Análisis de los cambios producidos en el espesor y altura del cuerpo mandibular después de la utilización de aparatoología Herbst y Advansync en pacientes Clase II esqueletal por medio de Tomografía Computarizada de Haz Cónico (CBCT)

Tesis previa a la obtención del Título de Especialista en Ortodoncia

Autor: Od. Silvia Cumandá Ramírez Cabrera
CI: 0302167143

Director de Tesis: Dra. Valeria del Rosío Siguencia Cruz
CI: 0103953212

CUENCA - ECUADOR
2018
RESUMEN

Con la llegada de la tomografía computarizada y la generación de imágenes tridimensionales se ha podido mejorar la valoración cuantitativa y cualitativa de los cambios óseos generados a nivel mandibular al utilizar determinada aparatología, por tal motivo el objetivo del presente estudio fue comparar la efectividad del uso de Herbst y Advansync en promover cambios a nivel del espesor y altura del cuerpo mandibular en pacientes clase II esqueletal por medio de la tomografía computarizada de haz cónico.

La investigación se llevó a cabo con 29 sujetos, quienes fueron aleatoriamente divididos en dos grupos: “Advansync” y “Herbst”. Se tomaron dos registros CBCT pretratamiento y postratamiento con un intervalo de 10 meses, de cada registro se generó una imagen tridimensional en la cual se procedió a realizar las distintas mediciones, además se efectuó la segmentación de la mandíbula, superposición y fusión para valoración cualitativa de los cambios óseos.

Se desarrolló la prueba de normalidad para muestras pequeñas Shapiro Willk que mostró en el antes y después un comportamiento normal (p > 0.05) aplicándose así la prueba T-Student para muestras relacionadas y en las diferencias registradas resultaron comportamientos variados, debido a esto se efectuó la prueba T-Student para muestras independientes en aquellas medidas con comportamiento normal (p > 0.05) y la prueba U-Mann Whitney para las medidas que tenían un comportamiento no normal. (p < 0.05).

En percepción general no hay diferencia significativa en el número de casos éxito entre ambos grupos, aunque el grupo con Advansync™2 tuvo mejores resultados.

Palabras clave: Clase II, retrusión mandibular, Herbst, Advansync, tomografía computarizada de haz cónico.
ABSTRACT

The computed tomography and the generation of three-dimensional images has allowed to improve the quantitative and qualitative assessment of bone changes generated at the mandibular region when using certain appliances, the aim of the present work was to compare the effectiveness of the use of Herbst and Advansync in promoting changes in the thickness and height of the mandibular body in skeletal class II patients using cone beam computed tomography.

The research was developed with 29 subjects, who were randomly divided into two groups: "Advansync" and "Herbst". Two CBCT records pre-treatment and post-treatment with a 10-month interval were taken, of each record a three-dimensional image was generated in which the different measurements were made. In addition the jaw segmentation, superposition and fusion were performed for the qualitative evaluation of bone changes.

The normality test for small Shapiro Willk samples was performed, which showed a normal behavior in the before and after (p> 0.05), T Student test was applied for related samples, and in the registered differences varied behaviors resulted, therefore, the T-Student test was executed for independent samples in those measures with normal behavior (p> 0.05) and the U-Mann Whitney test for those that had non-normal behavior. (p <0.05).

In general there is no significant difference in the number of success cases between both groups, although the group with Advansync had better results.

Keywords: Class II, mandibular retrusión, Advansync, Herbst, cone beam computed tomography
INDICE

