 68
 3.11.1. Determinación de la humedad ... 68
UNIVERSIDAD DE CUENCA

3.11.2. Determinación de pH ... 68
3.11.3. Determinación del tiempo de gelificación 69
3.11.4. Determinación de la dureza de gel .. 70
3.12. Formulación para la elaboración de gelatinas saborizadas 71
3.13. Análisis sensorial del producto determinado 71
 3.13.1. Cálculo del número de catadores .. 72
 3.13.2. Aplicación de la ficha de degustación 73

4. Resultados y Discusión ... 74
 4.1. Resultados obtenidos en las pruebas preliminares. 74
 4.2. Resultados obtenidos en la optimización del tratamiento térmico. 74
 4.3. Resultados obtenidos en la optimización del tratamiento Químico 76
 4.4. Resultados obtenidos en las pruebas centrales 77
 4.5. Discusión de los resultados obtenidos en ambos métodos 78
 4.6. Informe nutricional ... 80
 4.6.1. Informe nutricional gelatina con sabor a mora 80
 4.7. Resultados obtenidos en el análisis sensorial 83
 4.7.1. Resultados obtenidos en la aplicación de la ficha de degustación . 83
 4.8. Resultados obtenidos mediante la realización de las pruebas bromatológicas 87

 Tabla 30. Resultados obtenidos en el análisis físico-químico 87

5. Conclusiones ... 88
6. Recomendaciones .. 90
7. Bibliografía ... 91
8. Anexos ... 96
Índice de tablas

Tabla 1. Información nutricional de las patas de pollo 27
Tabla 2. Colorantes naturales más utilizados según la UE 29
Tabla 3. Colorantes sintéticos más utilizados según la UE 29
Tabla 4. Algunos edulcorantes nutritivos ... 31
Tabla 5. Algunos edulcorantes no nutritivos .. 31
Tabla 6. Requisitos químicos para gelatina pura comestible 40
Tabla 7. Requisitos microbiológicos para la gelatina pura comestible .. 41
Tabla 8. Requisitos sensoriales para el postre de gelatina 41
Tabla 9. Requisito físico-químico para el postre de gelatina 42
Tabla 10. Requisitos microbiológicos para el postre de gelatina 42
Tabla 11. Nutrientes a declararse obligatoriamente y su VDR 43
Tabla 12. Color e interpretación para el semáforo nutricional 44
Tabla 13. Matriz para el diseño experimental .. 48
Tabla 14. Implementación de la matriz para el diseño experimental ... 48
Tabla 15. Determinación de variables para el diseño experimental 49
Tabla 16. Matriz definida para el diseño experimental 49
Tabla 17. Matriz definida para la aplicación de los experimentos centrales en el diseño experimental ... 50
Tabla 18. Datos experimentales obtenidos en el tratamiento térmico .. 55
Tabla 19. Resultados obtenidos en el tratamiento térmico 55
Tabla 20. Datos experimentales obtenidos en el tratamiento químico .. 62
Tabla 20. (Continuación) Datos experimentales obtenidos en el tratamiento químico ... 63
Tabla 21. Resultados obtenidos en el tratamiento químico 63
Tabla 22. Datos experimentales obtenidos en los experimentos centrales. 64
Tabla 23. Resultados obtenidos en el tratamiento químico 64
Tabla 24. Formulación para la elaboración de gelatina 71
Tabla 25. Parámetros para el cálculo del tamaño de muestra 72
Tabla 26. Descripción de parámetros para el cálculo del tamaño de muestra ... 72
Tabla 27. Informe nutricional muestra testigo 81
Tabla 28. Informe nutricional muestra propia .. 82
Tabla 29. Escala del nivel de aceptación del producto.............................. 83
Tabla 30. Resultados obtenidos en el análisis físico-químico...................... 87
Índice de fotografías

Fotografía 1. Cortado de uñas e imperfecciones- Obtención de grenetina..... 50
Fotografía 2. Materia prima desinfectada- Obtención de grenetina 51
Fotografía 3. Desengrasado de la materia prima desinfectada- Obtención de grenetina ... 51
Fotografía 4. Materia prima desengrasada- Obtención de grenetina......... 52
Fotografía 5. Extracción de la grenetina- Obtención de grenetina mediante el método térmico ... 52
Fotografía 6. Filtración de la solución obtenidos- Obtención de grenetina mediante el método térmico ... 53
Fotografía 7. Pesado de la grenetina- Obtención de grenetina mediante el método térmico ... 53
Fotografía 8. Pesado de la grenetina - Obtención de grenetina mediante el método térmico ... 54
Fotografía 9. Determinación del tamaño de poro de la grenetina - Obtención de grenetina mediante el método térmico ... 54
Fotografía 10. Cortado de uñas e imperfecciones- Obtención de grenetina... 57
Fotografía 11. Materia prima desinfectada- Obtención de grenetina 58
Fotografía 12. Desengrasado de la materia prima desinfectada- Obtención de grenetina ... 58
Fotografía 13. Materia prima desengrasada- Obtención de grenetina....... 59
Fotografía 14. Preparación de soluciones - Obtención de grenetina mediante el método químico ... 59
Fotografía 15. Colocación del NaOH en la materia prima - Obtención de grenetina mediante el método químico ... 60
Fotografía 16. Determinación del pH - Obtención de grenetina mediante el método químico ... 60
Fotografía 17. Filtración de la grenetina - Obtención de grenetina mediante el método químico ... 61
Fotografía 18. Secado de la grenetina en el horno secador - Obtención de grenetina mediante el método químico ... 61
Fotografía 19. Trituración de la grenetina Obtención de grenetina mediante el método químico ... 62
Fotografía 20. Dosificación de los aditivos para la elaboración de la gelatina. ... 66
Fotografía 21. Determinación de grados Brix .. 66
Fotografía 22. Elaboración de muestras para la degustación 67
Fotografía 23. Determinación de Humedad. .. 68
Fotografía 24. Determinación de pH. ... 69
Fotografía 25. Determinación de tiempo de gelificación 70
Fotografía 26. Determinación de dureza de gel... 71
Fotografía 27. Análisis sensorial de la muestra y el testigo. 74
Índice de Diagramas

Diagrama 1. Proceso para la obtención de grenetina a partir del método térmico... 33
Diagrama 2. Proceso para la obtención de grenetina a partir del método térmico... 36
Diagrama 3. Proceso para la elaboración de gelatinas saborizadas................. 39
Diagrama 4. DPO Obtención de grenetina por el método térmico............. 56
Diagrama 5. DPO Obtención de grenetina por el método químico............. 65
Diagrama 6. DPO Elaboración de gelatina saborizada............................... 67

Índice de Graficas

Grafica 1. Resultados obtenidos en el tratamiento térmico...................... 75
Grafica 2. Resultados obtenidos en el tratamiento químico..................... 76
Grafica 3. Resultados obtenidos en la realización de los experimentos centrales.. 78
Grafica 4. Evaluación de color- Gelatinas saborizadas “Mora”............... 84
Grafica 5. Evaluación de sabor- Gelatinas saborizadas “Mora”............... 84
Grafica 6. Evaluación de textura- Gelatinas saborizadas “Mora”............. 85
Grafica 7. Evaluación de aroma Gelatinas saborizadas “Mora”............... 86
Grafica 8. Porcentaje de consumo- Gelatinas saborizadas “Mora”........... 86

Índice de Ilustraciones

Ilustración 1. Colágeno...23
Ilustración 2. Semáforo muestra testigo...81
Ilustración 3. Semáforo muestra propia...83
Índice de Anexos

8.1. Anexo 1. Resultados de las pruebas microbiológicas.. 97
8.2. Anexo 2. Ficha de catación.. 97
8.3. Anexo 3. Oficio enviado a la Unidad Educativa San Joaquín............................ 100
8.4. Anexo 4. Etiqueta del producto terminado... 101
Cláusula de licencia y autorización para publicación en el Repositorio Institucional

AIDA CRISTINA RAMON NIEVES en calidad de autor/a y titular de los derechos morales y patrimoniales del trabajo de titulación "OPTIMIZACION DEL METODO PARA LA OBTENCION DE GRENETINA A PARTIR DE RESIDUOS AVICOLAS PARA SU APLICACIÓN EN LA ELABORACION DE GELATINAS SABORIZADAS", de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el repositorio Institucional, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Cuenca, 17 de septiembre del 2018

[firma]

AIDA CRISTINA RAMON NIEVES

C.i.d: 010536594-4
Cláusula de Propiedad Intelectual

Aída Cristina Ramón Nieves, autor/a del trabajo de titulación “OPTIMIZACION DEL METODO PARA LA OBTENCION DE GRENETINA A PARTIR DE RESIDUOS AVICOLAS PARA SU APLICACIÓN EN LA ELABORACION DE GELATINAS SABORIZADAS”, certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor/a.

Cuenca, 17 de septiembre del 2018

[Signature]

Aída Cristina Ramón Nieves
C.I. 010536594-4
DEDICATORIA

Quiero dedicar este trabajo en primer lugar al ser supremo que rige mi vida, a Dios y su Madre porque a lo largo de mi existencia supo guiar mis pasos y mi camino, dándome la valentía, sabiduría, coraje y fuerzas necesarias para llegar a cumplir cada una de las metas propuestas.

De la misma manera quiero dedicar este logro a mis padres quienes día a día estuvieron junto a mí. A mi papi Rodrigo por estar en cada una de las etapas de mi vida llenándome de mimos y consejos; a mi mami Eulalia gracias por apoyarme en cada idea en cada paso que me llevo a llegar a este punto. Gracias a los dos por tener una vida llena de sacrificios con el fin de darme lo mejor, gracias por ser esos padres que me enseñaron que todo sacrificio vale la pena, ustedes me enseñaron que lo económico jamás suplirá el afecto y el amor; gracias por educarme con principios y valores, ya que gracias a ustedes hoy soy una persona de bien.

A mi pequeña hija Adria Sofía, gracias mi cielo por haber estado conmigo en aquellos días y noches interminables, gracias por tu infinito amor y compañía, gracias mi chiquita por haber estado junto a mí y ser mi motor y mi inspiración.

Además quiero dedicar este trabajo a mis hermanos Christian y Jean Pierre gracias por estar ahí ya que al final del día siempre conté con su apoyo y su compañía. A mi abuelita Olimpia gracias mami por cada uno de los consejos y el apoyo brindado, gracias por cada una de sus bendiciones gracias por acogerme como a una hija más, gracias por estar junto a mí en este largo caminar, de igual manera a mi Abuelito Alberto aunque para mi tu partida al cielo fue prematura, tu recuerdo sigue intacto en mi mente y en mi corazón gracias por tu apoyo y consejos donde quiera que te encuentres espero estés orgulloso de tu nieta.
AGRADECIMIENTO

En primer lugar a Dios por permitirme culminar una meta más en mi vida, por ser mi fortaleza, mi guía y mi apoyo en este largo caminar, y por rodearme de personas amorosas y cariñosas

A mis padres Rodrigo y Eulalia por ser un pilar fundamental en mi vida, brindándome su apoyo y su amor incondicional.

A mi hija Sofía gracias por el apoyo, paciencia y el gran amor que me tuviste a lo largo del camino.

Un sincero agradecimiento al director de este proyecto, al Ingeniero Servio Astudillo, docente de la Facultad de Ciencias Químicas de la Universidad de Cuenca, gracias por cada uno de sus concejos, paciencia y tiempo puestos en la realización del proyecto. Sus conocimientos y experiencia han sido fundamentales en el desarrollo del mismo.

De igual manera a la Ingeniera Verónica Saetama, responsable del laboratorio de Humidificación y Secado de la Facultad de Ciencias Químicas, gracias por su amistad, concejos y todo el apoyo brindado para la realización de este proyecto.

A cada uno de los profesores con el que tuve el privilegio de formarme como profesional, gracias por su sabiduría, compromiso y entrega.

A mis dos grandes amigas Yessenia y Paola, gracias por su compañía, cariño, amistad y ocurrencias; quienes hicieron que cada una de las clases fueran únicas, gracias por el apoyo brindado no solo en lo académico sino en lo personal.
1. INTRODUCCION

Desde el inicio de la humanidad, alimentos como la carne y huevos de aves de corral son productos alimenticios asequibles y de calidad consumidos por la mayoría de las poblaciones y etnias del mundo (Williams, 2017); la gran mayoría de personas en el mundo en su dieta diaria incluyen la carne de pollo; esto debido a que la carne de pollo se destaca por presentar un alto contenido proteico (Aguiar, 2012), sin embargo este tipo de carne no solo proporcionan proteínas de alta calidad, sino también vitaminas y minerales importantes para el ser humano (Ferraell, 2017).

Por este motivo es necesario tomar en cuenta que en el mercado existe una gran demanda generada por el consumo de la carne de pollo debido a factores como; su gran valor nutricional; bajo coste en comparación con otras carnes; y su gran disponibilidad.

Es importante analizar que sucede con aquellas partes del animal que no son adquiridas en el mercado debido a que no representan una fuente de proteína representativa, en el caso específico se trata de las patas de pollo cuyo valor comercial es muy bajo en comparación con la carne de pollo, esto debido al escaso conocimiento de la población sobre el contenido nutricional de las mismas.

En el presente proyecto de investigación se realiza un análisis para lograr la optimización del método para la obtención de grenetina a partir de residuos avícolas en este caso de patas de pollo y su aplicación en la elaboración de gelatinas saborizadas.

1.1. ANTECEDENTES

En los últimos años el consumo de pollo en el Ecuador ha ido en aumento; según el último censo registrado en el país demuestra que en el año 2015 se registró la presencia de 35’8877,48 aves de corral este número corresponde a la existencia de gallos, gallinas, pollos, pollas, pollitos y pollitas; dichas cifras fueron tomas del Instituto Nacional de Censos y Estadísticas (CENSOS, 2015); llevando así a ubicar al Ecuador en el puesto número 18 en la escala mundial de países consumidores de productos avícolas (Tendencias Avícolas Mundiales, 2016); tan solo esto hace referencia al consumo de la carne de pollo más no a la de sus residuos; específicamente a las patas de pollo.

