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Abstract 

Rain gauge networks are crucial for enhancing the spatio-temporal characterization of 

precipitation. In tropical regions, scarcity of rain gauge data and climatic variability, 

make conventional approaches to design rain gauge networks inadequate and 

impractical. In this study, we propose the use of conditioned Latin Hypercube Sampling 

(cLHS) method with multi-temporal layers of remotely sensed precipitation 

measurements for capturing the spatio-temporal precipitation patterns in ungauged 

areas. The study was conducted in the Amazon Region of Ecuador, for which monthly 

precipitation averages were derived based on a 16-year period of Tropical Rainfall 

Measuring Mission (TRMM 3B43 V7) data which were used as prior information to 

select representative sampling points through cLHS. Two scenarios for the sampling 

design were considered and evaluated, one without and one with restrictions on 

accessible sites according to the proximity to roads and settlements. Results showed 

that both optimized networks captured the variability of precipitation according to the 

TRMM climatology. Furthermore, evaluation against an independent satellite 

precipitation dataset showed that the optimized networks support mapping precipitation 

based on ordinary kriging (OK). Comparison with regular and random sampling 

methods showed that, particularly when a practical scenario is considered, the 

optimized network provided more reliable results over time, highlighting the suitability of 

the network to capture temporal changes and map precipitation with high accuracy. 

The proposed approach could be easily adopted in other ungauged and poorly 

accessible regions for rain gauge network design as well as to the design of multi-

objective monitoring networks.  

 

Keywords: rain gauge network, spatio-temporal monitoring, conditioned Latin 

Hypercube Sampling, satellite precipitation data, ungauged areas, poorly accessible 

areas, Ecuadorian Amazon. 
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Resumen 

Las redes de pluviómetros son cruciales para mejorar la caracterización espacio-

temporal de la precipitación. En regiones tropicales, la escasez de datos 

pluviométricos y la variabilidad climática contrastante hacen que los enfoques 

convencionales para diseñar redes de pluviómetros sean inadecuados e imprácticos. 

En este estudio, proponemos el uso del método de muestreo por hipercubo latino 

condicionado (cLHS) con imágenes multitemporales de precipitación detectadas de 

forma remota para capturar los patrones espacio-temporales de precipitación en áreas 

no monitoreadas. El estudio se realizó en la región amazónica del Ecuador, cuyos 

promedios mensuales de precipitación se obtuvieron en base a un período de 16 años 

de datos de la Misión de Medición de Precipitaciones Tropicales (TRMM 3B43 V7) que 

se utilizaron como información previa para seleccionar puntos de muestreo 

representativos mediante cLHS. Se consideraron y evaluaron dos escenarios para el 

diseño del muestreo, uno sin y otro con restricciones en sitios accesibles de acuerdo 

con la proximidad a carreteras y asentamientos. Los resultados mostraron que ambas 

redes optimizadas capturaron la variabilidad de la precipitación de acuerdo con la 

climatología TRMM. Además, la evaluación frente a un conjunto de datos de 

precipitación por satélite independiente mostró que las redes optimizadas son 

adecuadas para el mapeo de la precipitación basado en el kriging ordinario (OK). La 

comparación con métodos de muestreo regular y aleatorio mostró que, particularmente 

cuando se considera un escenario práctico, la red optimizada proporcionó resultados 

más confiables a lo largo del tiempo, destacando la idoneidad de la red para capturar 

cambios temporales y cartografiar la precipitación con alta precisión. El enfoque 

propuesto podría adoptarse fácilmente en otras regiones no monitoreadas y de escasa 

accesibilidad para el diseño de redes de pluviómetros, así como para el diseño de 

redes de monitoreo multiobjetivo. 

Palabras clave: red de pluviómetros, monitoreo espacio-temporal, muestreo 

condicionado por hipercubos latinos, datos de precipitación satelital, áreas no 

monitoreadas, áreas de difícil acceso, Amazonía ecuatoriana. 
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1. Introduction 

Precipitation is the most important component of the hydrological cycle and it has a 

fudamental role in different socio-economic activities. Accurate knowledge of the 

spatio-temporal variability of precipitation is essential for many scientific and 

management fields (Celleri, Willems, Buytaert, & Feyen, 2007; Michaelides et al., 2009; 

Padrón, Wilcox, Crespo, & Célleri, 2015; Shaghaghian & Abedini, 2013; Tapiador et al., 

2012). Rain gauges are the most common instruments used to quantify the variability 

of precipitation (Michaelides et al., 2009; Tapiador et al., 2012). Despite advances in 

new technologies to estimate precipitation such as satellite remote sensing and 

weather radars, rain gauges remain to be the most accurate source of information and 

their measurements are essential for calibrating and validating  predictions based on 

other sources (Zubieta, Getirana, Espinoza, & Lavado, 2015).  

Many regions of the world, especially in tropical areas, remain ungauged owing to 

accessibility and budget constraints (Hobouchian, Salio, García Skabar, Vila, & 

Garreaud, 2017; Ochoa, Pineda, Crespo, & Willems, 2014; Ward, Buytaert, Peaver, & 

Wheater, 2011; Zubieta et al., 2015; Zulkafli et al., 2014). An ungauged region of 

particular importance is the Ecuadorian Amazon. This region is part of one of the 

richest biodiversity reserves of the planet (Ceballos & Ehrlich, 2006; Finer, Jenkins, 

Pimm, Keane, & Ross, 2008; Myers, Mittermeier, Mittermeier, da Fonseca, & Kent, 

2000) and it is home for many indigenous ethnic groups, including some of the world's 

last uncontacted communities (Finer, Moncel, & Jenkins, 2010; Larrea & Warnars, 

2009; Pappalardo, De Marchi, & Ferrarese, 2013). Hydrologically, the Ecuadorian 

Amazon basin supplies some of the major rivers within the Amazon, and contributes 

approximately 2.3% of the total discharge of the Amazon basin (Laraque, Ronchail, 

Cochonneau, Pombosa, & Guyot, 2007). The region has vast areas of intact tropical 

forest and according future projections, it has a high probability of stable climatic 

conditions regarding global warming (Killeen, Douglas, Consiglio, Jørgensen, & Mejia, 

2007).  