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMEN</td>
<td>2</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>CLAÚSULA DE DERECHOS DE AUTOR</td>
<td>11</td>
</tr>
<tr>
<td>CLAÚSULA DE PROPIEDAD INTELECTUAL</td>
<td>12</td>
</tr>
<tr>
<td>DEDICATORIA</td>
<td>13</td>
</tr>
<tr>
<td>AGRADECIMIENTO</td>
<td>14</td>
</tr>
<tr>
<td>CAPITULO I</td>
<td>15</td>
</tr>
<tr>
<td>1. INTRODUCCION</td>
<td>16</td>
</tr>
<tr>
<td>CAPITULO II</td>
<td>17</td>
</tr>
<tr>
<td>2. MARCO TEÓRICO</td>
<td>18</td>
</tr>
<tr>
<td>2.1 CONE BEAM</td>
<td>18</td>
</tr>
<tr>
<td>2.2 Crecimiento Mandibular</td>
<td>21</td>
</tr>
<tr>
<td>2.3 Maloclusión Clase II</td>
<td>22</td>
</tr>
<tr>
<td>2.3.1 Tipos de Clase II</td>
<td>23</td>
</tr>
<tr>
<td>2.4 Tratamiento</td>
<td>24</td>
</tr>
<tr>
<td>2.5 Aparatos Funcionales</td>
<td>25</td>
</tr>
<tr>
<td>2.5.1 Herbst</td>
<td>25</td>
</tr>
<tr>
<td>2.5.2 Advansync</td>
<td>26</td>
</tr>
<tr>
<td>CAPITULO III</td>
<td>28</td>
</tr>
<tr>
<td>3. OBJETIVOS</td>
<td>29</td>
</tr>
<tr>
<td>3.1 Objetivo General</td>
<td>29</td>
</tr>
<tr>
<td>3.2 Objetivos Específicos</td>
<td>29</td>
</tr>
<tr>
<td>CAPITULO IV</td>
<td>30</td>
</tr>
<tr>
<td>4. MATERIALES Y MÉTODOS</td>
<td>31</td>
</tr>
<tr>
<td>4.1 Tipo de Estudio</td>
<td>31</td>
</tr>
<tr>
<td>4.2 Universo</td>
<td>31</td>
</tr>
<tr>
<td>4.3 Muestra</td>
<td>31</td>
</tr>
<tr>
<td>4.3.1 Recrutamiento de los pacientes:</td>
<td>31</td>
</tr>
<tr>
<td>4.4 Metodología del estudio</td>
<td>32</td>
</tr>
<tr>
<td>4.4.1 Protocolo clínico</td>
<td>33</td>
</tr>
<tr>
<td>4.4.2 Medición de las imágenes tridimensionales:</td>
<td>35</td>
</tr>
<tr>
<td>4.4.3 Reconstrucción y superposición de los registros tridimensionales</td>
<td>39</td>
</tr>
<tr>
<td>4.5 Análisis estadístico</td>
<td>43</td>
</tr>
<tr>
<td>4.6 Hipótesis</td>
<td>43</td>
</tr>
<tr>
<td>4.6.1 Hipótesis Alterna</td>
<td>44</td>
</tr>
<tr>
<td>4.6.2 Hipótesis Nula</td>
<td>44</td>
</tr>
<tr>
<td>4.7 Variables</td>
<td>44</td>
</tr>
<tr>
<td>4.7.1 Variables Independientes</td>
<td>44</td>
</tr>
<tr>
<td>4.7.2 Variables dependientes</td>
<td>44</td>
</tr>
<tr>
<td>4.7.3 Operacionalización de Variables</td>
<td>44</td>
</tr>
<tr>
<td>CAPITULO V</td>
<td>46</td>
</tr>
<tr>
<td>5. RESULTADOS</td>
<td>47</td>
</tr>
</tbody>
</table>
CAPÍTULO VI .. 55
6. DISCUSIÓN ... 56
CAPÍTULO VII .. 60
7. CONCLUSIONES Y RECOMENDACIONES .. 61
8. REFERENCIAS BIBLIOGRÁFICAS ... 63
9. ANEXOS ... 69
GRÁFICOS ... 71
FIGURAS ... 74
INDICE DE FIGURAS

Figura 1. Fotografía intraoral Herbst perteneciente al paciente del proyecto de investigación con código #15……………………………………………………………………26

Figura 2. Fotografía intraoral Advansync perteneciente al paciente del proyecto de investigación con código #13…………………………………………………………27

Figura 3a. Fotografía de la férula colada cromo cobalto superior perteneciente al paciente del proyecto de investigación Robert Mosquera. Figura 3b. Fotografía de la férula colada cromo cobalto inferior…………………………………………………………34

Figura 4. Imagen obtenida del tomógrafo (New Tom VGi Cone Beam 3D Imaging) perteneciente al paciente con código #19 del proyecto de investigación. Medición de altura y espesor zona anterior derecha…………………………………………………………36

Figura 5. Imagen obtenida del tomógrafo (New Tom VGi Cone Beam 3D Imaging) perteneciente al paciente con código #19 del proyecto de investigación. Medición de altura y espesor zona media derecha………………………………………………37