En países como Brasil se considera a las extremidades del pollo (patas) como un subproducto de escaso interés comercial, debido a que la población no tiene interés en consumirlas (RIVERA. J, 2000), en Ecuador se presenta el mismo problema debido al escaso interés de la población por el consumo de las patas esto quizás debido a la falta de información del valor nutricional de las mismas.
1.2. JUSTIFICACIÓN

Cuando los residuos avícolas son tirados a la basura estos provocan contaminación con las fuentes hídricas y el suelo con el que entran en contacto convirtiéndose así en una nueva fuente de contaminación hacia el medio ambiente; los residuos de las aves en el caso de las patas de los pollos produce daños en las fuentes hídricas ya que su descomposición degenera en graves problemas como:

- Aumento de la concentración de sólidos disueltos,
- Aumento de la demanda química de oxígeno.
- Presencia de CO2 en el agua.
- Aumento de la actividad microbiana.

En el caso específico del suelo se tiene un aumento de la materia orgánica.

Es por ello necesario encontrar un uso industrial para estos residuos, en este caso en específico se considera como residuo las patas de pollo, esto debido a que estas al ser arrojadas a los rellenos sanitarios se convierten en un foco de contaminación; por este motivo se sugiere su aplicación para la elaboración de gelatinas saborizadas debido a que dichos residuos en su composición tienen colágeno, este colágeno es una gran fuente de la grenetina.

1.3. OBJETIVOS

1.3.1. Objetivo general

- Optimizar el método para la obtención de grenetina a partir de residuos avícolas mediante el uso del diseño experimental.

1.3.2. Objetivo específico

- Utilizar el diseño experimental para la obtención de grenetina a partir del proceso químico mediante una hidrólisis alcalina.
- Comparar y determinar a partir los resultados obtenidos mediante el uso del diseño experimental cual es el tiempo de residencia, y temperatura para obtener el máximo rendimiento en la obtención de la grenetina en el caso del tratamiento térmico.
- Comparar y determinar a partir los resultados obtenidos mediante el uso del diseño experimental cual es la concentración de reactivos, tiempo de residencia,
y temperatura para obtener el máximo rendimiento en la obtención de la grenetina en el caso del tratamiento químico.

- Aplicar la grenetina obtenida mediante los diferentes procesos en la elaboración de gelatinas saborizadas.
2. MARCO TEORICO

2.1. Grenetina.

Según (BADUI DERGAL, Grenetina , 2012) se define a la grenetina como la proteína que proviene de la desnaturalización y del desdoblamiento de la triple hélice del colágeno. Para su elaboración industrial, se utiliza la piel y los huesos de los animales, mismos que se calientan a pH ácidos de 2 a 3 o; alcalinos de 10 a 12 para deshacer su estructura; el líquido resultante se filtra, desmineraliza, concentra, esteriliza y seca. La transformación del colágeno-grenetina-gelatina se observa al calentar un trozo de carne rico en tejido conectivo y cuyo enfriamiento produce un gel (GRENETINA, 2012).

El colágeno (proteína) es una de los elementos fundamentales de la grenetina (El lado bueno de las cosas, 2016).

2.1.1. Beneficios del consumo de grenetina

El uso de la grenetina se remonta a la antigua civilización Egipcia en donde era utilizada para la elaboración de medicamentos, cosméticos y en la preparación de algunos alimentos; a continuación se describen algunos de los beneficios del consumo de la grenetina de acuerdo al campo en el que intervenga (Para que sirve, 2016):

2.1.1.1. Campo de la Medicina

- Tratamiento de las dolencias en las articulaciones.
- Incremento de la hidroxiprolina (Proteína cuya función es regenerar las articulaciones).
- Combate la artritis y fortalece los huesos.
- Produce la secreción de la creatina (compuesto fundamental para las células musculares ya que puede aumentar la masa muscular sin la necesidad de ganar grasa)
- Brinda la sensación de saciedad.
- Colabora en el tratamiento de trastornos gástricos como la acidez estomacal y la gastritis.
- Prevención del estreñimiento.
- Ideal para el consumo de niños y mujeres embarazadas y en periodo de lactancia debido a su alto contenido de calcio.
- Recomendada en el tratamiento de personas con obesidad y diabetes ya que ayudan a disminuir las ganas de ingerir golosinas; esto siempre y cuando la grenetina no contenga azúcar.
2.1.1.2. **Campo Alimenticio**

- Elaboración de mousse (Garcés, 2018)
- Preparación de gelatinas.
- Fabricación de cremas espesantes.
- Confitería (Orozco Sánchez, 2014)

2.1.1.3. **Cosmética**

- Fortalecimiento e hidratación de la piel, cabello y uñas (Para que sirve, 2016).
- Retrasa los signos de envejecimiento como las líneas de expresión y las arrugas (Para que, 2016).

2.2. **Colágeno**

Según SEYMOUR define al colágeno como: "Una proteína dura y fuerte, la cual forma cartílagos, tendones, ligamentos. La fuerza de esta proteína deriva de su estructura superior de ‘‘superhélices’’, las cuales son tres polipéptidos helicoidales hacia la derecha que se encuentran entrelazados para formar una cadena helicoidal triple hacia la izquierda." (SEYMOUR & CARRAHER, 2014)

![Ilustración 1. Colágeno](https://www.ecured.cu/Archivo:Col%C3%A1geno.jpeg)

Fuente: Recuperado de: https://www.ecured.cu/Archivo:Col%C3%A1geno.jpeg

Existe alrededor de 20 tipos de colágeno pero para el caso de estudio del presente proyecto se procede a describir el **Colágeno tipo I**.

Colágeno Tipo I: este tipo de colágeno se encuentra presente sobre todo en los huesos, piel, córnea y en los tendones. Su tamaño es de aproximadamente la millonésima parte de un milímetro; se presenta en forma de fibra con estrías (El colageno, 2017).
2.3. Gelatina

La gelatina es una proteína obtenida a partir del colágeno que se encuentra en la piel, tejido conjuntivo, huesos y otras partes de animales, mamíferos así como peces (ESPAÑA Patente nº 2122250). Este alimento se puede elaborar a partir de restos de pollo, o ganado bovino o porcino (BADUI DEROAL, 2013)

2.3.1. Gelatina pura comestible

Según la Norma Técnica Ecuatoriana NTE INEN 1521 define a la gelatina pura comestible como el material proteínico y soluble, obtenido por la hidrólisis parcial del colágeno obtenido de huesos, cuero, tendones de animales incluidos los peces y las aves (INSTITUTO ECUATORIANO DE NORMALIZACION, 2014)

2.3.2. Postre de gelatina.

Es el producto obtenido de la mezcla de gelatina pura comestible, azúcar y aditivos alimenticios permitidos para consumo humano incluido los aromas. (INSTITUTO ECUATORIANO DE NORMALIZACION, 2014)

2.3.3. Tipos de gelatina

Dentro de la clasificación de las gelatinas encontramos que estas se clasifican de acuerdo a su origen y al tipo de tratamiento que haya sido utilizado para su obtención a continuación se muestra cuál es su clasificación.

2.3.3.1. Gelatina animal

La gelatina de origen animal se obtiene a partir del colágeno que forma parte del tejido conectivo, huesos y cartílago de los animales, está compuesto en un 90% por proteínas (Tipos de gelatinas y sus usos, 2017).

De acuerdo con la forma de obtención de la gelatina de origen animal se distinguen dos tipos de gelatina

- **Gelatina tipo A**: se prepara a partir de precursores tratados con ácido. (Remington, 2003).
- **Gelatina tipo B**: se prepara a partir de precursores tratados con álcalis (Remington, 2003). El proceso alcalino consiste en tratar las materias primas con una solución de NaOH, este tratamiento se utiliza para materiales que necesiten una penetración agresiva por parte de los agentes utilizados en el tratamiento alcalino. El NaOH se utiliza con mayor frecuencia debido a que esta...
UNIVERSIDAD DE CUENCA
base ocasiona una hinchazón significativa facilitando así la extracción de colágeno (Schmidt)

2.3.3.2. **Formas de presentación de la gelatina animal:**

- **Gelatina en hojas o láminas:** presenta un sabor neutro o sin sabor, y de colores (Gelatinas -Tipos y como usarlas, 2017).
- **Gelatina granulada, en polvo:** Tiene sabor neutro o artificial; en algunos países se la conoce como grenetina.

2.3.3.3. **Gelatina vegetal o agar agar**
Extraída de las algas rojas, se suele presentar en fibras, escamas o en polvo. En comparación con la gelatina animal, es un producto con un poder gelificante diez veces superior, desde el punto de vista nutricional es un producto rico en fibra y con un escaso aporte calórico. (Tipos de gelatinas y sus usos, 2017)

2.3.3.4. **Gelatinas Artificiales:**
Son elaboradas de manera artificial; son parecidas en textura a las anteriores, pero no aportan nutrientes al organismo; contienen altas cantidades de azúcares y agua, aportando dosis altas de hidratos de carbono ayudando a mantener una buena hidratación, pero no presentan en su composición proteínas y ni colágeno. Su presentación es en polvo (Gelatina tipos y beneficios, 2017).

2.3.4. **Gelatina de patas de pollo (Gallus gallus domesticus).**
Según Núñez nos dice que la composición de la gelatina de patas de pollo consta fundamentalmente de cinco aminoácidos Glicina, Alanina, Prolina, Ácido glutámico, y Ácido Aspártico, los cuales se encuentran presentes en mayor cantidad. (Andrea, 2014)

2.3.5. **Aplicaciones de la gelatina.**
La gelatina tiene aplicaciones muy diversas, entre ellas:

2.3.5.1. **Industria alimentaria**
La gelatina es una proteína que reúne como alimento, numerosas propiedades necesarias para una alimentación sana, esto debido a que su ingesta provoca un aumento de peso sin que esto involucre un aumento de grasa en el organismo; haciéndolo un alimento ideal para ser consumido por personas que presenten algún tipo de enfermedad relacionada con problemas de desnutrición (Aplicaciones de la gelatina, 2017).
UNIVERSIDAD DE CUENCA
Según (Olivares, 2007) otra de las aplicaciones que tiene la gelatina es como (Olivares, 2007):

- Conservante (carnes enlatadas)
- Agente gelificante (sopas, caldos)
- Preservante (recubrimiento de embutidos)
- Estabilizante (fabricación de helados, reduce la sinéresis del yogurt; formación de espumas)
- Elaboración de confitería, golosinas (dulces, turrones)
- Clarificante (vinos)

2.3.5.2.
Industria farmacéutica

Recubrir y proteger las cápsulas de los medicamentos (Aplicaciones de la gelatina, 2017).

2.3.5.3.
Industria fotográfica

Fabricación de películas, papel de color, películas gráficas y películas de rayos X en cantidades industriales (Aplicaciones de la gelatina, 2017).

2.3.5.4.
Nuevas aplicaciones de la gelatina

La gelatina al contener aminoácidos como glicina y prolina en altas concentraciones ejercen un efecto positivo sobre los huesos y las articulaciones; adicionalmente fortalece el tejido conjuntivo, proporcionando brillo al cabello y fortaleciendo las uñas (Aplicaciones de la gelatina, 2017).

2.3.5.5.
La gelatina en la terapia con células madre

Es apropiada debido a que presenta una gran compatibilidad biológica, además esta se degrada completamente en el cuerpo. Los primeros éxitos se han visto ya en el tratamiento de pacientes de Parkinson (Aplicaciones de la gelatina, 2017).

2.4. Materias Primas utilizadas en la obtención de grenetina

2.4.1.
Patas de pollo (*Gallus gallus domesticus*).

Se define como patas de pollo (*Gallus gallus domesticus*) a las extremidades provenientes del pollo, las mismas que al no presentar en su estructura carne que pueda ser aprovechada por el ser humano en la mayoría de ocasiones son consideradas como un residuo.
2.4.2. Porcentaje de representación de peso de las patas en relación al pollo

Según (Quintana Lopez, 2011), detalla que el peso de las patas en relación con el peso del pollo en vivo es del 4.5%, sin embargo cuando el pollo ha sido faenado su peso en relación con el peso del ave una vez muerto corresponde al porcentaje del 4% esto considerando si el peso del ave fuese de 2kg. (Quintana Lopez, 2011)

2.4.3. Información nutricional de las patas de pollo (*Gallus gallus domesticus*).

En la siguiente tabla se presenta la información nutricional correspondiente a 100 gramos de patas de pollo:

<table>
<thead>
<tr>
<th>Información nutricional</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calorías</td>
<td>214 kcal</td>
</tr>
<tr>
<td>Grasas totales</td>
<td>14,6g</td>
</tr>
<tr>
<td>Grasa saturadas</td>
<td>3,92g</td>
</tr>
<tr>
<td>Grasas poliinsaturadas</td>
<td>2,98g</td>
</tr>
<tr>
<td>Grasas monoinsaturadas</td>
<td>5,5g</td>
</tr>
<tr>
<td>Colesterol</td>
<td>84mg</td>
</tr>
<tr>
<td>Sodio</td>
<td>67mg</td>
</tr>
<tr>
<td>Potasio</td>
<td>31mg</td>
</tr>
<tr>
<td>Fibra dietética</td>
<td>0g</td>
</tr>
<tr>
<td>Azúcares</td>
<td>0g</td>
</tr>
<tr>
<td>Proteínas</td>
<td>19,4g</td>
</tr>
</tbody>
</table>

Fuente: Recuperado de: [https://www.fatsecret.com.mx/calorias-nutricion/]

Elaborado por: Autora

2.5. Materias primas utilizadas en la elaboración de gelatina

2.5.1. Aditivos alimentarios

Según la OMS defina a los aditivos alimentarios como las sustancias que se añaden a los alimentos para mantener o mejorar su inocuidad, su frescura, su sabor, su textura o su aspecto. (World Health Organization, 2017)
2.5.2. Aromatizantes

Se define a los aromatizantes como sustancias o mezclas de las mismas con propiedades odoríferas capaces de conferir o intensificar el sabor y/o aroma de los alimentos (Mercosur, 2006)

2.5.2.1. Clasificación de los aromatizantes

Los aromatizantes se clasifican en:

Aromatizantes naturales

Son obtenidos de fuentes naturales como frutas, verduras o especias, son obtenidos mediante procesos como destilación, extracción, o a través de procesos microbiológicos (EFFA, 2018).