Despite this importance, little is known about the amount and variability of precipitation 

in the region since many areas remain ungauged. Several researchers have stressed 

the need of a well-developed monitoring network in the region with a representative 

spatio-temporal coverage that would support (1) an adequate characterization of 

precipitation variability (Morán-Tejeda et al., 2016), (2) the evaluation of satellite 

precipitation products and streamflow simulations (Manz et al., 2017; Zubieta, 

Getirana, Espinoza, Lavado-Casimiro, & Aragon, 2017) and (3) for a correct 

assessment of downscaling precipitation techniques (Ulloa, Ballari, Campozano, & 

Samaniego, 2017), among others. To design such monitoring network, it is required to 

take several things into account, such as the lack of prior information, the inherent 

spatio-temporal nature of precipitation and the inaccessibility that might make difficult 

the rain gauge network deployment and data retrieval. 
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Several methods have been proposed to accurately design rain gauge networks. 

These methods have been classified into two categories: measurement-free and 

measurement-based approaches (Chacon-Hurtado, Alfonso, & Solomatine, 2017). On 

one hand, measurement-free methods rely on technical guidelines or 

recommendations, which focus on the areal coverage per rain gauge (Baltas & 

Mimikou, 2009; K. Wang et al., 2015; WMO, 2008). They consider several 

physiographic characteristics of the area such as geomorphologic but they do not rely 

on existing precipitation measurements. On the other hand, measurement-based 

methods are based on prior information provided by existing rain gauge networks. 

These methods have shown to be the most robust and they are widely used  for 

optimizing (augmentation, relocation and reduction) existing networks (Chacon-Hurtado 

et al., 2017). Such methods include geostatistics (e.g. Adhikary, Yilmaz, & Muttil, 2014; 

Cheng, Lin, & Liou, 2008; Pardo-Igúzquiza, 1998), cross-correlation (e.g. Nazaripour & 

Daneshvar, 2017), entropy theory (e.g. H. Xu et al., 2015; Yoo, Jung, & Lee, 2008), 

model output error (e.g. Volkmann, Lyon, Gupta, & Troch, 2010; H. Xu, Xu, Chen, 

Zhang, & Li, 2013) and hybrid methods (Shaghaghian & Abedini, 2013; P. Xu et al., 

2018).  

In ungauged or poorly gauged areas such as the Ecuadorian Amazon, the feasibility of 

measurement-based methods is limited by the deficiency of current rain gauge data. In 

addition, prevalent contrasting climatic regions turns difficult the extrapolation of 

ground-based information from other regions. For these reasons, approaches that 

incorporate auxiliary information sources to design rain gauge networks should be 

developed. 

In ungauged areas, satellite predictions are the only source of information (Collischonn, 

Collischonn, & Morelli Tucci, 2008). Precipitation data provided by the quasi-global 

Tropical Rainfall Measuring Mission (TRMM) have been widely used for environmental 

monitoring applications (Du et al., 2013; Li, Christakos, Ding, & Wu, 2018; Moffitt, 

Hossain, Adler, Yilmaz, & Pierce, 2011; Su, Hong, & Lettenmaier, 2008; Xue et al., 

2013), the study of climate trends and variability (Almazroui, Islam, Jones, Athar, & 

Rahman, 2012; Retalis, Katsanos, & Michaelides, 2016) as well as for the 

regionalization of precipitation (Ballari, Giraldo, Campozano, & Samaniego, 2018). 

Although satellite precipitation estimates are relatively inaccurate compared to rain 

gauge measurements, their exhaustive coverage provides valuable information to 

identify spatio-temporal features of precipitation over any given area (Libertino, 

Sharma, Lakshmi, & Claps, 2016). Previous studies in Ecuador showed the suitability 

of TRMM estimates to characterize long-term precipitation climatology (Ballari, Castro, 

& Campozano, 2016; Erazo et al., 2018; Ulloa et al., 2017). Dai et al. (2017) proposed 

a methodology for rain gauge network design based on remotely sensed precipitation 

measurements obtained from a weather radar. The method correctly captured average 

precipitation but temporal variability and accessibility restrictions were not included in 

the design approach. In addition, the availability of precipitation radar data is limited in 

developing countries. 
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Conditioned Latin Hypercube Sampling (cLHS) provides an approach for incorporating 

prior information from remote sensing instruments as well as accessibility restrictions in 

a sample design. cLHS is a multivariate stratified random strategy (Minasny & 

McBratney, 2006) that has been proven to be an efficient sampling method because it 

captures the marginal variability of several variables using a relatively small sample 

(Brungard & Boettinger, 2010; Domenech, Castro-Franco, Costa, & Amiotti, 2017; 

Ramirez-Lopez et al., 2014; Stumpf et al., 2016). Roudier et al. (2012), Mulder et al. 

(2013) and Yin et al. (2016) have shown the effectiveness of the method when 

restrictions of accessibility are taken into account. cLHS has been extensively used as 

a sampling strategy for digital soil mapping (e.g. Chu, Lin, Jang, & Chang, 2010; 

Clifford, Payne, Pringle, Searle, & Butler, 2014; Mulder et al., 2013; Pahlavan Rad et 

al., 2014; Rosemary, Vitharana, Indraratne, Weerasooriya, & Mishra, 2017; Vitharana, 

Mishra, Jastrow, Matamala, & Fan, 2017) but only few studies have considered other 

environmental fields. Yin et al. (2016) used cLHS with remote sensing images for 

validating leaf area index in mountainous areas. This work was extended to the multi-

temporal domain and other biophysical properties in Yin et al. (2017). 

The objective of this study was to apply and evaluate the cLHS technique with long-

term TRMM climatology as a spatio-temporal sampling scheme for a rain gauge 

network design in ungauged areas. The approach was used to select the number and 

the locations of possible monitoring points in the Ecuadorian Amazon region. Due to 

the lack of coverage of ground-based precipitation measurements in the study area, 

the approach was evaluated through an independent satellite precipitation dataset, 

comparing the quality of monthly precipitation obtained by ordinary kriging (OK) with 

the optimized sampling points and alternative sampling schemes. 