Figura 6. Imagen obtenida del tomógrafo (New Tom VGi Cone Beam 3D Imaging) perteneciente al paciente con código #19 del proyecto de investigación. Medición de altura y espesor zona posterior derecha………………………………………………37

Figura 7. Imagen obtenida del tomógrafo (New Tom VGi Cone Beam 3D Imaging) perteneciente al paciente con código #19 del proyecto de investigación. Medición de altura y espesor zona anterior izquierda……………………………………………38

Figura 8. Imagen obtenida del tomógrafo (New Tom VGi Cone Beam 3D Imaging) perteneciente al paciente con código #19 del proyecto de investigación. Medición de altura y espesor zona media izquierda………………………………………………38

Figura 9. Imagen obtenida del tomógrafo (New Tom VGi Cone Beam 3D Imaging) perteneciente al paciente con código #19 del proyecto de investigación. Medición de altura y espesor zona posterior izquierda………………………………………………39
Figura 10. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #19 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del modulo 3D.

Figura 11. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #19 del proyecto de investigación. Proceso de superimposición On Demand3D. Registro de la CBCT inicial superpuesto sobre la CBCT final utilizando el registro manual seguido del registro automático basado en vóxeles.

Figura 12. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #19 del proyecto de investigación. Mascara del cuerpo mandibular, vista anterior en la que se puede observar los cambios ocurridos al superponer el volumen CBCT final sobre el volumen CBCT inicial y fusionarlos.

Figura 13. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #19 del proyecto de investigación. Cambios óseos producidos a nivel de la mandíbula después de utilizar 10 meses el propulsor mandibular. Se obtuvo de la sustracción del volumen CBCT final del volumen CBCT inicial.

Fig. 14. Paciente del proyecto de investigación con código #2. Utilizó el propulsor mandibular Advansync.

Figura 14a. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #2 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del modulo 3D. Vista anterior pretratamiento.

Figura 14b. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #2 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del modulo 3D. Vista lateral derecha pretratamiento.

Figura 14c. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #2 del proyecto de investigación. Segmentación de la región de interés...
utilizando la herramienta segmentación del modulo 3D. Vista anterior postratamiento……………………………………………………………………………………………76

Figura 14d. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #2 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del modulo 3D. Vista lateral derecha postratamiento………76

Figura 14e. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #2 del proyecto de investigación. Mascara del cuerpo mandibular, vista anterior en la que se puede observar los cambios ocurridos al superponer el volumen CBCT final sobre el volumen CBCT inicial y fusionarlos…………………………………………………………77

Figura 14f. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #2 del proyecto de investigación. Mascara del cuerpo mandibular, vista lateral derecha en la que se puede observar los cambios ocurridos al superponer el volumen CBCT final sobre el volumen CBCT inicial y fusionarlo…………………………………………………………77

Figura 14g. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #2 del proyecto de investigación. Cambios óseos producidos a nivel de la mandíbula después de utilizar 10 meses el propulsor mandibular. Se obtuvo de la sustracción del volumen CBCT final del volumen CBCT inicial……
Figura 15c. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #8 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del modulo 3D. Vista anterior postratamiento…………..79

Figura 15d. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #8 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del modulo 3D. Vista lateral derecha postratamiento………………………………………………………………………….80

Figura 15e. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #8 del proyecto de investigación. Mascara del cuerpo mandibular, vista anterior en la que se puede observar los cambios ocurridos al superponer el volumen CBCT final sobre el volumen CBCT inicial y fusionarlos………………………………………….80

Figura 15f. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #8 del proyecto de investigación. Mascara del cuerpo mandibular, vista lateral derecha en la que se puede observar los cambios ocurridos al superponer el volumen CBCT final sobre el volumen CBCT inicial y fusionarlo……………………………...81

Figura 15g. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #8 del proyecto de investigación. Cambios óseos producidos a nivel de la mandíbula después de utilizar 10 meses el propulsor mandibular. Se obtuvo de la sustracción del volumen CBCT final del volumen CBCT inicial…………………………..81
INDICE DE TABLAS

Tabla 1. Caracterización de la muestra...47
Tabla 2. Cambios de estructura ósea (mm) zona anterior y media-Advansync...48
Tabla 3. Cambios de estructura ósea (mm) de la zona posterior-Advansync..49
Tabla 4. Cambios de estructura ósea de zona anterior y media – Herbst..50
Tabla 5. Cambios de estructura ósea zona posterior– Herbst.................................50
Tabla 6. Comparación de diferencia de medias entre grupos Advansync – Herbst..52
Tabla 7 Casos de éxito por zona..53