El grupo de aromatizantes naturales comprende:

- Aceites Esenciales: son de origen vegetal, se los puede obtener por procesos físicos como destilación por arrastre o destilación a presión reducida.
- Extractos: se obtienen a partir de las plantas, animales o microbios, mediante un agotamiento en frío o caliente con solventes permitidos; pueden presentarse en forma líquida o sólida (Mercosur, 2006)

Sustancias aromatizantes

Son sustancias químicamente definidas (Mercosur, 2006) o estas pueden tener la misma composición química que los aromas naturales, pero la fuente utilizada o los procesos aplicados pueden ser parcialmente naturales sintéticos (EFFA, 2018).

2.5.3. Colorantes alimentarios

Son compuestos que confieren, acentúan o modifican el color de diferentes alimentos (BADUI DERGAL, Colorantes, 2012). Más aún, el coloreado en los alimentos puede condicionar el éxito o fracaso comercial de un producto. Para ello se pueden utilizar sustancias obtenidas de fuentes naturales o preparadas por métodos físicos o químicos (IBAÑEZ. Francisco, 2017).

2.5.3.1. Clasificación de los colorantes

2.5.3.1.1. Colorantes naturales

Son obtenidos de materiales biológicos no alimentarios es decir de: plantas o insectos; o bien se forman espontáneamente al calentar un alimento, como es el caso del caramelo; en general son considerados como inocuos y las limitaciones específicas en su
Tabla 2. Colorantes naturales más utilizados según la UE

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cúrcumina</td>
<td>Amarillo intenso</td>
</tr>
<tr>
<td>Cochinilla</td>
<td>Rojo variable</td>
</tr>
<tr>
<td>Clorofilas</td>
<td>Verde</td>
</tr>
<tr>
<td>Caramelo</td>
<td>Caramelo</td>
</tr>
<tr>
<td>Carotenoides</td>
<td>--------</td>
</tr>
<tr>
<td>Rojo de remolacha (Betaínas)</td>
<td>--------</td>
</tr>
</tbody>
</table>

Elaborado por: Autora

2.5.3.2. Colorantes sintéticos

Son compuestos químicos obtenidos por síntesis, no identificados en productos de origen vegetal. (Correa. Ricardo, 2017)

Tabla 3. Colorantes sintéticos más utilizados según la UE

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantaxantina</td>
<td>Rojo estable</td>
</tr>
<tr>
<td>Tartracina</td>
<td>Amarillo limón</td>
</tr>
<tr>
<td>Rojo cochinilla A</td>
<td>Fresa</td>
</tr>
<tr>
<td>Amarillo de quinoleína</td>
<td>Naranja</td>
</tr>
<tr>
<td>Eritrosina</td>
<td>Fresa poco estable</td>
</tr>
</tbody>
</table>

Elaborado por: Autora
2.5.4. Edulcorantes
Es toda sustancia capaz de dar sabor dulce a un alimento o una comida (Raquel, 2018). Los edulcorantes son sustancias que pueden estar utilizados en lugar de azúcar o alcoholes de azúcar. Se pueden denominar como sustitutos de azúcar o edulcorantes no calóricos (Madison, 2014).

2.5.4.1. Clasificación de los edulcorantes

2.5.4.1.1. Edulcorantes naturales o nutritivos
Proveen calorías o energía a la dieta a razón de unas cuatro calorías por gramo, de manera similar a los carbohidratos o las proteínas. Los edulcorantes nutritivos comprenden los azúcares edulcorantes y los polioles de baja energía o alcoholes del azúcar (Edulcorantes nutritivos, 2017).

La sacarosa y la fructosa, son los principales edulcorantes provenientes del azúcar que se encuentran naturalmente en los alimentos. La sacarosa es un disacárido compuesto de glucosa y fructosa. La fructosa es un componente de la sacarosa que se encuentra en las frutas y se agrega a los alimentos y bebidas como jarabe de maíz de alta fructosa o en forma cristalina (Edulcorantes nutritivos, 2017).

Los polioles pueden ser categorizados como sustitutos del azúcar porque pueden reemplazar a los edulcorantes de azúcar, usualmente en una relación uno a uno: ofrecen menos energía y potenciales beneficios de salud. Los polioles sorbitol, manitol y xilitol se los encuentra en productos vegetales tales como las frutas (Edulcorantes nutritivos, 2017).
Tabla 4. Algunos edulcorantes nutritivos

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azúcar cruda de caña</td>
<td>Caña de azúcar</td>
</tr>
<tr>
<td>Fructosa</td>
<td>Frutos secos</td>
</tr>
<tr>
<td>Miel</td>
<td>Abejas</td>
</tr>
<tr>
<td>Sirope de Arce</td>
<td>Savia de variedad de Arce</td>
</tr>
<tr>
<td>Stevia</td>
<td>Planta con el mismo nombre</td>
</tr>
<tr>
<td>Malta</td>
<td>Trigo, arroz o cebada</td>
</tr>
<tr>
<td>Frutas secas</td>
<td>Pasa, piñas, higos secos, mangos, arándanos, etc</td>
</tr>
</tbody>
</table>

Elaborado por: Autora

2.5.4.1.2. Edulcorantes artificiales o no nutritivos

Los edulcorantes artificiales son compuestos elaborados por el ser humano, son mucho más dulces que el azúcar común, pero con menor aporte energético, por lo que al agregarlos a una gran variedad de productos o alimentos se disminuye de forma importante su contenido de calorías, sin perder el sabor dulce (Armando, 2017).

Tabla 5. Algunos edulcorantes no nutritivos

<table>
<thead>
<tr>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacarina</td>
</tr>
<tr>
<td>Aspartame</td>
</tr>
<tr>
<td>Neotame</td>
</tr>
<tr>
<td>Acesulfame de potasio</td>
</tr>
<tr>
<td>Edulcorantes</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Sucralosa</td>
</tr>
<tr>
<td>Cialamato</td>
</tr>
<tr>
<td>Esteviol</td>
</tr>
<tr>
<td>Brazzeina</td>
</tr>
</tbody>
</table>

Fuente: Recuperado: Edulcorantes Naturales y Artificiales:

Elaborado por: Autora
Diagrama 1. Proceso para la obtención de grenetina a partir del método térmico
Elaboración Propia.
2.7. Descripción del proceso para la obtención de grenetina partir de los residuos avícolas mediante el tratamiento térmico

Conforme a lo planteado en el diagrama 1 a continuación se explica el procedimiento establecido para la obtención de grenetina a partir de las patas de pollo

2.7.1. Recepción de la materia prima

Se limpiaron las patas de pollo con agua potable con la finalidad de eliminar todas las impurezas que estas pudieran contener, es decir residuos de sangre, partículas de tierra o restos de plumas y se dejó escurrir el exceso de agua que estas presentaron.

2.7.2. Adecuación

Se procedió a retirar las uñas de las patas de pollo; cuando los pedazos de piel presentaron un mal aspecto estos fueron retirados.

2.7.3. Desinfectado

Para la desinfección se sumergió las patas en una solución de Kilol el mismo que se preparó de acuerdo a las especificaciones dadas por el fabricante.

2.7.4. Desengrasado

Para eliminar la grasa se procedió a lavar las patas con agua caliente durante 15 min, la temperatura a la que se lavaron las patas es de 90°C, esto se realiza con el fin de eliminar la mayor cantidad de grasa posible que se encuentra en las patas de pollo.

2.7.5. Lavado

Se lavaron las patas con agua fría y caliente durante 15 minutos, la temperatura del agua caliente es de 80°C

2.7.6. Extracción

Se cocinaron las patas durante 35 minutos con una presión de 10,5 psi a 116°C.
2.7.7. **Filtrado**

Una vez cocinadas las patas durante el tiempo establecido se procedió a filtrar la solución con el fin de separar los pedazos de extremidades del gel.

Una vez filtrada la muestra esta fue colocada en moldes de acero inoxidable; con un recubrimiento de acetato.

2.7.8. **Secado**

Se secan las películas de gremetina obtenidas en un horno de secador durante 12 horas a una temperatura de 68 °C hasta obtener una humedad menor al 11%.

2.7.9. **Triturado**

Una vez secas las películas estas fueron trituradas hasta obtener partículas cuyo diámetro corresponde al tamaño de poro de la malla ASTM 30.
Diagrama 2. Proceso para la obtención de grenetina a partir del método térmico
Elaboración Propia.
2.9. Descripción del proceso para la obtención de grenetina a partir de los residuos avícolas mediante el tratamiento químico

Conforme a lo planteado en el diagrama 2 a continuación se explica el procedimiento establecido para la obtención de grenetina a partir de las patas de pollo mediante el proceso alcalino.

2.9.1. Recepción de la materia prima

Se limpiaron las patas de pollo con agua potable con la finalidad de eliminar todas las impurezas que estas pudiesen contener, ya sean residuos de sangre, partículas de tierra, o restos de plumas y se dejaron escurrir para eliminar el exceso de agua.

2.9.1. Adecuación

Se procedió a retirar las uñas de las patas de pollo; cuando los pedazos de piel presentaron un mal aspecto estos fueron retirados.

2.9.1. Desinfectado

Para la desinfección se sumergió las patas en una solución de Kilol el mismo que se preparó de acuerdo a las especificaciones dadas por el fabricante.

2.9.2. Desengrasado

Para eliminar la grasa se procedió a lavar las patas con agua caliente durante 15 min, la temperatura a la que se lavaron las patas fue a 90°C, esto se realizó con el fin de eliminar la mayor cantidad de grasa posible que se encontraba en la superficie externa de las patas de pollo.

2.9.3. Lavado

Se lavaron las patas con agua fría y caliente durante 15 minutos, el agua caliente tenía una temperatura de 80 ºC.
2.9.4. Hidrólisis alcalina

Se colocaron las patas una vez desengrasadas en una solución de Hidróxido de Sodio 0,1 M durante 24 horas; la concentración y el tiempo de residencia entre la materia prima y el reactivo fueron variando de acuerdo al diseño experimental propuesto.

2.9.5. Lavado

Se lavaron las patas con abundante agua potable durante 40 minutos.

2.9.6. Neutralizado

Las patas una vez lavadas fueron neutralizadas con una solución de Ácido Clorhídrico 0,3M hasta que se obtuvo un pH de 8. Una vez que se neutralizó las patas estas fueron lavadas con abundante agua.

2.9.7. Extracción

Se colocaron las patas con agua en una olla de presión en una relación peso volumen 1:1; las patas fueron cocinadas durante 45 minutos, con una presión de 10, 5 psi a 116ºC; el tiempo de cocción fue variando de acuerdo al diseño experimental propuesto.

2.9.8. Filtrado

Se filtró la solución obtenida en caliente, la solución obtenida fue colocado inmediatamente en moldes de acero inoxidable; se dejó enfríar dicha solución con lo cual esto facilitó la formación del gel.

2.9.9. Secado

Una vez que se ha obtenido el gel se dejó secar a una temperatura de 68ºC durante 12 horas en un horno secador

2.9.10. Triturado

Ya secas las películas estas fueron trituradas hasta obtener partículas cuyo diámetro corresponde al tamaño de poro de la malla ASTM 30
2.10. **Proceso para la elaboración de gelatina**

![Diagrama 3. Proceso para la elaboración de gelatinas saborizadas](image)

Descripción del proceso para la elaboración de gelatina

A continuación se describe cada una de las etapas que comprende el diagrama 3, el cual describe el proceso para la elaboración de gelatinas a partir de la grenetina obtenida.

2.11.1. Recepción de la grenetina

Obtenida la grenetina se verifica que esta no presente sustancias extrañas o impurezas que puedan afectar al producto final.
2.11.2. Caracterización de grenetina

Para caracterizar la grenetina se hace pasar la muestra obtenida a través de la malla ASTMA número 30 con el fin de tener un tamaño uniforme de partícula.

2.11.3. Dosificación de aditivos alimentarios

En esta etapa se procede a pesar los saborizantes, colorantes, aromatizantes de acuerdo al fórmula propuesta, todo esto en cantidades reguladas y controladas.

2.11.4. Corrección de grados Brix y pH

Con el fin de realizar una comparación entre la gelatina formulada y las muestras comerciales se procede a medir el pH y los grados Brix con el fin de ajustar los obtenidos en las muestras preparadas en el laboratorio.

2.11.5. Gelificación

Realizada la corrección de los grados Brix y el pH se procede a formar el gel esto añadiendo partes iguales de agua fría y caliente, la temperatura del agua caliente es de 92°C

2.12. Requisitos con los que debe cumplir la gelatina pura comestible

En la norma NTE INEN 1961 se describe los requisitos con los que debe cumplir la gelatina pura comestible.