2. Study area 

The study area is located in the eastern part of Ecuador. The Ecuadorian Amazon is 

one of the four biogeographic regions of Ecuador and it comprises almost half of the 

territory of the country. For the current study, the Amazon region of Ecuador was 

considered as the area located below the occidental foothills of the Andes covering an 

area of 83949 km2 (Figure 1). The study area extends over an area of Tropical Cloud 

Forest and Tropical Rain Forest. The average temperature is close to 25˚C and annual 

rainfall exceeds 3000 mm (Laraque et al., 2007). Climate and seasonality are 

controlled by large-scale meteorological phenomena such as the Intertropical 

Convergence Zone (ITCZ) and the South American Monsoon System (SAMS) which 

cause convection and heavy rainfall in the northern parts of the Amazon (Espinoza 

Villar et al., 2009; Marengo et al., 2012). A bimodal regime is distinguished in the 

region, with two rainy seasons from March to July and another one from October to 

December (Ballari et al., 2018). According to the National Institute of Meteorology and 

Hydrology of Ecuador (INAMHI), a total of 20 rain gauges were reported for the 

Ecuadorian Amazon in 2015. The spatial distribution of the current network is uneven, 

as shown in Figure 1; where 15 gauges are located along the western border of the 

region. 
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Figure 1. Study area and location of the rain gauge network. 

3. Materials and methods 

3.1. Satellite precipitation data 

Two satellite-based precipitation datasets were used in our study: TRMM 3B43 Version 

7 and GPM IMERG Level 3 Version 05. The first dataset was used as prior information 

to design the rain gauge network in the Ecuadorian Amazon, while the later was used 

for the evaluation of the optimized networks. Detailed information of the two datasets is 

presented below. 

TRMM 3B43 Version 7 

Monthly precipitation data from TRMM, called TRMM 3B43 were used in this study. 

The dataset was produced by the TRMM Multi-satellite Precipitation Analysis (TMPA) 

algorithm that combines all available precipitation datasets from different satellite 

sensors of TRMM and surface rain gauge data to correct bias and provide a best 

estimate of precipitation at relatively fine spatial resolution of 0.25° x 0.25° (~ 27 km x 

27 km) covering 50°N–S areas (Huffman et al., 2007). TRMM 3B43 Version 7 was 

downloaded from the NASA database (https://pmm.nasa.gov/data-

access/downloads/trmm) for the period January 1999 - December 2014. The year 1998 

was excluded from our analysis due to the unusual occurrence of El Niño (ENSO) 
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event in front of the coast of Ecuador which could affect the construction of the 

precipitation climatology. Therefore, mean monthly TRMM precipitation (hereafter 

TRMM climatology) for the Ecuadorian Amazon was derived from the 16-year period 

comprising 192 satellite images. The original grid size of TRMM (~ 27 km) was 

resampled to 1 km by bilinear interpolation following the first procedure step of Ulloa et 

al. (2017). The resample procedure was done to take accessibility restrictions in the 

study area within the design scheme into account (see section 2.3.2; Step 3). 

IMERG Level 3 Version 05 

Satellite precipitation estimates from the Global Precipitation Measurement (GPM) 

mission were used as reference precipitation for the evaluation of the sampling 

scheme. GPM, which is the successor of TRMM, provides the next generation of 

precipitation products at a spatial resolution of 0.1° x 0.1° (~ 10 km x 10 km) since April 

2014 (Hou et al., 2014). Early assessments of GPM products around the world have 

shown a better performance compared to TRMM products at different temporal scales 

(Prakash, Mitra, Pai, & AghaKouchak, 2016; Tang, Zeng, et al., 2016; Tang, Ma, Long, 

Zhong, & Hong, 2016; Wang, Lu, Zhao, Jiang, & Shi, 2017; Xu et al., 2017) and it also 

has better capabilities to identify local precipitation patterns caused by orographic 

effects (Manz et al., 2017; Mayor, Tereshchenko, Fonseca-Hernández, Pantoja, & 

Montes, 2017; Sharifi, Steinacker, & Saghafian, 2016).  For the study, monthly 

estimates of the IMERG Level 3 Final Run research product Version 05 (hereafter 

IMERG L3) for 2015 were downloaded from the NASA database 

(https://pmm.nasa.gov/data-access/downloads/gpm). Similarly to the TRMM 

climatology data, IMERG L3 data were also resampled to 1 km resolution through the 

bilinear resample method. 

3.2 Sampling design 

3.2.1 Spatio-temporal sampling 

In order to select representative spatio-temporal sampling points for monitoring 

precipitation and, at the same time, minimize costs related to monitoring and 

accessibility, cLHS with operational constraints was used (Roudier et al., 2012). The 

cLHS attempts to cover the multidimensional distribution corresponding to a set of 

predictor variables by using a stratified random sampling. Each of the marginal 

distributions of the covariate space is divided into equiprobable intervals that are each 

targeted to be sampled once. The steps of the cLHS algorithm are detailed below 

(Minasny & McBratney, 2006): 

1. Divide the quantile distribution of X (being X the variables, i.e.12 images of 

TRMM climatology) into   strata (number of sampling points), and calculate the 

quantile distribution for each variable,   
      

   . Calculate the correlation 

matrix C for X. 

2. Select   random sampling points from N (being N the total number of pixels of 

X), and calculate the correlation matrix T of x (being x a sub-sample of X). 

https://pmm.nasa.gov/data-access/downloads/gpm
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3. Calculate the objective function (OF) and cost function (CF). Because 

precipitation is a continuous variable, the overall OF integrates two objective 

functions:  

     ∑∑| (  
       

   )   |  

 

   

 

   

 

(1) 

where   is the number of variables,  (  
       

   ) is the number of sampling 

points (  ) that falls between quantiles    
  and   

   . To ensure that the 

correlation of the sampled variables will replicate the original data, the following 

objective function is added: 

    ∑∑|       |

 

   

 

   

 

(2) 

where c is an element of C, the correlation matrix of  ; and   is the equivalent 

element of T, the correlation matrix of x. The overall OF is: 

             

(3) 

where   is the weight given to each component of the objective function. Here 

w1 and w2 were both set to 1. The ideal value of the OF is zero which indicates 

that the sample is completely stratified and the correlation matrix is exactly 

reproduced.  