INDICE DE GRÁFICOS

Grafica 1. Casos de éxito por zonas...53
Grafico 2. Cambios óseos zona anterior Herbst-Advansync...............................72
Grafico 3. Cambios óseos zona media Herbst-Advansync................................72
Grafico 4. Cambios óseos zona posterior Herbst-Advansync............................73
CLAÚSULA DE LICENCIA Y AUTORIZACIÓN PARA PUBLICACIÓN EN EL REPOSITORIO INSTITUCIONAL

Yo, Silvia Cumandá Ramírez Cabrera, en calidad de autora y titular de los derechos morales y patrimoniales de la tesis “Análisis de los cambios producidos en el espesor y altura del cuerpo mandibular después de la utilización de aparatoología Herbst y Advansync en pacientes Clase II esqueletal por medio de Tomografía Computarizada de Haz Cónico (CBCT)”, de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realicé la publicación de esta Tesis en el repositorio Institucional, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Cuenca, 28 de Mayo del 2018

SILVIA CUMANDÁ RAMÍREZ CABRERA
0302167143
CLAÚSULA DE PROPIEDAD INTELECTUAL

Yo, Silvia Cumandá Ramírez Cabrera, autora de la tesis “Análisis de los cambios producidos en el espesor y altura del cuerpo mandibular después de la utilización de aparatoología Herbst y Advansync en pacientes Clase II esqueletal por medio de Tomografía Computarizada de Haz Cónico (CBCT)”, certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autora.

Cuenca, 28 de Mayo del 2018

SILVIA CUMANDÁ RAMÍREZ CABRERA
0302167143
DEDICATORIA

A Dios, por darme la oportunidad de vivir y por caminar conmigo en todo momento, por fortalecer mi corazón e iluminar mi mente, pero sobre todo por haberse manifestado a través de maravillosas personas que han sido mi apoyo y bendición a lo largo de mi carrera profesional.

A mis padres Bladimiro y Esmeralda, por darme la vida, por esperarme cada noche, por quererme mucho, por creer en mí y porque nunca bajaron los brazos para que Yo tampoco los baje. Muchas gracias por darme una carrera profesional para mi futuro, todo esto se los debo a ustedes.

A mis hermanas, por estar siempre conmigo e involucrarse en esto que hoy es un sueño cumplido, las quiero mucho.

A mis sobrinos, por ser parte de mi motivación y hacerme sonreír cuando lo necesitaba.
AGRADECIMIENTO

A cada uno de los docentes que han pasado por las aulas de éste prestigioso programa de especialización, quienes de manera desinteresada han compartido no solo sus conocimientos sino también sus vivencias personales, lo que hizo que además de ser profesores sean también nuestros amigos.

A mi Directora de Tesis Dra. Valeria Siguencia Cruz, que a lo largo de éste proceso ha sido un apoyo fundamental, gracias por su tiempo, dedicación y paciencia.

Al Dr. Andrés Felipe Perdomo, por su importante aporte y participación activa en el desarrollo de éste proyecto.

Al Dr. Manuel Estuardo Bravo Calderón, por su invaluable constancia en impulsarnos siempre hacia la excelencia académica.

A mis amigos Ximena, Janeth, Pamela, Giuseppe gracias por haber hecho de éste proceso de formación una etapa llena de gratos momentos, sin duda alguna sin su presencia éste recorrido hubiese sido más pesado.

Por último pero no menos importante agradecer a cada una de las personas que de alguna manera han hecho éste caminar más placentero, me llevo una parte de cada uno de ustedes en mi corazón.

Por todo esto no me queda más que decir “Gracias, soy orgullosamente U. de Cuenca”
CAPITULO I
1. INTRODUCCION

La maloclusión de Clase II es uno de los problemas ortodóncicos más frecuentes que se presenta en la consulta diaria, ocurre aproximadamente en un tercio de la población; siendo su causa más común la retrasión mandibular. Uno de los tratamientos de elección para esta condición es el adelantamiento mandibular por medio de aparatos de propulsión.1 Existe una amplia gama de propulsores mandibulares entre los que se destacan el Herbst y Advansync.