<table>
<thead>
<tr>
<th>Requisito</th>
<th>Unidad</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad</td>
<td>%</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>3,5</td>
<td>7,5</td>
</tr>
</tbody>
</table>

A continuación se presenta los parámetros microbiológicos a cumplir la gelatina pura comestible.
Tabla 7. Requisitos microbiológicos para la gelatina pura comestible

<table>
<thead>
<tr>
<th>Requisito</th>
<th>Unidad</th>
<th>N</th>
<th>c</th>
<th>M</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estafilococos Aureus</td>
<td>UFC/g</td>
<td>5</td>
<td>1</td>
<td>$1,0 \times 10^2$</td>
<td>$1,0 \times 10^4$</td>
</tr>
<tr>
<td>Clostridium Perfringens</td>
<td>UFC/g</td>
<td>5</td>
<td>1</td>
<td>$1,0 \times 10^2$</td>
<td>$1,0 \times 10^4$</td>
</tr>
<tr>
<td>Salmonella</td>
<td>UFC/g</td>
<td>10</td>
<td>0</td>
<td>Ausencia</td>
<td></td>
</tr>
</tbody>
</table>

2.13. Requisitos con los que debe cumplir el postre de gelatina

En la norma técnica NTE INEN el postre de gelatina deberá cumplir con los siguientes requisitos (Postre de Gelatina. Requisitos, 2014):

- El azúcar utilizado para la fabricación del postre de gelatina debe cumplir con la NTE INEN 259
- En el postre de gelatina los aditivos alimentarios, cuantitativa y cualitativamente, deben ser los admitidos en la NTE INEN CODEX 192.
- El postre de gelatina debe cumplir los requisitos sensoriales y organolépticos descritos a continuación:

Tabla 8. Requisitos sensoriales para el postre de gelatina

<table>
<thead>
<tr>
<th>Aspecto</th>
<th>Granulado fino, son grumos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Uniforme.</td>
</tr>
<tr>
<td>Olor</td>
<td>Característica del aroma utilizado en su elaboración</td>
</tr>
<tr>
<td>Sabor</td>
<td>Característico del producto y sin sabores extraños</td>
</tr>
</tbody>
</table>

Fuente: Recuperado de: Instituto Ecuatoriano de Normalización (INSTITUTO ECUATORIANO DE NORMALIZACION, 2014)

2.13.1. Requisitos bromatológicos con los que debe cumplir el postre de gelatina

Una vez que se ha elaborado la gelatina esta debe cumplir con los siguientes requisitos físico-químicos (INSTITUTO ECUATORIANO DE NORMALIZACION, 2014):
Tabla 9. Requisito físico-químico para el postre de gelatina

<table>
<thead>
<tr>
<th>Requisito</th>
<th>Unidad</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de formación de gel</td>
<td>Minutos</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Dureza de gel</td>
<td>Gr</td>
<td>30</td>
<td>25</td>
</tr>
</tbody>
</table>

Fuente: Recuperado de: Instituto Ecuatoriano de Normalización (INSTITUTO ECUATORIANO DE NORMALIZACION, 2014)

A continuación se presenta los requisitos microbiológicos con los que debe cumplir el postre de gelatina:

Tabla 10. Requisitos microbiológicos para el postre de gelatina

<table>
<thead>
<tr>
<th>Requisito</th>
<th>Unidad</th>
<th>N</th>
<th>c</th>
<th>M</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estafilococos Aureus</td>
<td>UFC/g</td>
<td>5</td>
<td>1</td>
<td>1,0x10²</td>
<td>1,0x10⁴</td>
</tr>
<tr>
<td>Clostridium Perfringens</td>
<td>UFC/g</td>
<td>5</td>
<td>1</td>
<td>1,0x10²</td>
<td>1,0x10⁴</td>
</tr>
<tr>
<td>Salmonella</td>
<td>UFC/g</td>
<td>10</td>
<td>0</td>
<td>Ausencia</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Recuperado de: Instituto Ecuatoriano de Normalización (INSTITUTO ECUATORIANO DE NORMALIZACION, 2014)

2.14. Informe nutricional

El etiquetado nutricional comprende toda la descripción y que tiene por objetivo informar al consumidor sobre las propiedades nutricionales de un alimento en relación al valor energético, proteínas, grasas, carbohidratos, vitaminas y minerales (Normalización, 2011).

Según el Codex alimentarios establece que las directrices para el etiquetado establece que la etiqueta nutricional debe (Mueses, 2018):

- Facilitar al consumidor datos sobre los alimentos.
- Proporcionar un medio eficaz para indicar en la etiqueta los datos sobre el contenido de nutrientes del mismo.
- Estimular la aplicación de principios nutricionales sólidos en la preparación de alimentos, en beneficio de la salud pública.
- Ofrecer la oportunidad de incluir información nutricional complementaria”

Además se debe asegurar que el etiquetado nutricional no describa un producto, ni presente información sobre el mismo, que sea de algún modo falsa, equivoca, engañosa o carente de significado en cualquier respecto (Directrices del codex sobre etiquetado nutricional, 1993).
En la tabla se muestran los nutrientes de declaración obligatoria así como su Valor Diario Recomendado (VDR) (Rotulado de productos alimenticios para el consumo humano. Rotulado nutricional, 2011)

Tabla 11. Nutrientes a declararse obligatoriamente y su VDR

<table>
<thead>
<tr>
<th>Nutrientes a declararse</th>
<th>Unidad</th>
<th>Niños mayores de 4 años y adultos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía (Calorías)</td>
<td>kJ</td>
<td>8500</td>
</tr>
<tr>
<td></td>
<td>Kcal</td>
<td>2000</td>
</tr>
<tr>
<td>Energía de la grasa (Calorías de la grasa)</td>
<td>kJ</td>
<td>2486</td>
</tr>
<tr>
<td></td>
<td>Kcal</td>
<td>585</td>
</tr>
<tr>
<td>Grasa total</td>
<td>g</td>
<td>65</td>
</tr>
<tr>
<td>Grasa saturada</td>
<td>g</td>
<td>20</td>
</tr>
<tr>
<td>Grasa trans</td>
<td>g</td>
<td>NE</td>
</tr>
<tr>
<td>Colesterol</td>
<td>mg</td>
<td>300</td>
</tr>
<tr>
<td>Sodio</td>
<td>mg</td>
<td>2400</td>
</tr>
<tr>
<td>Carbohidratos totales</td>
<td>g</td>
<td>300</td>
</tr>
<tr>
<td>Fibra dietética</td>
<td>G</td>
<td>25</td>
</tr>
<tr>
<td>Azucares</td>
<td>G</td>
<td>NE</td>
</tr>
<tr>
<td>Proteína</td>
<td>G</td>
<td>50</td>
</tr>
<tr>
<td>Vitamina A</td>
<td>UI</td>
<td>5000</td>
</tr>
<tr>
<td>Vitamina C</td>
<td>mg</td>
<td>60</td>
</tr>
<tr>
<td>Calcio</td>
<td>mg</td>
<td>1000</td>
</tr>
<tr>
<td>Hierro</td>
<td>mg</td>
<td>18</td>
</tr>
</tbody>
</table>

Elaborado por: Autora

2.15. Semaforización de productos

El semáforo de productos para alimentos procesados de consumo humano, tiene por objeto identificar con los colores verde, amarillo, y rojo el contenido de grasas, azucares y sal, en los alimentos de acuerdo a su clasificación de valores bajos, medios o altos (Hoyos Zabala, 2018).

2.15.1. Significado de los colores

A continuación se describe la interpretación para cada uno de los colores, mismos que componen el semáforo nutricional:
UNIVERSIDAD DE CUENCA

Verde: representa a los alimentos con bajo contenido calórico, que se pueden consumir a diario, son de libre demanda, bajos en azúcar y grasa, son ricos en fibra, vitaminas, minerales y antioxidantes.

Amarillo: son alimentos con mediano contenido calórico, que se pueden consumir diariamente pero no a libre demanda, moderadamente y tomando en cuenta la porción adecuada para cada persona.

Rojo: Alimentos con alto contenido calórico, cuyo consumo excesivo pueden ser nocivos para la salud, pudiendo ocasionar sobrepeso, obesidad, y enfermedades cardiovasculares, entre otras (Hoyos Zabala, 2018)

Las cantidades de grasa, sal, y azúcar que un alimento pueda contener para ser establecidas como Alto, Medio o Bajo se describen en la tabla (Informacion nutricional de la etiqueta, 2018):

<table>
<thead>
<tr>
<th>Tabla 12. Color e interpretación para el semáforo nutricional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración</td>
</tr>
<tr>
<td>Bajo</td>
</tr>
<tr>
<td>Grasa total</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Azúcares</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sal (Sodio)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Elaborado por: Autora

2.16. Análisis sensorial

El análisis sensorial de los alimentos se define como el examen de los caracteres organolépticos de un determinado producto mediante los sentidos, obteniendo así datos cuantificables y objetivables (Sancho, 2002)
2.16.1. Atributos sensoriales

Se definen como las características de los productos perceptibles por los sentidos (TASTELAB, 2018)

Entre los atributos sensoriales se encuentran:

Color: se define como la primera sensación que se percibe de los alimentos; se considera como el primer atributo que determina la aceptabilidad y la preferencia del consumidor (Moreno-Arribas, 2018)

Sabor: se define como la percepción global de los sentidos del gusto y el olfato (Sabor y aroma en los alimentos). El sabor que se percibe al momento del consumo que responde al gusto y al aroma, es una sensación compleja desarrollada en la punta de la lengua y más tarde en el epitelio sensorial de la cavidad nasal (Revision Bibliografica, 2018).

Sin embargo otro criterio permite diferenciar entre el sabor y el aroma el mimo que nos dice que el sabor es sentido por la lengua y el aroma es sentido por el olfato (La importancia del Sabor, 2012).

Aroma: son sustancias producidas por los componentes de los alimentos, los mismos que son responsables de las cualidades organolépticas que un alimento pudiese contener (Los aromas en los alimentos, s.f.), entre los compuestos están: ácidos, alcoholes, aldehídos, azufrados, cetonas, esteres, éteres y lactonas sintetizados por dos mecanismos (BADUI DERGEAL, 2012); los aromas que se perciben son la suma de ciento de sustancias diferentes (Colorado Peralta, 2014)

Flavor: este se relaciona con el gusto y el olor, es de gran importancia en el análisis sensorial de los alimentos; consiste en la percepción de las sustancias aromáticas de un alimento después de haber sido puesto en la boca (Picallo, 2009)

Aspecto: Según (Astudillo Segovia, 2014), se define el aspecto como un atributo detectado por la vista, en el que se incluye la forma, color, transparencia, estructura, brillo, palidez y el tipo de envoltura o etiqueta. (Astudillo Segovia, Utilizacion de aceites esenciales naturales como concervantes en la elaboracion de salchichas de pollo, 2014)

Textura: esta es percibida por los dedos ya que hace referencia a la deformación, además refiere a la calidad del alimento (Astudillo Segovia, Utilizacion de aceites esenciales naturales como concervantes en la elaboracion de salchichas de pollo, 2014).

2.16.2. Evaluación sensorial

Se define a la evaluación sensorial como la disciplina científica, empleada para evocar, medir, analizar, e interpretar reacciones características del alimento, percibidas a través de los sentidos de la vista, olfato, gusto, tacto y audición (Nations, 2018)
2.16.3. Métodos de evaluación sensorial

A continuación se darán a conocer los métodos utilizados para realizar la evaluación sensorial.

2.16.3.1. Pruebas analíticas

Realizadas en condiciones controladas de laboratorio y son realizadas por jueces mismos que han tenido un entrenamiento y selección previa, este tipo de pruebas se dividen en:

Pruebas discriminatorias: permiten comparar dos o más productos.

Pruebas escalares: mide de manera cuantitativa la intensidad de una propiedad sensorial con ayuda de una escala.

Pruebas descriptivas: son más complejas puesto que ayudan a definir las diferentes características sensoriales de un producto (Espinoza Manfugás, 2007).

2.16.3.2. Pruebas afectivas

Se realizan con personas no entrenadas ni seleccionadas, denominados como jueces afectivos; los mismos que pudiesen representar a los potenciales consumidores o a los consumidores reales, estas pruebas se realizan en condiciones semejantes a las que normalmente se utilizan al consumir el producto. Este tipo de pruebas permiten conocer la aceptación, rechazo preferencia o nivel de agrado de uno o varios productos. El cuestionario a ser utilizado no deberá ser extenso con el fin de evitar la fatiga o el rechazo a realizar la prueba, además este debe ser fácil de ser llenado, debe ser redactado de manera clara con preguntas de fácil comprensión y con una impresión legible (Espinoza Manfugás, 2007).
3. Metodología

La realización del presente proyecto se divide en dos partes: la primera es la obtención de la grenetina a partir de las patas de pollo para lo cual se plantea el uso del diseño experimental tanto para el método químico como para el método físico; la segunda parte del presente comprende la dosificación para la elaboración de las correspondientes gelatinas saborizadas. La recolección de datos se realizó de una manera cuantitativa, esto debido a que las muestras fueron sometidas a los diferentes análisis bromatológicos con las que debe cumplir el producto y de manera cuantitativa ya que estas cumplen con el respectivo análisis sensorial en donde se analizaron las propiedades organolépticas como: color, sabor, olor, textura y aspecto.

3.1. Diseño experimental para la optimización del tratamiento térmico

Después de analizar y definir los niveles y variables se procedió a seleccionar un diseño el cual nos permitirá optimizar el rendimiento para la obtención de grenetina a partir del tratamiento térmico, en donde se seleccionó el diseño factorial completo a k factores (variables), estudiando a r niveles, el cual contiene \(r^k \) experimentos (Cazar, 2016); en el caso del tratamiento térmico se tiene 1 variables:

- \(X_1 \) = tiempo de cocción
- \(X_2 \) = temperatura de cocción

Aplicando la formula anterior se obtuvo el número de experimentos

\[
\text{Nro. de experimentos} = r^k
\]

Ecucación 1. Determinación para el número de experimentos

\[
\text{Nro. de experimentos} = 2^2
\]

\[
\text{Nro. de experimentos} = 4
\]

3.2. Diseño experimental para la optimización del tratamiento químico

Para el desarrollo de este proyecto después de analizar y definir los niveles y variables se procedió a seleccionar un diseño el cual nos permitirá optimizar el rendimiento para la obtención de grenetina, en donde se seleccionó el diseño factorial completo a k
factores (variables), estudiando a r niveles, el cual contiene r^k experimentos (Cazar, 2016); en el caso del tratamiento químico se tiene 3 variables:

- X1 = Concentración de reactivos
- X2 = Tiempo de residencia entre las materias primas y el reactivo para lograr la hidrolisis
- X3 = Tiempo de extracción de la grenetina

Aplicando la fórmula de la Ecuación 1 se obtuvo el número de experimentos

$$Nro.\, de\, experimentos = 8$$

Al aplicar la anterior fórmula se obtuvo que para la realización del diseño experimental se deben realizar 8 experimentos; para la implementación del diseño experimental se utiliza la siguiente matriz.

<table>
<thead>
<tr>
<th>Nro. de experimentos</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X1</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
</tr>
</tbody>
</table>

Fuente: Recuperado de: (Cazar, 2016)

Elaborado por: Autora

Para la implementación de la matriz se establece las variables a analizar obteniendo así el modelo matemático a seguir.