Roudier et al. (2012) incorporated accessibility constraints and operational 

costs into the cLHS. They proposed the use of a second objective function 

called cost function (CF) equal to the sum of the costs over the sampling points. 

In the optimization process CF is evaluated along with the OF of standard 

cLHS. The CF is:  

    ∑   

 

   

 

(4) 

where    is the cost associated with sampling point  . 
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4. As cLHS becomes an optimization problem, Simulated Annealing (SA) is used 

to evaluate the quality of the objective function and the magnitude of the cost 

function to find the optimum solution. The SA is an iterative, combinatorial 

optimization algorithm in which a sequence of combinations is generated by 

deriving a new combination by randomly changing the previous combination 

(van Groenigen, Siderius, & Stein, 1999). Each time a new combination is 

generated, the quality of the OF (Eq. (3)) and the magnitude of the CF (Eq. (4)) 

are evaluated and compared with the value of the previous combination. The 

new combination is accepted if the quality of the OF or the magnitude of the CF 

has improved by the change. However, the annealing algorithm also accepts 

some changes that worsen the OF and CF. This is to avoid being trapped in a 

local optimum. The probability of accepting a worse sample in terms of OF is: 

 

              ⁄                                                                                                           

(5)                                                                                                                     

with                   

where     is the probability of accepting a solution that worsens the objective 

function,     is the change in the objective function,    is the temperature in 

iteration i, and   is a constant factor decreasing the temperature at each 

iteration. The probability of accepting a worse combination in terms of CF is: 

 

              ⁄                                                                                                           

(6) 

                                                                                                    

where     is the probability of accepting a solution that worsens the cost 

function, and     is the change in the cost function. In order to configure the 

initial value of temperature and   several trials were performed previously to 

ensure the best solution. After multiple tests, the initial value for T was set to 2 

and   was set to 0.99.  

5. Run the SA algorithm until the OF and CF falls beyond a given stop criterion or 

a specific number of iterations. 

For further details on the cLHS algorithm the reader is referred to Minasny & 

McBratney (2006) and Roudier et al. (2012). 

3.2.2 Implementation  

The current rain gauge network (Figure 1) was not included in the design scheme, 

instead a new network was optimized for the study area. For the design, two scenarios 

were defined: 

Scenario 1, the entire study area without restrictions of accessibility was take into 

account for the location of the rain gauge network.  
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Scenario 2, the proximity to roads and human settlements as suitable areas for the 

location of the rain gauge network were taken into account.  

Although scenario 1 could be considered ideal because it covers the whole study area, 

it is impractical in most real cases. Therefore, the scenario 1 was used to compare the 

theoretical impact of accessibility restrictions in the region on the spatio-temporal 

representativeness of the rain gauge network.  

Regarding the variables, the TRMM climatology (12 images, from January to 

December) was used to capture the mean seasonal variation of precipitation 

throughout the year in the study area. In addition, to ensure a representative sampling 

in the geographic space and achieve a relatively uniform coverage of sampling sites in 

the study area, X-coordinate and Y-coordinate were used as additional variables. 

A flowchart of the main steps of the implementation procedure is shown in Figure 2. 

The implementation of the cLHS algorithm was done in R with the clhs package 

(Roudier, 2017). 

 

Figure 2. Flowchart of the implementation of the network design. 
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Step 1: Define the sample size 

In many practical applications the number of available rain gauges may be defined by 

budget limitations. However, the selection of an adequate number can be based also 

on a threshold in the rate of increment in a given objective function. To select a 

representative number of sampling points which capture the variability of precipitation 

in the Ecuadorian Amazon, the absolute difference between the sample standard 

deviation obtained by cLHS (     ) and the original standard deviation of the TRMM 

image (  
    

  was calculated for each month with different sample sizes. The 

evaluated number of sampling points ranged from 10 to 100 (in intervals of 5). For each 

climatology image and for each evaluated sampling size, the cLHS sampling was 

performed 100 times. The absolute difference between the standard deviation of 

sample TRMM and the original TRMM  |           |  was computed as: 

|           |  | (   )       | 

where     is the sample space of TRMM in month   (i.e. January, February… 

December) with sample size   (i.e. 10, 15 …100),    is the original space of TRMM in 

month  . Finally, the average of the monthly absolute standard deviation difference of 

the 100 runs was used to define the best trade-off between the sampling size and the 

representativeness of the network.  

Step 2: Assess feasible areas for the location of monitoring points 

For scenario 2, cLHS requires a cost map which represents the difficulty or the cost of 

reaching every place within the area. The cost layer is used in the optimisation process 

of the cLHS algorithm to penalise the points that are difficult or impossible to reach in 

the field, and guide the sampling process to schemes that are easier to implement 

operationally (Roudier et al., 2012). In our study area, sites easy to reach were those 

close to roads, trails and human settlements (Figure 3a). Although some navigable 

rivers could be used for transportation, especially to connect scattered settlements in 

the east of the region, these were not considered in our current design to avoid large 

travel times and high costs of boat transportation. Feasible areas to the allocation of 

rain gauges were defined by a buffer of 1 km around roads/trails and 3 km around 

settlements. We assumed that the difficulty of reaching any point in the region and the 

operational costs increase linearly with the increase of the distance from the feasible 

areas. Thus, distance from aforementioned sites were created using the Euclidean 

distance at a resolution of 1 km. Data were downloaded from the web page of the 

Military Geographic Institute of Ecuador (IGM) (http://www.geoportaligm.gob.ec/portal/) 

and the National Information System (SNI) (http://sni.gob.ec/accesibilidad-y-vialidad). 