Con la llegada de la tomografía computarizada de haz de cónico se ha dado un giro a la Odontología, convirtiéndose en un instrumento efectivo al momento de valorar el crecimiento y los resultados de los diversos tratamientos efectuados; brinda mediciones reales sin alteración en las mismas, mediciones que a menudo se limitan en una cefalometría 2D. Además de proporcionar mayor información que las imágenes 2D, las imágenes 3D también pueden superponerse permitiendo evaluar los cambios.2

No existe estudio a la fecha en el que se haya realizado una evaluación mediante tomografía computarizada y superposición de imágenes tridimensionales de los cambios producidos en la estructura ósea del cuerpo mandibular posterior al uso de los propulsores mandibulares mencionados, por lo tanto el objetivo del presente estudio fue comparar la efectividad del uso de aparatología Herbst y Advansync en promover cambios a nivel del espesor y altura del cuerpo mandibular en pacientes clase II esqueletal, mediante una valoración cuantitativa y cualitativa de las imágenes tridimensionales obtenidas de los registros CBCT.
CAPITULO II
2. MARCO TEÓRICO

2.1 CONE BEAM

El advenimiento de las imágenes radiológicas tridimensionales (3D) con la Tomografía Computarizada de Haz Cónico conocida comúnmente como “CBCT” por sus siglas en inglés CONE BEAM COMPUTER TOMOGRAPHY han llevado a una nueva era en el campo odontológico. Marca un cambio en la radiografía extraoral, de imágenes 2D representativas a un conjunto de datos volumétricos 3D anatómicamente precisos.3-5

La tomografía computarizada de haz cónico cuyo nombre refleja el tipo de técnica de imagen utilizada, se introdujo en radiología dental en 1998 con NewTom QR-DVT 9.000 (NIM, srl, Verona, Italia) y se aprobó su uso en Estados Unidos en el año 2001.4,5 B. Holly Broadbent reconoció su necesidad en 1925 solo 30 años después de que Wilhelm Röntgen tomara la primera radiografía, desarrollando su cefalómetro de primera generación; el cual colocaba rígidamente a los pacientes para la exposición simultánea de un cefalograma lateral y posteroanterior. Broadbent reconoció la necesidad de un sistema con características específicas que pudieran ajustarse para mejorar la calidad de la imagen.6-8

Después de un período inicial de adopción lenta y la aparición creciente de nuevos fabricantes de tomógrafos 3D, ésta tecnología ha sido ampliamente aceptada en los últimos años.5

Aunque se ha sugerido una gran variedad de nombres tales como: tomografía digital de volumen, tomografía volumétrica con haz cónico, o simplemente tomografía volumétrica o de cono en un esfuerzo por diferenciarla de la alta radiación de la tomografía computarizada médica (TC) convencional, la etiqueta CBCT original parece haber sido ampliamente adoptada por la mayoría de los usuarios.5 Se ha informado que
la radiación total es aproximadamente del 20% de los tomógrafos computarizados convencionales y equivale a una exposición radiográfica seriada periapical completa de boca. Sin embargo, en comparación con un cefalograma lateral convencional o una radiografía panorámica cuyas dosis de radiación son de 26 mSv (milisiver) cada una, la dosis de radiación producida por los CBCTS es todavía relativamente mayor, siendo ésta aproximadamente en promedio de 65 mSv dependiendo del tomógrafo utilizado. Teniendo en consideración que el Sievert es una medida del sistema internacional que sirve para expresar la “Dosis Equivalente”, la cual determina la cantidad de energía de rayos X absorbida por un determinado órgano o tejido.

La tomografía utiliza un haz de rayos X en forma de cono que gira alrededor del paciente para adquirir un conjunto de datos volumétricos de la región de interés, dicho conjunto de datos volumétricos CBCT comprende un sistema tridimensional (3D) de estructuras paralelepípedas conocidas como vóxeles, donde cada vóxel representa un grado específico de absorción del haz de rayos X. El tamaño del vóxel representa las dimensiones del elemento en el que se está subdividiendo un volumen y generalmente se mide en milímetros o en micras. A cada vóxel se le asigna un valor que representa la densidad del objeto, determinado por la atenuación de los fotones que lo atraviesan. El uso de un tamaño de vóxel más pequeño permite la visualización de variaciones más pequeñas en la densidad. La reconstrucción de la imagen se logra utilizando algoritmos informáticos que finalmente producen imágenes en 3D a alta resolución.