<table>
<thead>
<tr>
<th>Nro. de experimentos</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentración de reactivos</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
</tr>
</tbody>
</table>

Fuente Recuperada de: (Cazar, 2016)

Elaborado por: Autora
Para la aplicación del diseño experimental es necesario definir el máximo y el mínimo de cada una de las variables; cabe recalcar que para la implementación de este diseño se fusionaron dos técnicas utilizadas para la obtención degrenetina; la primera técnica es para la obtención de grenetina a partir de la pata de res en donde la concentración de reactivos fue de 0,1N de Hidróxido de Sodio con un tiempo de residencia de 48 horas y la segunda técnica fue la utilizada para la obtención de colágeno a partir de Tilapia roja en donde la concentración de reactivos fue de 0,4N de Hidróxido de Sodio con un tiempo de residencia de 48 horas, la determinación del límite de la tercera variable misma que corresponde al tiempo de extracción se realizó a partir de pre experimentos, por lo tanto los límites de trabajo se encuentran descritas en la siguiente tabla:

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración del reactivo</td>
<td>0,1N</td>
<td>0,4N</td>
</tr>
<tr>
<td>Tiempo de residencia</td>
<td>24 h</td>
<td>48 h</td>
</tr>
<tr>
<td>Tiempo de extracción</td>
<td>35 min</td>
<td>45 min</td>
</tr>
</tbody>
</table>

Fuente: Propia

Una vez remplazadas las variables de estudio en la matriz esta queda de la siguiente manera:

<table>
<thead>
<tr>
<th>Nro. de experimentos</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentración de reactivos</td>
</tr>
<tr>
<td>1</td>
<td>0,1N</td>
</tr>
<tr>
<td>2</td>
<td>0,4N</td>
</tr>
<tr>
<td>3</td>
<td>0,1N</td>
</tr>
<tr>
<td>4</td>
<td>0,4N</td>
</tr>
<tr>
<td>5</td>
<td>0,1N</td>
</tr>
<tr>
<td>6</td>
<td>0,4N</td>
</tr>
<tr>
<td>7</td>
<td>0,1N</td>
</tr>
<tr>
<td>8</td>
<td>0,4N</td>
</tr>
</tbody>
</table>

Fuente: Propia

Datos para la realización de los experimentos centrales
Tabla 17. Matriz definida para la aplicación de los experimentos centrales en el diseño experimental

<table>
<thead>
<tr>
<th>Nro. de experimentos</th>
<th>Concentración de reactivos</th>
<th>Tiempo de residencia</th>
<th>Tiempo de extracción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,25N</td>
<td>36 horas</td>
<td>40 min</td>
</tr>
<tr>
<td>2</td>
<td>0,25N</td>
<td>36 horas</td>
<td>40 min</td>
</tr>
<tr>
<td>3</td>
<td>0,25N</td>
<td>36 horas</td>
<td>40 min</td>
</tr>
</tbody>
</table>

Fuente: Propia

3.3. Procedimiento para la obtención de grenetina mediante el método térmico

3.3.1. Pretratamiento de la materia prima previo a la obtención de grenetina por el método térmico.

Antes de realizar la extracción de la grenetina la materia prima fue sometida a un pretratamiento el mismo que se describe a continuación:

- Limpieza de materiales con abundante agua y detergente para platos de esta manera se garantiza la inocuidad en el proceso.
- Una vez que se adquieren las patas de pollo estas fueron colocadas en recipientes plásticos las mismas que fueron lavadas con agua fría potable retirando de esta manera residuos de sangre o plumas que estas pudiesen contener.
- Se retiraron las uñas y restos de piel muerta que las patas contenían; eliminando así los residuos de impurezas que las patas pudieron presentar.

- Se lavaron las patas nuevamente con abundante agua fría.
- Lavadas las patas estas fueron desinfectadas con el desinfectante “kilol”, la solución con el desinfectante se preparó de acuerdo a las especificaciones dadas...
por el fabricante; las patas de pollo estuvieron en contacto con el desinfectante durante 5 minutos; una vez transcurrido este tiempo las patas fueron nuevamente lavadas con abundante agua fría.

- Para realizar el desengrasado se lavaron las patas con abundante agua, la misma que fue calentada a una temperatura de 90°C, esto con el fin de eliminar la mayor cantidad de grasa que se encontraba presente en las paredes exteriores de las patas, durante 15 minutos.
- Ya desengrasadas las patas se procedió a lavar las patas con abundante agua caliente y fría durante 15 minutos.

- Después de que las patas han sido desengrasadas y lavadas estas fueron colocadas en bandejas plásticas en donde estarán listas para ser sometidas a los distintos experimentos planteados en el diseño experimental.
3.3.2. Procedimiento para la obtención de gelatina mediante el método térmico

- Para realizar cada uno de los experimentos se pesan aproximadamente medio kilo de patas en una bandeja plástica.
- Se mide medio litro de agua y se colocara esto en conjunto con las patas en la olla de presión de manera que se obtendra una relación de peso/volumen 1:1.
- Se cocinan las patas durante el tiempo y a la presión establecido esto en cuanto a la optimización del tratamiento térmico.

- Realizada la extracción se recibe la solución y se filtra para eliminar los residuos de grasa que esta pudiese contener.
- La solución obtenida fue recogida inmediatamente en el molde.
Fotografía 6. Filtración de la solución obtenidos- Obtención de grenetina mediante el método térmico
Tomada el 21/03/2018 – Laboratorio de Cárnicos de la Universidad de Cuenca

- Filtrada toda la solución se dejan reposar durante 12 horas de forma que estos se solidifiquen formando así una gelatina con un buen poder de gel.
- Una vez que la gelatina se ha solidificado se procede a pesar para poder determinar rendimientos

Fotografía 7. Pesado de la grenetina- Obtención de grenetina mediante el método térmico
Tomada el 22/03/2018 – Laboratorio de Cárnicos de la Universidad de Cuenca

- Determinado el peso de cada uno de los moldes que contienen las gelatinas estos son introducidos en un horno secador a una temperatura de 68°C durante 12 horas.
- Transcurrido el tiempo de secado se extraen los moldes, se dejan enfriar y se pesan para obtener rendimientos.
Fotografía 8. Pesado de la grenetina - Obtención de grenetina mediante el método térmico
Tomada el 23/03/2018 – Laboratorio de Cárnicos de la Universidad de Cuenca

- Obtenida la grenetina seca esta es triturada hasta obtener un tamaño de poro, el mismo que atraviesa el tamiz malla ASTM Nro. 30 el mismo que corresponde al tamaño de partícula 0,0234 pulgadas o a 600 micras.

Fotografía 9. Determinación del tamaño de poro de la grenetina - Obtención de grenetina mediante el método térmico
Tomada el 23/03/2018 – Laboratorio de Cárnicos de la Universidad de Cuenca

- La muestra que ha pasado el tamiz malla ASTM Nro. 30 es guardada en fundas herméticas, en donde en lo posterior serán sometidos a diferentes pruebas organolépticas como: olor, sabor, color.
3.4. Datos experimentales obtenidos en la aplicación del tratamiento térmico

En esta parte de la investigación al momento de realizar las pruebas experimentales se pudo determinar que los tiempos de cocción son sumamente largos; como consecuencia esto encarecería el producto ya que para su elaboración se requiere de una gran demanda de energía con lo cual se optó por la cocción de las patas en una olla de presión, razón por la cual se procedió a realizar varios experimentos cuyos datos de trabajo se observan en la tabla 18:

*NOTA: Debido a que en este trabajo de titulación existen una gran variedad de experimentos se procedió a identificarlos con la siguiente descripción:

MT: hace referencia a los experimentos realizados mediante la aplicación del método térmico

Tabla 18. Datos experimentales obtenidos en el tratamiento térmico

<table>
<thead>
<tr>
<th>Datos experimentales</th>
<th>Experimento MT1</th>
<th>Experimento MT2</th>
<th>Experimento MT3</th>
<th>Experimento MT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión de trabajo</td>
<td>10,5 psi</td>
<td>10,5 psi</td>
<td>10,5 psi</td>
<td>10,5 psi</td>
</tr>
<tr>
<td>Temperatura de extracción</td>
<td>116°C</td>
<td>116°C</td>
<td>116°C</td>
<td>116°C</td>
</tr>
<tr>
<td>Tiempo de extracción</td>
<td>35 min</td>
<td>45 min</td>
<td>55 min</td>
<td>65 min</td>
</tr>
<tr>
<td>Peso de la materia prima</td>
<td>509,7g</td>
<td>509,7g</td>
<td>509,7g</td>
<td>509,7g</td>
</tr>
<tr>
<td>Peso de la grenetina</td>
<td>7,3g</td>
<td>12,9g</td>
<td>16,9g</td>
<td>14,8g</td>
</tr>
</tbody>
</table>

Fuente: Propia

Una vez realizados los experimentos para la obtención de grenetina por este tratamiento se obtuvieron los siguientes resultados:

Tabla 19. Resultados obtenidos en el tratamiento térmico

<table>
<thead>
<tr>
<th>Nro. de experimento</th>
<th>Rendimiento</th>
<th>Presión de trabajo</th>
<th>Tiempo de extracción</th>
<th>Temp.</th>
<th>Propiedades Organolépticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimento MT1</td>
<td>1,43%</td>
<td>10,5 psi</td>
<td>35 minutos</td>
<td>116°C</td>
<td>Amarillo Característico (pollo)</td>
</tr>
<tr>
<td>Experimento MT 2</td>
<td>2,53%</td>
<td>10,5 psi</td>
<td>45 minutos</td>
<td>116°C</td>
<td>Amarillo Proteína</td>
</tr>
<tr>
<td>Experimento MT 3</td>
<td>3,32%</td>
<td>10,5 psi</td>
<td>55 minutos</td>
<td>116°C</td>
<td>Amarillo Proteína</td>
</tr>
<tr>
<td>Experimento MT 4</td>
<td>2,09%</td>
<td>10,5 psi</td>
<td>65 minutos</td>
<td>116°C</td>
<td>Amarillo Obscuro Proteína en descomposición</td>
</tr>
</tbody>
</table>

Fuente: Propia
3.5. DPO para la obtención de grenetina a partir del método térmico

Diagrama 4. DPO Obtención de grenetina por el método térmico

Elaboración Propia.
3.6. Procedimiento para la obtención de grenetina mediante el método químico

3.6.1. Pretratamiento de la materia prima previo a la obtención de grenetina

Antes de realizar la extracción de la grenetina la materia prima fue sometida a un pretratamiento el mismo que se describe a continuación:

- Limpieza de materiales con abundante agua y detergente para platos de esta manera se garantiza la inocuidad en el proceso.
- Una vez que se adquieren las patas de pollo estas fueron colocadas en recipientes plásticos las mismas que fueron lavadas con agua fría potable retirando de esta manera residuos de sangre o plumas que estas pudiesen contener.
- Se retiraron las uñas y restos de piel muerta que las patas contenían; eliminando así los residuos de impurezas que las patas pudieron presentar.

Fotografía 10. Cortado de uñas e imperfecciones- Obtención de grenetina
Tomada el 19/03/2018 – Laboratorio de Cárnicos de la Universidad de Cuenca

- Se lavaron las patas nuevamente con abundante agua fría.
- Una vez que se han lavado las patas estas fueron desinfectadas con el desinfectante “kilol”, la solución con el desinfectante se preparó de acuerdo a las especificaciones dadas por el fabricante; las patas de pollo estuvieron en contacto con el desinfectante durante 5 minutos; una vez transcurrido este tiempo las patas fueron nuevamente lavadas con abundante agua fría.
Para realizar el desengrasado se lavaron las patas con abundante agua, misma que fue calentada a una temperatura de 90°C, esto con el fin de eliminar la mayor cantidad de grasa que se encontraba presente en las paredes exteriores de las patas, durante 15 minutos.

Desengrasadas las patas se procedió a lavar las patas con abundante agua caliente y fría durante 15 minutos.

Después de que las patas han sido desengrasadas y lavadas estas fueron colocadas en bandejas plásticas en donde estarán listas para ser sometidas a los distintos experimentos planteados en el diseño experimental.
3.6.1. Procedimiento para la obtención de grenetina mediante el método químico

- Una vez realizado el pretratamiento a la materia prima se procede a preparar las soluciones para realizar la hidrolisis alcalina.

- Para realizar cada uno de los experimentos se pesan aproximadamente 0,5 kg de patas en una bandeja plástica.

- A las patas se les realiza pequeños cortes con el fin de lograr una mayor penetración de los reactivos con el fin de mejorar el tratamiento de la hidrolisis.

- Se pone en contacto el reactivo con la materia prima para dar inicio a la hidrolisis; el tiempo en el que las patas estén en contacto con el reactivo variará de acuerdo al diseño experimental propuesto para el desarrollo del proyecto.
Fotografía 15. Colocación del NaOH en la materia prima - obtención de grenetina mediante el método químico
Tomada el 02/04/2018 – Laboratorio de Cárnicos de la Universidad de Cuenca

- Se deja transcurrir el tiempo de la hidrolisis alcalina, y se lava las patas con abundante agua, de manera que se elimine la mayor cantidad de reactivo.
- Se neutraliza las patas con el ácido clorhídrico hasta lograr obtener un pH de 8.

Fotografía 16. Determinación del pH - obtención de grenetina mediante el método químico
Tomada el 03/04/2018 – Laboratorio de Cárnicos de la Universidad de Cuenca

- Después de que las patas han sido neutralizadas estas son colocadas en la olla de presión con una relación peso/volumen 1:1, con el fin de dar comienzo a la extracción de la grenetina, el tiempo de extracción ira variando de acuerdo al diseño experimental.
- Transcurrido el tiempo de extracción de la grenetina, la solución resultante fue filtrada y colocada en los moldes.
La grenetina una vez colocadas en los moldes se deja en reposo durante 12 horas para que se dé la correcta formación del gel.

- Cuando la estructura del gel es firme se procedió a pesar las muestras cuyos datos servirán en lo posterior para la determinación de los rendimientos.

- Las muestras pesadas son secadas en un horno secador a una temperatura de 68°C durante 12 horas.