The resulting cost map shows the difficulty of reaching every pixel within the area as a 

function of the distance from feasible areas. The cost map is shown in Figure 3b where 

higher costs are observed at the east border of the Ecuadorian Amazon where 

accessibility is more difficult given the lack of roads and human settlements.   

http://www.geoportaligm.gob.ec/portal/
http://sni.gob.ec/accesibilidad-y-vialidad
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Figure 3. Feasible areas for the location of precipitation monitoring points. (a) Road/trail 

network, human settlements and defined feasible area in the Ecuadorian Amazon and (b) cost 

map representing the difficulty of reaching every place in the study area as a function of the 

distance from feasible sites. 

Step 3: Selection of spatio-temporal sampling sites with cLHS 

With the selected number of sampling sites, cLHS was run for both scenarios. The 

number of iterations for the SA algorithm was set to 1 x 107 to approach an optimum 

network output.  

3.3 Evaluation of the optimized networks 

A rain gauge network should provide a reasonably accurate precipitation estimate at 

any point in the study area trough spatial interpolation. Based on this criterion, the 

optimized networks were assessed in terms of the accuracy of mapping precipitation. 

We used two interpolation methods: ordinary kriging (OK) and inverse distance 

weighting (IDW). OK and IDW were used to generate monthly precipitation maps with 

the sampling points of the optimized networks. For the interpolations, precipitation 

values at each sampling point were extracted from the corresponding pixel of the 

monthly IMERG L3 image. Webster & Oliver (2007) recommend at least 50 to 100 

points for satisfactory variogram estimates. However, having this number of 

observations might be a challenging issue in many climate studies due the scarcity of 
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ground measurements. Despite this limitation, several studies have successfully 

applied OK to interpolate precipitation with a limited number of samples (e.g. Adhikary, 

Muttil, & Yilmaz, 2017; Cruz-Roa, Olaya-Marín, & Barrios, 2017; Mair & Fares, 2011; S. 

Wang et al., 2014). 

The sp and gstat R packages were used to define the variogram models and perform 

the interpolation with OK and IDW at 1 km resolution. The method of moments was 

used to fit variogram models to experimental variograms. The best variogram fit for 

each month was selected testing five variogram models: spherical, exponential, 

Gaussian, Matern and Matern-Stein. Resulting maps were evaluated pixel-to-pixel with 

the original IMERG L3 images for each month which were assumed as the “true” 

precipitation for the 2015 year. Percent bias (PBIAS), root mean squared error (RMSE) 

and Nash-Sutcliffe Efficiency coefficient (NSE) were used to assess the accuracy of the 

predictions. Correlation coefficient (r) was used to assess the degree of agreement 

between precipitation image and interpolation precipitation fields. All aforementioned 

indices were computed according to the formulas shown in Table 1. 

Table 1. Statistical indices used to quantify the performance of mapping precipitation. 

Statistical Metrics Unit Equation 
Perfect 

Value 

Equation 

Number 

Percent Bias (PBIAS) %       
 

 
∑

       

  

 

   

      0 (7) 

Root Mean Square Error (RMSE) mm      √
 

 
∑       

 

 

   

  0 (8) 

Nash-Sutcliffe Efficiency Coefficient (NSE) 
NA       

∑        
  

   

∑      ̅   
   

 1 (9) 

Coefficient of Correlation (r) 

 

NA 

  

   
∑      ̅      ̅  

   

√∑      ̅  
   ∑      ̅  

   

 1  (10) 

where   is the total number of pixels of IMERG L3 and interpolation image;   is the     of 

IMERG L3 and interpolation image;    means IMERG L3 observation and  ̅ the average of 

IMERG L3 observation.    and  ̅ are the interpolation estimates by OK and their average, 

respectively.  

Finally, in order to evaluate the effectiveness of the proposed approach, the optimized 

networks were compared with two alternative sampling schemes: random and regular 

sampling. Although random and regular sampling methods differ from cLHS because 

they do not use prior information to guide the sampling, these are commonly alternative 

strategies for the allocation of sampling points (de Gruijter, Brus, Bierkens, & Knotters, 
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2006). The sp R package was used to generate 100 different networks for each 

sampling scheme. The monthly precipitation values provided by these networks were 

interpolated with OK for which variogram models were defined for each network. 

Resulting interpolation was evaluated according to the procedure mentioned above 

(Table 1). To assess the robustness of the networks, the median and the interquartile 

range (IQR) values of the statistical indices were selected as measures of central 

tendency and dispersion. Thus, the best sampling scheme should provide the lowest 

median value of PBIAS and RMSE, the highest value of NSE and r, and the lowest IQR 

for all statistical indices. 

4. Results 

4.1 Spatio-temporal patterns of TRMM climatology 

Figure 4 shows the monthly spatio-temporal patterns of precipitation at 1 km captured 

by TRMM 3B43 V7 datasets and its distribution in the Ecuadorian Amazon during the 

study period. Although precipitation in the study area is present throughout the year 

(ranging from 70-480 mm per month), it shows a clearly different monthly spatial 

pattern (Figure 4a). A bimodal precipitation regime is observed with a relative dry 

month in August and two wet periods in the rest of the year, with two peaks in June and 

November. All year long, the highest levels of precipitation are present in the middle of 

the region close to the Andean Cordillera similar to those reported by Ballari et al. 

(2018). Figure 4b shows that precipitation distribution varies monthly and TRMM 

climatology resampled at 1 km conserve the overall distribution shape of the original 

data. 

 

Figure 4. Precipitation in the Ecuadorian Amazon captured by TRMM 3B43 V7 dataset during 

1999-2014. (a) Monthly spatial patterns and (b) Monthly distribution of original TRMM 27km and 

resample TRMM 1km.  

4.2. Optimal sample size 



                               Universidad de Cuenca     

 

 

Juan José Contreras Silva                                                                                             19 
 

As expected, Figure 5 shows that the absolute difference between the sample TRMM 

standard deviation and the entire TRMM standard deviation decreases when sample 

size increases. This trend indicates that representativeness will increase when 

sampling size increases. The difference between standard deviations showed larger 

dispersion for smaller sample sizes; however, this dispersion decreased gradually as 

the sample size increased. In fact, larger dispersions were found for samples smaller 

than 25 points (Figure 5). With the aim of selecting a number of sampling points in 

practical terms, 25 points were identified as the best compromise between the spatio-

temporal representativeness of the network and the economic costs. 