De gran utilización en el área de Ortodoncia se ha convertido en una herramienta de diagnóstico eficaz, permite estudiar el crecimiento y los resultados de los diferentes tratamientos realizados. Proporciona mediciones reales sin aumento permitiendo la comparación de imágenes con precisión y exactitud, también posibilita la evaluación de cambios en el contorno y la forma que a menudo se limitan en una cefalometría 2D. De ésta manera la tomografía computarizada ha llegado a ser actualmente un instrumento indispensable que proporciona información clínicamente relevante y nuevos datos que sirven para realizar investigaciones en 3D.
Además de proporcionar mayor información que las imágenes 2D las imágenes 3D también pueden superponerse utilizando puntos, formas y volúmenes en lugar de líneas o curvas, cabe recalcar que éstas imágenes no se ven afectadas por el cambio en la posición de la cabeza durante su registro en diferentes momentos o etapas de la vida; haciendo posible la superposición de las mismas y la evaluación basada en las diferencias obtenidas. Las mejoras en los algoritmos de registro de imágenes han convertido la superposición de volúmenes de CBCT en la técnica más avanzada para la evaluación de resultados.14,17-19

Entre los objetivos de la superposición 3D de imágenes está el evaluar crecimiento, cambios e interacciones que se dan entre el componente dental, esquelético y de tejido blando como resultado de un tratamiento. Sirve también para medir distancias entre las superficies desde diferentes puntos de referencia, para identificar y cuantificar los valores y la dirección de los cambios producidos en un determinado tiempo.2,20

Cevidanes y cols.21 fueron los primeros en introducir el método basado en vóxeles para la superposición 3D totalmente automatizada de volúmenes de CBCT en odontología.14

Los métodos de superposición 3D basados en vóxeles son completamente automáticos, evitan las técnicas dependientes del observador basadas en la superposición de puntos de referencia anatómicos. En el momento de la superposición la intensidad de los vóxeles de dos diferentes imágenes CBCT se leen, se comparan y se combinan. Una imagen conserva la misma orientación mientras que la otra se mueve para coincidir con la primera imagen, después que el software enmascare las estructuras maxilares y mandibulares, compara la intensidad de nivel gris de cada vóxel en la base craneal para registrar las 2 imágenes superpuestas.22,23
2.2 Crecimiento Mandibular

El crecimiento mandibular ocurre en una forma compleja, implica una serie de procesos diferentes que están íntimamente relacionados tales como desplazamiento antero-inferior, remodelación de la rama ascendente, crecimiento del cuerpo mandibular en longitud y varios tipos de rotaciones óseas.24

La remodelación del cóndilo y de la rama son simultáneos al desplazamiento mandibular, el cual puede ser primario o secundario. El desplazamiento primario es generado por un crecimiento intrínseco del hueso y el desplazamiento secundario se genera por influencia del crecimiento de las regiones laterales de la base craneal, principalmente de la sincondrosis esfenooccipital; lo cuál ocasiona que se dé un desplazamiento de la fosa glenoidea hacia la parte anterior afectando indirectamente el grado de protrusión mandibular.24

El crecimiento de la mandíbula como tal se produce en el cóndilo mandibular y a lo largo de la superficie posterior de la rama con reabsorción de la parte anterior de la misma, además la rama aumenta en altura por reemplazo endocondral en el cóndilo seguido por remodelación de la superficie.25

Bjork (1969) demostró que el crecimiento de la mandíbula se produce en los cóndilos y que las diferencias en el desplazamiento de la mandíbula durante el crecimiento deben atribuirse a las diferencias en la dirección del crecimiento en los cóndilos. Observó que las diferencias en la dirección de crecimiento están asociadas con ciertas características morfológicas en la mandíbula que se pueden identificar en el individuo, por lo tanto dan una indicación de la posición futura de la mandíbula y la relación intermaxilar.26

La dirección del crecimiento condilar tiene grandes variaciones de un individuo a otro, en algunos casos se observa una dirección vertical acompañado de un aumento considerable de la curvatura de la base mandibular, mientras que en otros casos se dirige...
sagitalmente con aplanamiento de la base mandibular. El ángulo gonial disminuye con el crecimiento condilar vertical y aumenta con la dirección de crecimiento sagital.27, 28

Cuando existe crecimiento vertical la resorción compensatoria debajo de la región del ángulo se da en mayor proporción, que cuando existe un crecimiento sagital donde la resorción es moderada incluso pudiendo existir aposición.27, 28