Obtenida la grenetina seca esta es triturada hasta obtener un tamaño de poro, el mismo que atraviesa el tamiz malla ASTM Nro. 30 el mismo que corresponde al tamaño de partícula 0,0234 pulgadas o a 600 micras.
3.7. Datos experimentales obtenidos en la aplicación del tratamiento químico

*NOTA: Debido a que en este trabajo de titulación existen una gran variedad de experimentos se procedió a identificarlos con la siguiente descripción:

MQ: hace referencia a los experimentos realizados mediante la aplicación del método químico.

Para la realización de los experimentos en el tratamiento químico se siguió el modelo propuesto en la tabla 16

<table>
<thead>
<tr>
<th>Datos experimentales</th>
<th>Experimento MQ1</th>
<th>Experimento MQ 2</th>
<th>Experimento MQ 3</th>
<th>Experimento MQ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración de reactivos</td>
<td>NaOH 0,1N</td>
<td>NaOH 0,4N</td>
<td>NaOH 0,1N</td>
<td>NaOH 0,4N</td>
</tr>
<tr>
<td>Tiempo de residencia</td>
<td>24 horas</td>
<td>24 horas</td>
<td>48 horas</td>
<td>48 horas</td>
</tr>
<tr>
<td>Presión de trabajo</td>
<td>10 psi</td>
<td>10 psi</td>
<td>10 psi</td>
<td>10 psi</td>
</tr>
<tr>
<td>Temperatura de extracción</td>
<td>115°C</td>
<td>115°C</td>
<td>115°C</td>
<td>115°C</td>
</tr>
<tr>
<td>Tiempo de extracción</td>
<td>35 min</td>
<td>35 min</td>
<td>35 min</td>
<td>35 min</td>
</tr>
<tr>
<td>Peso de la materia prima</td>
<td>500,1g</td>
<td>500,1g</td>
<td>500,1g</td>
<td>500,1g</td>
</tr>
<tr>
<td>Peso de la grenetina</td>
<td>16,4g</td>
<td>16,2g</td>
<td>19,4g</td>
<td>19g</td>
</tr>
</tbody>
</table>

Fuente: Propia
Tabla 20. (Continuación) Datos experimentales obtenidos en el tratamiento químico

<table>
<thead>
<tr>
<th>Datos experimentales</th>
<th>Experimento MQ 5</th>
<th>Experimento MQ 6</th>
<th>Experimento MQ 7</th>
<th>Experimento MQ 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración de reactivos</td>
<td>NaOH 0,1N</td>
<td>NaOH 0,4N</td>
<td>NaOH 0,1N</td>
<td>NaOH 0,4N</td>
</tr>
<tr>
<td>Tiempo de residencia</td>
<td>24 horas</td>
<td>24 horas</td>
<td>48 horas</td>
<td>48 horas</td>
</tr>
<tr>
<td>Presión de trabajo</td>
<td>10 psi</td>
<td>10 psi</td>
<td>10 psi</td>
<td>10 psi</td>
</tr>
<tr>
<td>Temperatura de extracción</td>
<td>115°C</td>
<td>115°C</td>
<td>115°C</td>
<td>115°C</td>
</tr>
<tr>
<td>Tiempo de extracción</td>
<td>45 min</td>
<td>45 min</td>
<td>45 min</td>
<td>45 min</td>
</tr>
<tr>
<td>Peso de la materia prima</td>
<td>500,1g</td>
<td>500,1g</td>
<td>500,1g</td>
<td>500,1g</td>
</tr>
<tr>
<td>Peso de la grenetina</td>
<td>15,2g</td>
<td>15,8g</td>
<td>13,7g</td>
<td>21,3g</td>
</tr>
</tbody>
</table>

Fuente: Propia

Una vez que se han llevado a cabo la realización de los experimentos planteados en el diseño experimental se obtienen los siguientes resultados:

Tabla 21. Resultados obtenidos en el tratamiento químico

<table>
<thead>
<tr>
<th>Nro. De Experimento</th>
<th>Rendimiento</th>
<th>Propiedades organolépticas</th>
<th>Otros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explotando MQ 1</td>
<td>3,28%</td>
<td>Crema claro</td>
<td>Normal</td>
</tr>
<tr>
<td>Explotando MQ 2</td>
<td>3,24%</td>
<td>Café obscuro</td>
<td>Fuerte</td>
</tr>
<tr>
<td>Explotando MQ 3</td>
<td>3,86%</td>
<td>Habano claro</td>
<td>Grasoso</td>
</tr>
<tr>
<td>Explotando MQ 4</td>
<td>3,77%</td>
<td>Café obscuro</td>
<td>Grasoso</td>
</tr>
<tr>
<td>Explotando MQ 5</td>
<td>3,04%</td>
<td>Caramelo</td>
<td>Grasoso</td>
</tr>
<tr>
<td>Explotando MQ 6</td>
<td>3,16%</td>
<td>Café obscuro</td>
<td>Grasoso</td>
</tr>
<tr>
<td>Explotando MQ 7</td>
<td>2,72%</td>
<td>Café obscuro</td>
<td>Grasoso</td>
</tr>
<tr>
<td>Explotando MQ 8</td>
<td>4,23%</td>
<td>Café claro</td>
<td>Grasoso</td>
</tr>
</tbody>
</table>

Fuente: Propia

Según (Cazar, 2016) nos indica que para que el modelo del diseño experimental propuesto en la literatura sea verificable y tenga una validación es necesario realizar
tres experimentos centrales los mismos que deben tener una correlación con la cual se nos indicara si el diseño experimental propuesto es o no reproducible, para ello; en la tabla 22 se detallan los datos de trabajo obtenidos en la realización de los experimentos centrales.

Tabla 22. Datos experimentales obtenidos en los experimentos centrales

<table>
<thead>
<tr>
<th>Datos experimentales</th>
<th>Experimento C1</th>
<th>Experimento C2</th>
<th>Experimento C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración de reactivos</td>
<td>NaOH 0,25N</td>
<td>NaOH 0,25N</td>
<td>NaOH 0,25N</td>
</tr>
<tr>
<td>Tiempo de residencia</td>
<td>36 horas</td>
<td>36 horas</td>
<td>36 horas</td>
</tr>
<tr>
<td>Presión de trabajo</td>
<td>10 psi</td>
<td>10 psi</td>
<td>10 psi</td>
</tr>
<tr>
<td>Temperatura de extracción</td>
<td>115°C</td>
<td>115°C</td>
<td>115°C</td>
</tr>
<tr>
<td>Tiempo de extracción</td>
<td>40 min</td>
<td>40 min</td>
<td>40 min</td>
</tr>
<tr>
<td>Peso de la materia prima</td>
<td>505,1g</td>
<td>505,1g</td>
<td>505,1g</td>
</tr>
<tr>
<td>Peso de la grenetina</td>
<td>15,4g</td>
<td>15,3g</td>
<td>15,1g</td>
</tr>
</tbody>
</table>

Fuente: Propia

A continuación se presentan los resultados de las pruebas organolépticas realizadas a los experimentos centrales.

Tabla 23. Resultados obtenidos en el tratamiento químico

<table>
<thead>
<tr>
<th>Nro. De Experimento</th>
<th>Rendimiento</th>
<th>Propiedades organolépticas</th>
<th>Otros</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Color</td>
<td>Olor</td>
<td></td>
</tr>
<tr>
<td>Experimento C1</td>
<td>3,05%</td>
<td>Café obscuro</td>
<td>Normal</td>
</tr>
<tr>
<td>Experimento C2</td>
<td>3,03%</td>
<td>Café obscuro</td>
<td>Normal</td>
</tr>
<tr>
<td>Experimento C3</td>
<td>2,99%</td>
<td>Café obscuro</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Fuente: Propia
3.8. DPO para la obtención de grenetina a partir del método químico

Diagrama 5. DPO Obtención de grenetina por el método químico
Elaboración Propia
3.9. Procedimiento para la formulación de gelatinas saborizadas

- Cuando se realizó la determinación del tamaño de partícula se procedió a realizar la dosificación para la elaboración de la gelatina; el sabor escogido fue el de mora.

![Imagen de dosificación de los aditivos para la elaboración de la gelatina.](image)

Fotografía 20. Dosificación de los aditivos para la elaboración de la gelatina. Tomada el 21/05/2018 – Laboratorio de Cárnicos de la Universidad de Cuenca

- Para poder tener un mayor rango de comparación se procedió a determinar los grados Brix de una gelatina comercial con el fin de igualar con los grados que presenta la muestra obtenida.

![Imagen de determinación de grados Brix.](image)

Fotografía 21. Determinación de grados Brix. Tomada el 21/05/2018 – Laboratorio de Cárnicos de la Universidad de Cuenca

- Realizada la corrección de los grados Brix se procede a preparar las muestras para realizar la degustación; para ello se prepara la muestras testigo y la obtenida en el presente proyecto.
3.10. **DPO para la elaboración de gelatina**

Diagrama 6. DPO Elaboración de gelatina saborizada

Elaboración Propia
3.11. Pruebas bromatológicas aplicadas a la grenetina obtenida en la optimización del método para la obtención de grenetina

3.11.1. Determinación de la humedad

Este análisis se realizó en el determinador de humedad.

Procedimiento
- Se coloca 1g aproximado de la muestra de ensayo en el plato del equipo.
- Presionar start en el equipo para que comience la medición.
- Esperar hasta que la alarma del equipo se active y registrar el resultado.

![Determinación de Humedad](image_url)

Fotografía 23. Determinación de Humedad.
Tomada el 05/04/2018 – Laboratorio de Cárnicos de la Universidad de Cuenca

3.11.2. Determinación de pH

La determinación del pH se determina de acuerdo a la norma NTE INEN 1519:1987. (Normalizacion I. d., Determinacion del Ión Hidrogeno, 1987)

Procedimiento.

La determinación se realizará por duplicado y sobre la misma muestra.
- Pesar 10 gramos de la muestra de ensayo en un matraz de Erlenmeyer limpio y seco.
- Añadir, con una probeta 90 cm³ de agua recientemente hervida y enfriada.
- Disolver la porción de ensayo con ayuda de un agitador de vidrio hasta la disolución completa.
- Agitar la solución de ensayo a intervalos frecuentes de tiempo durante 30 minutos. Dejar reposar la solución durante 10 minutos.
- Llevar la solución en un vaso de precipitación de 100 cm³
Lavar los electrodos con agua destilada y calibrar el equipo a la temperatura de la muestra utilizando soluciones de referencia.
- Realizar la lectura introduciendo los electrodos en el vaso de precipitación cuidando que ese no toque las paredes del recipiente, la lectura se realizará de manera directa.
- La temperatura de determinación se realizará a una temperatura de 25°C

Fotografía 24. Determinación de pH.
Tomada el 05/04/2018– Laboratorio de Cárnicos de la Universidad de Cuenca

3.11.3. Determinación del tiempo de gelificación

Se define como el tiempo de gelificación al tiempo que demora la gelatina en formar el gel (Normalización I. d., 1986); esta determinación se realizará de acuerdo a la norma NTE INEN 120:1986

Procedimiento:
- Pesar 85 g de la muestra de ensayo y llevar a un vaso de precipitación de 1000cm³
- Con la ayuda de una probeta, añadir 250 cm³ de agua destilada caliente y disolver la muestra.
- Volver a añadir agua destilada que se encuentre a una temperatura de 20 a 25 °C hasta completar 500cm³
- La solución obtenida dividir en vasos de precipitación de 100cm³, en 6 porciones iguales
- Colocar las muestras en el equipo de refrigeración a una temperatura entre 8 y 10°C, y anotar la hora.
- Observar la muestra al transcurrir la primera hora y continuar con la observación con intervalos de cada media hora hasta completar las 3 horas.
- La muestra se ha gelificado, cuando al invertir el recipiente, el gel no se derrama.
- Anotar el tiempo que se demoró en formar el gel, este corresponde al tiempo de gelificación de la muestra.
3.11.4. Determinación de la dureza de gel

La dureza del gel se define como la resistencia ofrecida por un gel a la acción penetrante de un embolo. (Normalizacion I. d., Ensayo de dureza de gel, 1986)

La determinación de dicho ensayo se realizara de acuerdo a la NTE INEN 1518:1986; misma que se realizará por duplicado.

Procedimiento

- Pesar 85 gramos de la muestra ensayo y llevar al vaso de precipitación de 1000cm³.
- Disolver la muestra con 250cm³ de agua hirviente.
- Agregar 250cm³ de agua fría a 10⁰C y mezclar hasta homogeneidad.
- De la muestra preparada se toma una alícuota de 120 cm³ y transvasar con una temperatura de 65⁰C a la jarra de vidrio
- Colocar inmediatamente en el baño refrigerante a 10⁰C ± 1⁰C, y dejar enfriar durante 90 minutos.
- Retirar las jarras del baño, y colocarlas en el centro de la base del penetrómetro.
- Nivelar el penetrómetro y elevar el eje y cono hasta que la lectura indique el cero.
- Ajustar la muestra hasta que la punta del cono se encuentre apenas en contacto con la superficie de la muestra
- Presionar le mecanismo hasta que la punta del cono se encuentre apenas en contacto con la superficie de la muestra presionar el mecanismo para permitir que el cono entre en la muestra y mantenerlo exactamente durante 5 segundos, controlando con un cronometro.
- Leer la penetración en mm, directamente en el dial del indicador.
- Informar como resultado final la media aritmética de los dos resultados de la determinación.
3.12. **Formulación para la elaboración de gelatinas saborizadas**

En la elaboración de gelatinas saborizadas se utilizó principalmente como materia prima la grenetina la cual se obtuvo en el presente proyecto; además se utilizaron aditivos, edulcorantes, saborizantes y aromatizantes, la elaboración de la gelatina se realizó de acuerdo a la NTE-INEN 1521-2014.

El sabor escogido para la realización de este proyecto es el sabor de mora; en la tabla 24 se exponen las cantidades de los aditivos y edulcorantes utilizados.