 

Figure 5. Relation between the monthly absolute difference between the sample TRMM and the 

original TRMM standard deviations and sample size. The red dash line indicates the selected 

optimal sample size. 

4.3 Optimized networks 

Visual inspection of the OF and CF traces revealed no improvements above 4.7 x 106 

and 2 x 106 iterations respectively (Figure 6), suggesting that optimal (near) solutions 

were achieved. The OF reached a value of 60.50 and of 79.76 in scenario 1 and 2, 

respectively. In scenario 2, the reached value of the CF was 8211.10 meters.  

 

Figure 6. Evolution of the OF (a, b) and CF (c, d) with the number of iterations. 
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Figure 7 shows the optimized sampling sites for both scenarios as well as the location 

of the current rain gauge network. The optimized sampling sites for scenario 1 tended 

to be uniformly spread across the entire study area with only 3 sampling points located 

within the feasible areas (Figure 7a). On the other hand, in scenario 2, most of the 

sampling sites were spread within the feasible areas. Nevertheless, 2 sampling sites 

were located outside of these areas, one at the distance of 1000 m and another at 

7211 m from the feasible areas (Figure 7b).  Comparing the networks of both 

scenarios, we noted that the location of the farthest point is quite similar between the 

scenarios (note the biggest points of Figure 7). This suggests that this point contains 

unique information that is not found within the feasible area, and also that it was not 

possible to reallocate this point within this area without the loss of representativeness 

in the network.  

Figure 8 shows the density distribution of the TRMM climatology and the distribution of 

the 25 sampling points from the optimized networks. Both networks capture reasonably 

well the original probability distribution of TRMM climatology in all months.  The 

distributions of both networks do not show significant discrepancies between them. 

However, the optimized network for scenario 1, in general, outperformed the optimized 

network for scenario 2. 

 

Figure 7. Location of the current and optimized rain gauge networks in (a) scenario 1 

(considering entire study area) and (b) scenario 2 (considering proximity to accessible sites). 
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Figure 8. Distributions of TRMM climatology and the optimized networks in scenarios 1 and 2. 

4.4 Evaluation of the optimized networks 

In order to verify that OK provided optimum estimates of precipitation with the selected 

number of sampling points of both optimized networks, the average monthly 

performance of IDW and OK was compared. Table 2 shows that OK provided more 

accurate spatial predictions than IDW for both scenarios. OK provided a lower absolute 

PBIAS and a lower RMSE as well as a higher NSE and a higher r than IDW. This 

confirmed the suitability of OK to estimate precipitation with 25 sampling points in our 

study area. According to these results, the further assessments were based only on the 

use of the OK method. 

Table 2. Average monthly statistics between the interpolated precipitation and IMERG L3 

images using IDW and OK interpolation methods. 

  Scenario 1 Scenario 2 

Interpolation 

Method 

Absolute 

PBIAS  

(%) 

RMSE 

(mm) 

NSE r Absolute 

PBIAS  

(%) 

RMSE 

(mm) 

NSE r 

IDW 0.78 23.76 0.78 0.91 1.32 26.19 0.74 0.89 

OK 0.29 17.40 0.87 0.93 0.70 18.27 0.87 0.94 
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4.4.1 Spatio-temporal performance of the optimized networks 

No substantially differences were observed in the performance of the interpolation 

between the optimized networks. Figure 9 shows the monthly statistical indices 

between the interpolated precipitation and the IMERG L3 images for both optimized 

networks. High interpolation performances were obtained with both networks for all 

months, with PBIAS ranging from -1.7% to 1%, RMSE from 11.42 mm to 28.33 mm, 

NSE from 0.61 to 0.96, and r from 0.81 to 0.98. RMSE has its highest value in April 

(the maximum peak of precipitation), while NSE and r has their lowest values in August 

(the minimum peak of precipitation) in both networks.  Furthermore, similar temporal 

performances of the networks were observed for all statistical indexes except for 

PBIAS (Figure 9). Regarding to PBIAS no distinctive pattern was observed in the 

monthly performance of the networks (Figure 9a). In average, the optimized network in 

scenario 1 slightly outperformed the network in scenario 2 according to most of the 

statistical indices (Table 2 and Figure 9). This indicates that no substantial difference 

was observed in the temporal performance of the optimized network when only 

accessible sites were considered (scenario 2) compared to an ideal network (scenario 

1).  

 

Figure 9. Monthly statistical indices of (a) PBIAS, (b) RMSE, (c) NSE and (d) r between 

precipitation obtained by OK and IMERG L3 images. Horizontal blue and green dash lines are 

the average of the performance of the optimized network in scenario 1 and 2. 
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Figure 10 shows the average monthly spatial distribution of statistical indices between 

the interpolated precipitation and the IMERG L3 precipitation images for both optimized 

networks. The interpolated precipitation with the network optimized in scenario 1 

exhibited a better agreement with the IMERG L3 data than the optimized network in 

scenario 2. However, a quite similar spatial performance of the networks was observed 

with PBIAS, NSE and r, in contrast to RMSE values. In both networks, a relatively 

uniform distribution of errors was observed especially for PBIAS, NSE and r (Figure 

10a, c, d). Low values of PBIAS (±12%) are observed for most parts of the study area. 

However, higher overestimation (around 20% to 65%) is observed along the west 

boarder of the Amazon over the foothills of the Andean Cordillera (Figure 10a). Similar 

spatial patterns were observed for NSE in both scenarios (Figure 10c), with high values 

of NSE (>0.75) in most of the region and lower values (<0.50) along the foothills of the 

Andes. On the other hand, high values of r (>0.8) are observed for the whole study 

area in both scenarios (Figure 10d). Regarding to RMSE, the lowest values are 

observed close to the sampling points in both scenarios. However, high values were 

found along the border of the Andean Cordillera, and in some disperse regions in the 

central and east parts of the Amazon in scenario 1, whereas in scenario 2 high RMSE 

values are observed in most central and east areas of the Amazon where no sampling 

points were located (Figure 10b). 