La base mandibular tiene un crecimiento acompañado por una reducción no muy pronunciada en el ángulo gonial y un crecimiento perióstico debajo de la sínfisis. La sínfisis aumenta en grosor por crecimiento perióstico en su superficie posterior, en algunos casos puede existir reabsorción o aposición en la superficie anterior del mentón dependiendo del tipo de crecimiento que tenga el individuo. La aposición bajo la sínfisis parece ser mayor en el caso del crecimiento condilar vertical.25, 27, 28

El crecimiento condilar vertical se acompaña por la erupción hacia adelante de todos los dientes, a diferencia del crecimiento condilar en dirección sagital que se acompaña por la erupción hacia atrás de los dientes anteriores.25, 27, 28

Los aumentos en la altura de la rama dependen del crecimiento en el cóndilo y de la resorción en el gonion. De forma similar la dirección de crecimiento influye en las dimensiones lineales, 10 mm de crecimiento condilar vertical afecta la longitud mandibular total; ocasionando un crecimiento de la mandíbula dirigido hacia atrás en menos de 10 mm.27

Los cambios significativos en la forma mandibular se dan después de la etapa de crecimiento puberal, existiendo diferencias en ambos sexos.29

2.3 Maloclusión Clase II

La maloclusión de Clase II es uno de los problemas ortodóncicos más comunes30 y prevalentes en todo el mundo,31 se caracteriza por una discrepancia sagital causada por retraso mandibular o exceso maxilar; siendo la retraso mandibular el hallazgo más común.32 Dicha maloclusión afecta aproximadamente a un tercio de la población.1
2.3.1 **Tipos de Clase II**

2.3.1.1 Clase II división 1

Angle situó en ésta división las mal oclusiones Clase II con inclinación vestibular de los incisivos superiores.\(^{33}\)

Las personas con maloclusión Clase II división 1 muestran un desequilibrio de la musculatura facial como consecuencia del overjet pronunciado característico que presentan, además tienen un labio inferior atrapado detrás de los incisivos superiores y un perfil facial desfavorable.\(^{33,34}\)

2.3.1.2 Clase II división 2

Ésta maloclusión se caracteriza por una relación molar clase II sin resalte de los incisivos superiores, los cuales se muestran palatinizados o verticalizados.\(^{33}\)

Además presentan una mordida profunda anterior, un perfil facial recto o levemente convexo asociado con una musculatura equilibrada o mínimamente alterada.\(^{33,35,36}\)

2.3.1.3 Clase II subdivisión

Siendo una maloclusión asimétrica típica la maloclusión de subdivisión de clase II de Angle se caracteriza por una relación molar Clase II unilateral.\(^{37-39}\)

Existe una relación oclusal posterior asimétrica en la cual los arcos dentales presentan una relación de Clase I en un lado y una relación de Clase II en el lado contralateral. Ésta relación oclusal asimétrica puede ser de origen esquelético y/o dentoalveolar.\(^{40}\) El posicionamiento distal así como la inclinación lingual significativa del primer molar mandibular y el posicionamiento mesial del primer molar superior en el lado de Clase II son rasgos dentales propios de la Clase II subdivisión.\(^{37}\)
Las personas con subdivisión de Clase II generalmente presentan un grado acentuado de asimetría que involucra el tercio inferior de la cara y la mandíbula.40

Se han identificado dos tipos principales de maloclusiones de subdivisión de clase II. Las maloclusiones tipo I de subdivisión clase II se caracterizan por posicionamiento distal del primer molar mandibular en el lado clase II, coincidencia de la línea media dental maxilar con el plano medio facial y desviación de la línea media dental mandibular hacia el lado clase II. Las maloclusiones de subdivisión de clase II tipo II se caracterizan por el posicionamiento mesial del primer molar superior en el lado clase II, la desviación de la línea media dental maxilar hacia el lado clase I y la coincidencia de la línea media dental mandibular con el plano medio facial. También hay un tercer tipo de subdivisión clase II con características combinadas de los dos tipos mencionados anteriormente, en consecuencia la línea media maxilar se desvía hacia un lado y la línea media mandibular se desvía hacia el lado contralateral.41,42