<table>
<thead>
<tr>
<th>Materia Prima</th>
<th>Gramos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grenetina</td>
<td>200</td>
</tr>
<tr>
<td>Edulcorantes</td>
<td>70</td>
</tr>
<tr>
<td>Saborizantes</td>
<td>20</td>
</tr>
<tr>
<td>Aromatizantes</td>
<td>1</td>
</tr>
<tr>
<td>Agua</td>
<td>1500</td>
</tr>
</tbody>
</table>

Fuente: Propia

3.13. **Análisis sensorial del producto determinado**

Para el análisis sensorial del producto se consideran parámetros como sabor, color, olor, aspecto del alimento, para en lo posterior someter los resultados a una valoración en donde se determinara la aceptación o rechazo del producto final.
3.13.1. Cálculo del número de catadores

Para la determinación del tamaño muestras se toma como referencia el número de estudiantes del último año de la "Unidad Educativa San Joaquín"; por lo tanto se aplica la siguiente fórmula estadística.

\[
n = \frac{Z^2 \times p \times q \times N}{d^2 \times (N - 1) + Z^2 \times p \times q}
\]

Ecuación 2. Fórmula para calcular el tamaño de la muestra

La tabla 25 muestra la descripción de los parámetros de la fórmula para calcular el tamaño de la muestra.

Parámetros correspondientes al tamaño de la muestra (Aguilar Barojas, 2005):

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Tamaño de la muestra</td>
</tr>
<tr>
<td>N</td>
<td>Tamaño de la población o universo</td>
</tr>
<tr>
<td>p</td>
<td>Porción de individuos que poseen en la población la característica de estudio, generalmente se supone un valor de (p = 0.5)</td>
</tr>
<tr>
<td>q</td>
<td>Porción de individuos que no poseen la característica en la población corresponde a (1 - p)</td>
</tr>
<tr>
<td>Z</td>
<td>Nivel de confianza. Indica el porcentaje de confiabilidad de resultados. Es una constante</td>
</tr>
<tr>
<td>D</td>
<td>Porcentaje de error</td>
</tr>
</tbody>
</table>

Los valores a aplicarse se demuestran en la tabla 26:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>52</td>
</tr>
<tr>
<td>P</td>
<td>0.5</td>
</tr>
<tr>
<td>Q</td>
<td>0.5</td>
</tr>
<tr>
<td>Z</td>
<td>1.96</td>
</tr>
<tr>
<td>D</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Elaborado por: Autora
Al aplicar los datos en la ecuación 2 se calcula el tamaño de la muestra el mismo que corresponde a 45

3.13.2. Aplicación de la ficha de degustación
Para la aplicación de la evaluación sensorial de las gelatinas se elaboró una ficha de catación o una ficha de degustación, la misma que incluye preguntas sobre los atributos a analizar tales como: color, sabor, textura y aroma, estos parámetros permiten conocer si el producto será o no aceptado; dicha información es importante puesto que permitirá el desarrollo del nuevo producto.
Antes de inicial con la aplicación de la ficha los catadores recibieron las respectivas indicaciones para poder realizar la degustación.
4. Resultados y Discusión
En lo siguiente se expone los resultados obtenidos en: pruebas preliminares, proceso térmico y proceso químico.

4.1. Resultados obtenidos en las pruebas preliminares.

Para facilitar la separación de la grenetina seca de los moldes se prueba colocando una pequeña muestra del gel en recipientes de vidrio, plástico, acetato, papel engrasado.

Una vez que este se secó se observa que en el acetato la muestra se desprende con mayor facilidad en comparación con la muestra secada en plástico; las muestras secadas en vidrio y sobre el papel presentan gran dificultad al momento de separar la grenetina del molde, por lo tanto se escoge secar la muestra obtenida de grenetina en bandejas de acetato.

4.2. Resultados obtenidos en la optimización del tratamiento térmico.

En las gráficas presentadas a continuación se muestra el porcentaje de rendimiento obtenido para cada experimento.
La extracción de la grenetina se realizó en un tiempo de 35 minutos, esta muestra presentaban un ligero olor característico (pollo) a más que su coloración era amarilla obscura, el rendimiento para este experimento fue del 1,43%.

Experimento MT2

La extracción de la grenetina se realizó en un tiempo de 45 minutos, esta muestra presentaban un ligero olor a proteína a más que su coloración era amarillo, el rendimiento para este experimento fue del 2,53%.

Experimento MT3

La extracción de la grenetina se realizó en un tiempo de 55 minutos, esta muestra presentaban un ligero olor a proteína a más que su coloración era amarillo, el rendimiento para este experimento fue del 3,32%.

Experimento MT4

La extracción de la grenetina se realizó en un tiempo de 65 minutos, esta muestra presentaban un olor a proteína descompuesta a más que su coloración era amarillo obscuro, dichas propiedades la hacen indeseables para trabajar con ella, el rendimiento para este experimento fue del 2,90%.

Fuente: Propia
La muestra de grenetina que fue extraída durante 55 minutos presenta una coloración aceptable, a más esta muestra al ser secada en el molde de acero inoxidable presenta mayor facilidad para ser separada del molde. Otro factor que influyó en la toma de decisiones es que conforme pasaron los días los experimentos MT1, MT2 y MT4 comienzan a presentar un olor a caldo de pollo fuerte por lo cual estas ya no son tomadas en cuenta para la elaboración de las gelatinas.

4.3. Resultados obtenidos en la optimización del tratamiento Químico

En las gráficas presentadas a continuación se muestra el porcentaje de rendimiento obtenido para cada experimento

Grafica 2. Resultados obtenidos en el tratamiento químico

Porcentaje de grenetina obtenido en cada experimento para el tratamiento químico

Fuente: Propia
La muestra MQ1 presentó una coloración crema clara, esta no presentó olor característico es decir no tiene el olor a caldo de pollo, la estructura del gel fue firme, el rendimiento obtenido en este experimento fue del 3,28%.

La muestra MQ2 presentó una coloración café oscura, a más que su olor era característico es decir este era semejante al de caldo de pollo; a más la estructura de gel no era firme, el gel formado era inestable; el rendimiento obtenido en este experimento fue del 3,24%. En el experimento MQ3 se presenta una coloración habano claro, a más que tenía un olor a caldo de pollo grasoso; la estructura de gel era firme; el rendimiento obtenido en este experimento fue del 3,86%; en el experimento MQ4 se presentó una coloración café obscura, a más que tenía un olor a caldo de pollo grasoso; la estructura de gel era firme; el rendimiento obtenido en este experimento fue del 3,24%; en el experimento MQ5 se presenta una coloración caramelo, a más que tenía un olor a caldo de pollo grasoso; la estructura de gel era firme; el rendimiento obtenido en este experimento fue del 3,04%.

La muestra MQ6 presentó una coloración café obscuro, a más que tenía un olor a caldo de pollo grasoso; la estructura de gel era débil, es decir este era inestable; el rendimiento obtenido en este experimento fue del 3,16%; sin embargo la muestra MQ7 si bien presenta una coloración similar a la anterior esta tenía un olor a caldo de pollo grasoso; y su estructura de gel era compacta es decir en comparación con el resto de experimentos la estructura de este gel fue de demasiado estable esta solo se comparaba con la estructura de una goma; el rendimiento obtenido en este experimento fue del 3,16%. Finalmente la muestra MQ8 presentó una coloración café claro, a más que tenía un olor grasoso; la estructura de gel firme; el rendimiento obtenido en este experimento fue del 4,23%.

4.4. Resultados obtenidos en las pruebas centrales

En la siguiente grafica se exponen los porcentajes de rendimiento en la aplicación de los experimentos centrales; dichas pruebas fueron repetidas en igualdad de condiciones de trabajo con el fin de determinar la validez o no del diseño.
Como se observa en la gráfica 3 se observa que los rendimientos no varían significativamente el uno del otro; además al someterlos a una comparación con los obtenidos en el tratamiento térmico se observan que estos se encuentran en el rango de porcentajes obtenidos por lo que se llega a la conclusión que el diseño experimental está bien planteado, con lo cual se verifica que este pueda ser reproducido.

4.5. Discusión de los resultados obtenidos en ambos métodos.

Al momento de analizar cada uno de los resultados obtenidos en la aplicación de del método químico y el método térmico se llega a la siguiente discusión:

En el método térmico se observa que el porcentaje de rendimiento de grenetina aumenta conforme el tiempo de extracción se incrementa, esto en comparación con el experimento MT1, MT2 Y MT3, lo que sugeriría que para el MT4 continuará de manera similar; sin embargo se observa que el porcentaje de rendimiento disminuye esto es a que a tiempos mayores a 65 minutos la proteína comienza a desnaturalizarse, dando como resultado que el porcentaje de grenetina disminuya.

Cuando se comparan estos resultados con los obtenidos por el método químico se decide no tomarlos en cuenta debido a que los propiedades organolépticas no permiten su aplicación en la siguiente etapa de este proyecto ya que conforme pasaron los días estas muestras presentan un color caramelo; además estas
pruebas presentan un sabor y olor característico a pollo, por lo cual resultaría muy difícil enmascarar este sabor con la adición de algún aditivo; esto sin contar que las gelatinas que se elaboren a partir de la obtención de esta grenetina sería de color obscuro lo que visualmente no sería atractivo al consumidor.

Para la aplicación del método químico de acuerdo a la revisión bibliográfica se optó por la fusión de dos tratamientos aplicados a la obtención de gelatina proveniente de la pata de res y la obtención de grenetina proveniente de la Tilapia roja; esto debido a que en la literatura actual no hay un procedimiento específico en donde se delimiten las variables a tomar en consideración para desarrollar la extracción, una vez que se analizaron cada tratamiento propuesto se establecieron los límites con los que se desarrolló la parte experimental; en la bibliografía correspondiente a la obtención de grenetina a partir de la pata de res se toma como variable el límite mínimo para la obtención de dicha sustancia el mismo que tiene una concentración de reactivo 0,1N de NaOH, con un tiempo de residencia de 48 horas; mientras que para la obtención de grenetina a partir de la tilapia se tomó su límite máximo 0,4 N, con un tiempo de hidrolisis de 24 horas; en cuanto al establecimiento de la variable correspondiente al tiempo de extracción, estas se determinaron de manera pre experimental; al comparar el tiempo de extracción en cuanto al método térmico este se limita a el uso de 45 minutos esto debido a que si el proceso de extracción sobrepasa este tiempo ocurriría una desnaturalización de proteína lo que haría imposible la formación de gel, impidiendo con ello la formación de la gelatina, la determinación de este límite de tiempo se realizó a través de la realización de pruebas pre experimentales

En cuanto al análisis realizado en los resultados obtenidos en la implementación del diseño experimental se puede determinar que la muestra más idónea para trabajar es la del experimento MQ1 esto debido que a más de su rendimiento fue del 3,28% las propiedades organolépticas son las mejores; si bien es cierto el experimento MQ3, MQ4 Y EL MQ8 tiene un porcentaje de rendimiento igual al 3,86%, 3,78% y 4,23% respectivamente no se escoge trabajar con estos debido a que sus propiedades organolépticas nos son las adecuadas para continuar con la siguiente parte del proyecto, la misma que consiste en la elaboración de gelatinas, si se utilizaran estos experimentos se obtendrían gelatinas con colores muy obscuros lo que resultaría indeseable por el consumidor.
En el caso puntual del experimento MQ2, MQ5 estas muestras al comparar con las anteriores se determina que estas no tienen un buen rendimiento a más que sus propiedades organolépticas no son idóneas; otro factor fundamental es la estructura de gel ya que estas muestras presentaban geles que se rompen con gran facilidad; y esto es un factor clave en la elaboración de la gelatina debido a que las muestras que se elaboren deben cumplir con los parámetros establecidos en la norma que regula la elaboración de gelatinas.
Por lo tanto se escoge trabajar con la muestra MQ1 que para el desarrollo de este proyecto presenta las mejores propiedades organolépticas, la estructura de gel es firme así como su rendimiento es favorable.

Otro de los factores que se tomaron en consideración fue el sabor de cada una de las muestras quienes de determinó con un primer grupo focal en donde se determinó que la muestra MQ1 presenta un ligero sabor a pollo el cual si podía ser enmascarado por el uso de algún aditivo.

Sin embargo se deja como constancia que algunos experimentos pueden ser utilizados para la elaboración de gomas pegantes como es el caso del experimento MQ7, el cual presenta una estructura gomosa ideal para ser utilizada en la industria de los pegantes.

Al comparar cada uno de los métodos se tiene que se utiliza el método químico debido a la materia prima al ser sometida a una hidrólisis alcalina facilita que el hinchamiento del tejido conectivo permitiendo así la liberación de mayor cantidad de grenetina, lo cual es beneficioso puesto que como se evidencia se tiene un mayor porcentaje de grenetina; otra ventaja de la aplicación de este tratamiento es que en el caso que se desee eliminar el sabor característico de pollo de las muestras, este tratamiento lo consigue, por cuyo motivo se recomienda la utilización de este tratamiento al momento que se desee hacer una extracción de grenetina siempre y cuando se desee elaborar productos a base de estos.

4.6. Informe nutricional

Al conocer el porcentaje de cada uno de los componentes del producto terminado, se procedió a elaborar su informe nutricional, por lo cual se tomó como referencia la norma técnica NTE INEN 1334-2; la misma que da las directrices para el rotulado de productos a demás se elaboró el semáforo nutricional de acuerdo a lo establecido en la tabla 12.

4.6.1. Informe nutricional gelatina con sabor a mora

A través de informe nutricional se expresa el contenido de grasa total, proteínas, carbohidratos y sodio (sal) que el alimento presenta, por lo tanto la gelatina correspondiente a la muestra testigo presenta el siguiente informe como se presenta en la tabla 27
Tabla 27. Informe nutricional muestra testigo

INFORME NUTRICIONAL

Tamaño por porción: una cucharada de mezcla en polvo (12g)
Porciones por envase: 16

<table>
<thead>
<tr>
<th>Cantidad por porción</th>
<th>% Valor diario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía (Calorías) 189 KJ (45 Kcal)</td>
<td></td>
</tr>
<tr>
<td>Energía de grasa (calorías de la grasa) 0KJ (0kcal)</td>
<td></td>
</tr>
<tr>
<td>Grasa total 0g</td>
<td>0%</td>
</tr>
<tr>
<td>Acidos grasos saturados 0g</td>
<td>0%</td>
</tr>
<tr>
<td>Colesterol 0g</td>
<td>0%</td>
</tr>
<tr>
<td>Sodio 65mg</td>
<td>3%</td>
</tr>
<tr>
<td>Carbohydratos totales 10mg</td>
<td>3%</td>
</tr>
<tr>
<td>Fibra dietaria 0g</td>
<td>0%</td>
</tr>
<tr>
<td>Azucares 10g</td>
<td></td>
</tr>
<tr>
<td>Proteina 1g</td>
<td>2%</td>
</tr>
</tbody>
</table>

*los porcentajes de valores Diarios están basados en una dieta de 8380kJ (2000k cal)

Fuente: Propia

De acuerdo a los valores de grasa total, carbohidratos y sal, el semáforo nutricional de este producto tiene las siguientes indicaciones, mismas que se observan en la ilustración 2

Ilustración 2. Semáforo muestra testigo
Mientras tanto, el informe nutricional que se presenta para la muestra obtenida en el laboratorio, refleja los siguientes valores para cada uno de los componentes, como se observa en la tabla 28.