 

Figure 10. Average monthly spatial distribution of (a) PBIAS, (b) RMSE, (c) NSE and (d) r, 

between interpolated precipitation (OK) with the optimized networks and the IMERG L3 images. 

Black points are the location of the sampling points. 
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4.4.2. Comparison with alternative sampling methods 

For a fair comparison of the sampling schemes in scenario 2, an additional buffer was 

established around the accessible areas to sample with random and regular methods. 

The buffer distance was set to 7211 meters, corresponding to the maximum distance of 

the optimized sampling points from the accessible areas (scenario 2).  

The summary of monthly statistical values between the interpolated precipitation and 

the IMERG L3 obtained with the optimized networks and the 100 networks with each 

alternative sampling scheme are presented in Table 3 and Figure 11. In general, the 

monthly performance of the optimized networks obtained by means of the cLHS 

method outperformed the networks obtained by a random and a regular sampling, 

especially when a pragmatic scenario is considered. 

Scenario 1 slightly overestimated median PBIAS while it was slightly underestimated in 

scenario 2. In both scenarios, the optimized network performed better than random and 

regular sampling and had the smallest IQR value compared to the other sampling 

methods (Table 3 and Figure 11a). Regarding to RMSE, median values indicated that 

the optimized network outperformed the alternative sampling schemes in both 

scenarios, however it is observed that the dispersion of errors depicted by the IQR is 

higher than a regular scheme for scenario 1. On the other hand, in scenario 2 the 

smallest IQR value was found with the optimized network. According to the median and 

IQR values of NSE and r indices, the optimized networks outperformed the alternative 

sampling schemes in both scenarios. 

To a further detailed comparison of the performance of the alternative sampling 

schemes, the median and IQR values of each random and regular network were 

compared with the values of the optimized networks (Table 3). In general, no random 

and regular network outperformed the optimized networks in all statistical indices 

(Table 4). However, a greater number of regular networks compared to random 

networks slightly outperformed the optimized networks, especially in scenario 1 

according to RMSE, NSE and r indices. In contrast to scenario 1, only two networks 

outperformed the optimized network according the RMSE in scenario 2. This indicates 

that overall, the cLHS is a better sampling scheme compared to random and regular 

sampling methods especially when accessibility restrictions are considered. 

 

 

 

 

 

 

 



                               Universidad de Cuenca     

 

 

Juan José Contreras Silva                                                                                             25 
 

Table 3. Median and interquartile range (IQR) values of the monthly statistics for the optimized 

network and the 100 random and regular networks for scenario 1 and 2. 

 
  PBIAS (%) RMSE (mm) NSE r 

  Method Median IQR Median IQR Median IQR Median IQR 

Scenario 1 

Random 0.80 3.05 24.47 12.66 0.77 0.23 0.89 0.11 

Regular 0.70 1.30 18.74 7.98 0.86 0.10 0.93 0.04 

Optimized 0.00 0.40 16.17 10.18 0.89 0.07 0.94 0.04 

Scenario 2 

Random -0.60 3.80 25.57 14.92 0.73 0.28 0.88 0.13 

Regular -0.85 2.90 23.12 10.54 0.80 0.15 0.91 0.06 

Optimized -0.50 0.70 16.89 7.61 0.89 0.07 0.95 0.04 

 

 

 

Figure 11. Boxplots of monthly statistical indices of the optimized networks and 100 random 

and regular sampling networks for scenario 1 (blue boxplots) and 2 (red boxplots). 
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Table 4. Number of random and regular networks that outperformed the optimized network in 

each scenario. 

  Scenario 1 Scenario 2 

Method PBIAS RMSE NSE r PBIAS RMSE NSE r 

Random 0 0 0 0 0 0 0 0 

Regular 0 11 8 16 0 2 0 0 

 

5. Discussion 

In this study, TRMM 3B43 V7 satellite precipitation data and cLHS were coupled and 

presented as a spatio-temporal sampling scheme for monitoring precipitation in 

ungauged areas. The proposed method was applied to select the number and the 

location of a rain gauge network in the Ecuadorian Amazon. Furthermore, different 

performing evaluations supported the efficiency of the method. Despite the increase of 

satellite information, studies about the design of rain gauge networks based on the use 

of remote sensing measurements are scarce. Recently, Dai et al. (2017) provided an 

scheme for rain gauge network design using precipitation radar measurements. 

Although that network was designed to estimate the average precipitation for different 

events, we found similar results regarding the performance of the network. Unlike to 

Dai et al. (2017), we proposed a spatio-temporal sampling scheme to characterize the 

climatology of precipitation and, at the same time which guarantees the suitability of the 

sampling locations in poor accessible regions.  

5.1. Representativeness of the optimized networks 

Twenty-five sampling points were identified as the minimum number of monitoring 

points required to appropriately capture the spatio-temporal variability of precipitation in 

the Ecuadorian Amazon region. In order to evaluate the representativeness of the 

optimized network under accessibility restrictions, two networks were assessed. The 

spatial distribution of the optimized networks showed a quite different spatial 

arrangement mainly due the accessibility restrictions in the study area. Yet both 

networks spread the sampling points across the whole study area in scenario 1 and 

across the feasible areas in scenario 2. This is mainly because of the inclusion of 

geographic coordinates in the cLHS method. Results showed that optimized networks 

are representative of the whole study area and they well-capture the overall seasonality 

of precipitation in the region according to the TRMM climatology. This result agrees 

with other studies which highlight the ability of cLHS to capture the variability of multiple 

input covariates with a limited number of samples (Brungard and Boettinger, 2010; 

Domenech et al., 2017; Godinho Silva et al., 2014; Levi and Rasmussen, 2014; Mulder 

et al., 2013; Ramirez-Lopez et al., 2014; Yin et al., 2016, 2017). Although a less 

representative sampling is expected under accessibility restrictions (Godinho Silva et 

al., 2014; Roudier et al., 2012; Yin et al., 2016), no major difference were observed in 

the precipitation distribution captured by both networks. This indicates that the 
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accessibility restrictions in our study area did not significantly influence the spatio-

temporal representativeness of the network. Nevertheless, it is important to note that 

these results might be influenced by the relative coarse spatial resolution of TRMM 

images and the fact that no further variability is gained with the bilinear resampling. 

5.2. Prediction of precipitation with optimized networks and alternative sampling 

schemes 

The evaluation with the GPM independent precipitation dataset (IMERG L3) indicated 

that the optimized networks were suitable to reproduce the monthly spatial surfaces of 

precipitation by means of OK. Both networks showed high agreement between the 

interpolated precipitation surfaces and the IMERG L3 images as well as a similar 

spatial and temporal performance. This result supports our previous statement that 

restrictions of accessibility no greatly influence the spatio-temporal representativeness 

of the network in the study area. Similar to our findings, Levi and Rasmussen (2014) 

reported that cLHS effectively captured the spatial variability of soils in southeastern 

Arizona (USA) and the method provided the base for the prediction of soil properties 

with OK and regression kriging. Rosemary et al. (2017) also used cLHS and OK to 

predict different soil properties in an Alfisol catena in Sri Lanka. Generated maps 

showed unbiased spatial predictions of all soil properties highlighting the effectiveness 

of cLHS to select sampling sites. Previous studies (e.g., Chu et al., 2014; Levi and 

Rasmussen, 2014; Rosemary et al., 2017; Vitharana et al., 2017) have reported that 

cLHS provide representative and dispersed sample locations with a range of short and 

long distance between sampling points, which is a mandatory requirement for 

variogram estimation (Bogaert and Russo, 1999). Although ideally a greater number of 

samples should be used to define a satisfactory variogram model, the better 

performance of OK over the IDW interpolation method confirmed the suitability of OK to 

provide reliable precipitation estimates even when a limited number of samples were 

used. The superiority of OK over IDW to estimate precipitation is in agreement with 

other studies in scarce monitoring regions (Adhikary et al., 2017; Delbari, Afrasiab, and 

Jahani 2013; Mair and Fares, 2011; Wang et al., 2014). 

The use of cLHS and satellite precipitation data to identify representative spatio-

temporal sampling points in the Ecuadorian Amazon showed to be a better sampling 

scheme compared to random and regular sampling methods. This result confirms the 

suitability of TRMM 3B43 V7 data as valuable prior information to identify 

representative sampling points for precipitation monitoring. The less performance 

variability depicted by different statistic indices in both optimized networks compared to 

those obtained by a random and a regular sampling showed the efficiency of the 

method to generate more stable spatial predictions of precipitation along the year. One 

interesting result of comparing all the regular networks with the optimized network is 

that when accessibility limitations were not considered, a good spatio-temporal 

representativeness could also be achieved with a regular sampling scheme. However, 

in an operational or realistic scenario, the network optimized with cLHS clearly 

outperformed a regular sampling; this result suggests that when accessibility is limited, 
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a more efficient sampling strategy which covers the entire feature space of precipitation 

is relevant to guarantee a good spatial and temporal prediction of precipitation. 

5.3. Recommendations 

In our study, precipitation climatology obtained by TRMM 3B43 V7 dataset was used 

as prior information for the selection of the most representative sites to locate a rain 

gauge network. However, data with a finer spatial resolution might be useful, especially 

for mountain regions where local factors such as topography and other meteorological 

variables driven precipitation which are not capture by coarse gridded satellite 

products. Although to-date no long-term GPM products are available (to provide a 

robust characterization of spatio-temporal variability of precipitation), these datasets 

could provide valuable insights for the location of rain gauge networks at smaller spatial 

scales (e.g. catchments).  

In order to consider accessible sites, we took into account road/trail networks and 

human settlements as principal factors that influence the accessibility in the region. 

However, a more detailed cost map with a finer spatial resolution (meters) could be 

defined by taking into account other factors such as the slope, land cover and real 

economic costs associated to visit each sampling point. 

The extensible nature of the cLHS scheme allows the inclusion of additional auxiliary 

variables that could be used to design multi-objective networks such as eco-

hydrological networks. In this way, the multidimensional variable space could be 

reduced by the inclusion of pertinent information. Principal Component Analysis (PCA) 

could be applied to the climatology of precipitation and to the climatology of other 

environmental variables such as surface temperature, solar radiation, soil moisture, 

and other environmental variables. PCA methods have proven to be an appropriate 

method for selecting variables (Levi and Rasmussen, 2014) and to reduce 

dimensionality of data (Mulder et al., 2013). 

6. Conclusions 

In ungauged or poorly gauged regions, the increase of rain gauges are crucial to 

improve the spatial and temporal characterization of precipitation. As satellite estimates 

are the only available information in non-monitored sites, we proposed the use of 

monthly satellite-derived precipitation and cLHS method for the rain gauge network 

design in ungauged areas. Two networks were designed and evaluated: one 

considering homogeneous accessibility throughout the region and another -more 

realistic- scenario which accounted for difficult accessibility of remote locations. 

The optimized networks composed of 25 sampling points (rain gauges) were 

representative for the study area and captured the overall seasonality of TRMM 

precipitation climatology. Results indicate that restrictions of accessibility in the region 

did no substantially affect the spatio-temporal representativeness of the network. 

Evaluation of the optimized networks showed that the networks in general adequately 
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estimate the spatio-temporal patterns of precipitation in the region by ordinary kriging. 

Comparison with other sampling schemes showed the efficiency of cLHS with monthly 

satellite precipitation information to produce more reliable interpolated results when a 

realistic scenario was considered. The proposed scheme may be applied in other 

ungauged regions because it only requires remotely sensed precipitation 

measurements commonly available at global scale. In addition, the proposed 

methodology could be used to design multi-objective monitoring networks such as eco-

hydrological networks through the inclusion of other environmental variables generated 

by remote sensing instruments. 
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