<table>
<thead>
<tr>
<th>Grasa total 0g</th>
<th>% Valor diario</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidos grasos saturados 0g</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Colesterol 0g</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Sodio 65mg</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Carbohidratos totales 10mg</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Fibra dietaria 0g</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Azucares 10g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteina 10g</td>
<td>20%</td>
<td></td>
</tr>
</tbody>
</table>

*los porcentajes de valores Diarios están basados en una dieta de 8380kJ (2000k cal)

Fuente: Propia

De acuerdo a los valores de grasa total, carbohidratos y sal, el semáforo nutricional de este producto tiene las siguientes indicaciones, mismas que se observan en la ilustración 3.
4.7. Resultados obtenidos en el análisis sensorial

Para conocer el grado de aceptación del producto elaborado se procedió a realizar la respectiva degustación para lo cual se aplica una ficha de degustación a los estudiantes de Tercero de Bachillerato de la Unidad Educativa “San Joaquín”.

Los criterios de aceptación empleados en dicha ficha fueron: color, sabor, textura y aroma cuya escala de calificación se detalla a continuación:

<table>
<thead>
<tr>
<th>Escala</th>
<th>Nivel de aceptación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Muy malo</td>
</tr>
<tr>
<td>2</td>
<td>Malo</td>
</tr>
<tr>
<td>3</td>
<td>Normal</td>
</tr>
<tr>
<td>4</td>
<td>Bueno</td>
</tr>
<tr>
<td>5</td>
<td>Excelente</td>
</tr>
</tbody>
</table>

4.7.1. Resultados obtenidos en la aplicación de la ficha de degustación

A continuación se presenta las gráficas obtenidas en los resultados de los tributos sensoriales referentes a las muestras de gelatina con sabor a mora.
Cabe recalcar que a la muestra testigo no se le realizó ninguna modificación al momento de su preparación ya que esta fue preparada de acuerdo a las indicaciones dadas por el fabricante.

Grafica 4. Evaluación de color- Gelatinas saborizadas ‘Mora’

De acuerdo a la gráfica 4 se observa que el color de la muestra que fue preparada en el laboratorio no varía significativamente puesto que presenta un valor correspondiente a 3,4 a comparación con el del testigo cuyo valor fue de 3,7; dicho testigo no fue modificado con la intervención de ningún aditivo en su composición.

Grafica 5. Evaluación de sabor- Gelatinas saborizadas ‘Mora’
Al analizar la gráfica 5 observamos que la gelatina que se realizó en el laboratorio tiene una ponderación de 3,1 la cual es baja a comparación con la muestra testigo cuyo valor fue de 3,87: esto pudo deberse a que la población no está relacionada con el consumo de colágeno o grenetina como tal.

De acuerdo con la gráfica 6 se observa que la gelatina que se realizó en el laboratorio presenta una ponderación de 3,4 la misma que es cercana a la obtenida por la muestra testigo, cuyo valor fue de 3,6 la mayoría de los catadores manifestaron que esta tenía una textura más compacta en comparación con la gelatina comercial.
Al analizar la gráfica 6 se observa que tanto para la muestra testigo como para la muestra elaborada en el laboratorio se obtienen valores sumamente cercanos en cuanto a la apreciación del aroma, cabe resaltar que a la muestra se le añadió un aromatizante de mora con el fin de eliminar la mínima presencia de un olor característico de la muestra.

Grafica 8. Porcentaje de consumo- Gelatinas saborizadas “Mora”

Fuente: Propia
En la gráfica 8 se expresa que la mayoría de la población consume gelatina una vez al mes, es decir su consumo no es frecuente, esto se refleja como resultado que la mayoría de personas desconoce los beneficios del consumo de gelatina.

Al analizar cada una de las ponderaciones obtenidas en cada grafica se observa que se tienen valores cercanos entre la muestra comercial que en este caso nos sirvieron como testigo y la muestra elaborada en el laboratorio; dichos valores nos indican que la muestra elaborada en este proyecto al parecer de la población es normal, sin embargo es necesario seguir trabajando para que sus características mejoren, otro factor que puede afectar la calificación es que la mayoría de personas no consumen grenetina con frecuencia esto debido a el desconocimiento de los beneficios de esta sustancia.

4.8. Resultados obtenidos mediante la realización de las pruebas bromatológicas

A continuación se detallan los resultados obtenidos una vez realizados las pruebas bromatológicas a la muestra obtenida; misma que proviene a partir de la implementación del método químico cuyo experimento se denomina MQ1

<table>
<thead>
<tr>
<th>Requisito</th>
<th>Unidad</th>
<th>Resultado</th>
<th>Observación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad</td>
<td>%</td>
<td>9,89</td>
<td>Se acepta este resultado puesto que para la gelatina pura comestible se acepta un porcentaje de humedad inferior al 11% de acuerdo a la norma NTE INEN:1961</td>
</tr>
<tr>
<td>pH a 25°C</td>
<td>-</td>
<td>7,43</td>
<td>Se acepta este resultado puesto que para la gelatina pura comestible se acepta rangos de pH entre 3,5 y 7,5 de acuerdo a la norma NTE INEN:1961</td>
</tr>
<tr>
<td>Tiempo de formación de gel</td>
<td>Minutos</td>
<td>3</td>
<td>Se acepta este resultado puesto que para el postre de gelatina se acepta un tiempo de formación de gel entre 1 a 3 minutos de acuerdo a la norma NTE INEN:1961</td>
</tr>
</tbody>
</table>
5. Conclusiones

- Con el presente proyecto se logró la optimización de la grenetina a partir de residuos avícolas mediante la utilización del diseño experimental, logrando la elaboración de gelatinas saborizadas mismas que tienen una aceptación por la población, contribuyendo así a la obtención de una nueva fuente de grenetina.

- Se logró la implementación del diseño experimental el método térmico en donde se determinó que el mejor tiempo para la obtención de la grenetina fue de 55 minutos a una temperatura de 116°C y con una presión de 10,5 psi; si bien es cierto que en diferentes literaturas se recomienda una extracción de 6 a 8 horas, con la utilización de un reactor, la utilización de este tiempo se reducen considerablemente con lo cual esto favorece a la reducción de costos del producto, a más que se obtienen los mismos resultados.

- En cuanto a la aplicación del tratamiento químico se determina que las condiciones óptimas para obtener grenetina es de un tiempo de residencia de 24 horas con una concentración de reactivo 0,1N de NaOH y con un tiempo de
extracción de 35 minutos, esto debido a que esta muestra presentó un rendimiento del 3,28% a más que las sus propiedades organolépticas fueron las más idóneas para poder elaborar gelatina.

- Al momento de analizar los resultados obtenidos en cada uno de los experimentos se escoge trabajar con el método químico, esto debido a que los experimentos presentan un mejor rendimiento y las propiedades organolépticas son las mejores al comparar además se tomo en cuenta la estabilidad del gel mismo que es un parámetro fundamental al momento de elaborar gelatinas.

- En el caso específico de este proyecto se escoge trabajar con el experimento MQ1, debido a que reúne todos los factores necesarios para elaborar gelatinas de sabores, sin embargo se deja abierta la posibilidad de trabajar con el resto de experimentos, para elaborar diferentes productos tales como gomas o pegantes, esto para el caso específico del experimento MQ7 el cual presenta una estructura gomosa haciéndolo ideal para que sea aplicado en la elaboración de gomas o espesantes.

- La grenetina obtenida fue utilizada para la elaboración de gelatina con sabor a mora, dicha gelatina fue sometida a las diferentes pruebas bromatológicas, según la norma vigente; en todas las pruebas a la que la muestra fue sometida esta cumplía con las especificaciones dadas con lo que se garantiza la calidad del producto, al momento de realizar las pruebas de aceptación; la misma presenta una buena aceptación en la población ya que de acuerdo a las pruebas sensoriales aplicadas la población demostró tener una buena aceptación al consumo de gelatinas elaboradas a partir de grenetina misma que tiene un origen animal.

- Un dato más alarmante es que la población al momento de adquirir pollo prefiere que no se les incluyan las patas debido a que no representa una fuente sustancial de carne como tal, esto es debido a la falta de información de la composición de las mismas ya que como se detalla en el presente proyecto esta son la mayor fuente de colágeno que este animal presenta dichas patas al no ser adquiridas en su mayoría por la población son vendidas o regaladas para alimento de los animales y en el peor de los casos son arrojadas a la basura convirtiéndose en un problema medio ambiental. Es por ello que en este trabajo se buscó encontrar una nueva fuente de obtención de grenetina, misma que al ser obtenida se demostró que se puede utilizar para elaborar gelatinas mismas que no presentan propiedades organolépticas extrañas y son aceptadas por la población, encontrando con ello la solución a dos grandes problemas: el primero es disminuir el número de pacientes con problemas médicos relacionados con la artritis, desnutrición o enfermedades derivadas por la pérdida de colágeno en el organismo; y el segundo que sin duda alguna hoy en día es el más evidente el cual se relaciona con el gran daño ambiental que se genera al desechar estos residuos al medio que nos rodea convirtiéndose en una
fuente de contaminación tanto para el suelo como para los recursos hídricos alterando así el ecosistema en el que se encuentre.

6. Recomendaciones

- Se recomienda elaborar moldes de acetato para que la separación de la muestra del molde sea de manera sencilla.
- Se debe continuar con la investigación sobre la obtención de grenetina a partir de otros residuos avícolas y vegetales.
- Se debe continuar con la línea de investigación sobre la elaboración de gelatinas saborizadas, tratando de cambiar la formulación en la que se utilice edulcorantes no calóricos y concentrados de fruta.
- Se recomienda controlar el pH en la etapa de la neutralización con el fin de evitar límites cercanos al máximo, los mismos que se encuentran descritos en la norma NTE INEN1961
- Se recomiendo evitar el aumento relacionado con el incremento en el impacto ambiental el cual se ocasiona por el desecho de residuos avícolas de manera directa al medio ambiente.
7. Bibliografía

UNIVERSIDAD DE CUENCA

8. Anexos
8.1. Anexo 1. Resultados de las pruebas microbiológicas

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>MÉTODO</th>
<th>UNIDAD</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSTRIDIUM PERFRINGENS</td>
<td>*BAM CAP 16</td>
<td>UFC/g</td>
<td>< 10</td>
</tr>
<tr>
<td>S. AUREUS</td>
<td>PEM/VMB09</td>
<td>UFC/g</td>
<td>1.0 x 10^5</td>
</tr>
<tr>
<td>SALMONELLA</td>
<td>*BAM CAP 05</td>
<td>PRESENCIA/AUSENCIA</td>
<td>AUSENCIA</td>
</tr>
</tbody>
</table>

8.2. Anexo 2. Ficha de catación
El objetivo de la presente encuesta es evaluar y analizar sensorialmente la preferencia
de la población al consuma de gelatinas con sabor a Mora.

Su opinión es importante para el desarrollo de este proyecto, por lo cual lea
detenidamente el siguiente cuestionario y marque su respuesta con una "X".
De antemano, gracias por su colaboración.

Con qué regularidad consume gelatina:

DATOS DE DEGUSTACIÓN

Considere esta escala específica para la degustación:
Muy malo
Malo
Normal
Bueno
Excelente

<table>
<thead>
<tr>
<th>Prueba A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
</tr>
<tr>
<td>Sabor</td>
</tr>
<tr>
<td>Textura</td>
</tr>
<tr>
<td>Aroma</td>
</tr>
</tbody>
</table>
Prueba B

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sabor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Señale cual fue el producto de su mayor agrado

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
</table>

Porque:..
..
..
..

Observaciones..
..
..
..
..
..
..
..
Cuenca 24 de Mayo del 2018

Licenciado
Eduardo Zambrano.

RECTOR DE LA UNIDAD EDUCATIVA "SAN JOAQUÍN"

De mi consideración

Yo Aida Cristina Ramón Nieves con CI: 0105365944 egresada de la Facultad de Ciencias Químicas de la Universidad de Cuenca, solicito de la manera más considerada me autorice se me permita realizar una degustación de gelatinas en el establecimiento que usted dirige.

La petición es solicitada por motivo de la realización de mi trabajo de titulación cuyo tema es "OPTIMIZACION DEL METODO DE OBTENCION DE GRENETINA A PARTIR DE RESIDUOS AVICOLAS Y SU APLICACION EN LA ELABORACION DE GELATINAS SABORIZADAS" mismo que fue aprobado por la comisión respectiva, todo esto es de conocimiento de mi tutor el Ing. Quim. Servio Astudillo, así como de la Directora de Escuela de Ingeniería Química, Ing. Quim. Alexandra Guanuchi

El día y la hora de dicha degustación será el día Jueves 24 del presente a las 14:00; para lo cual se necesita la colaboración de 45 estudiantes de dicho centro educativo.

Esperando su favorable respuesta de antemano agradezco su atención.

Atentamente

Aida Cristina Ramón Nieves

ING. Quim. Servio Astudillo

ING. Quim. Alexandra Guanuchi
8.4. Anexo 4. Etiqueta del producto terminado

Jelly Soffy´s

Mezcal en polvo para preparar postre de gelatina sabor artificial a Mora

Contenido Neto: 400g

INGREDIENTES:
- Grepetina
- Azúcar
- Saborizante artificial (mora), aromatizante (mora)

Cuenca – Ecuador