2.4 Tratamiento

De todas las maloclusiones la Clase II presenta un desafío constante para el ortodoncista,43 representa una condición frecuente y una razón bastante común por la cual los pacientes se presentan en la consulta. La maloclusión Clase II puede ser causada por varios factores, por lo tanto un diagnóstico preciso es importante para la selección del plan de tratamiento correspondiente. Entre estos factores el retrognatismo mandibular es el agente causal predominante, por lo cual el avance mandibular a través del uso de aparatos funcionales se considera como una opción de tratamiento en individuos que están en una etapa de crecimiento.44

En pacientes adultos las opciones para las correcciones de Clase II incluyen el camuflaje o la ortodoncia con fines quirúrgicos, estudios previos sugirieron que el crecimiento mandibular puede extenderse más allá de la pubertad y el crecimiento residual mínimo solo puede estimularse con dispositivos funcionales fijos.43
2.5 Aparatos Funcionales

Como opciones de tratamiento para la corrección de la maloclusión Clase II en pacientes que se encuentran en crecimiento están los dispositivos funcionales removibles y fijos. A diferencia de los dispositivos funcionales removibles, los dispositivos funcionales fijos tienen la ventaja de no requerir la cooperación del paciente y también se pueden usar al mismo tiempo con aparato ortodóncico fijo preajustado. 43

En la actualidad se dispone de algunos aparatos funcionales fijos como Herbst, Advansync entre otros. 24, 45, 46

2.5.1 Herbst

A partir de su desarrollo en 1905 por Emil Herbst y su reintroducción por Pancherz en 1979 47-49 se han venido desarrollando diferentes estudios 50-55 en los últimos años, que han demostrado su eficacia en la corrección de maloclusiones clase II. El objetivo que busca dicho aparato es maximizar los efectos esqueléticos deseados, a la vez que se limitan los efectos dentales negativos. 56

El dispositivo Herbst que se usa regularmente desde 1995 está diseñado para minimizar la necesidad de cooperación del paciente. 56 Incopora la mayoría de los dientes en el maxilar y la mandíbula para obtener un anclaje máximo, mismo que se consigue con unas férulas de aleación de cromo cobalto que cubren los dientes en los segmentos laterales. Las férulas se conectan a través de unos tubos telescópicos que van desde los primeros molares maxilares permanentes a los primeros premolares mandibulares, éste mecanismo de telecopio bilateral mantiene la mandíbula en una posición anterior continua durante todas las funciones mandibulares 57 (Fig.1). Debido a los altos costos de laboratorio de las férulas de cromo cobalto algunos ortodoncistas utilizan férulas acrílicas, sin embargo las férulas acrílicas se rompen con mayor facilidad y son menos higiénicas. 48
La activación requiere el adelantamiento de la mandíbula hasta que los incisivos lleguen borde a borde, si esto no es posible se lleva la mandíbula hasta la máxima posición anterior que permita el paciente de forma voluntaria.

Producto de la utilización del aparato se ha encontrado que el avance mandibular se da como resultado de tres procesos adaptativos en la articulación temporomandibular durante el tratamiento: (1) aumento del crecimiento condilar debido a la remodelación del cóndilo, (2) desplazamiento de la fosa glenoidea anterior debido a remodelación de la fosa, y (3) posicionamiento anterior del cóndilo dentro de la fosa. Los procesos mencionados en conjunto estimulan el crecimiento condilar y remodelación en pacientes niños y adultos.

2.5.2 Advansync

El Advansync fue desarrollado por Terry Dischinger y se introdujo por primera vez comercialmente en el 2006, tiene la ventaja de permitir el tratamiento simultáneo con aparatología fija preajustada permitiendo controlar rápidamente los efectos secundarios.
El dispositivo presenta coronas cementadas en los primeros molares permanentes maxilares y mandibulares, unas varillas telescópicas que están unidas por tornillos a las bandas mencionadas; dando como resultado una articulación artificial entre el maxilar y la mandíbula (Fig.2). Además se pueden agregar spacers de uno, dos o cuatro milímetros dependiendo de la necesidad para la activación.46, 61

Entre sus ventajas se puede mencionar que no requiere de laboratorio ya que el dispositivo viene prefabricado, funciona las 24 horas del día y no se necesita de la colaboración del paciente. Al estar conectados solo a los molares los brazos del Advansync son 50% más cortos que el dispositivo Herbst tradicional lo cual influye en la estética, además de ayudar a reducir la irritación de las mejillas. Un aparato más pequeño puede mejorar la higiene oral y afectar menos el habla.24, 61
CAPITULO III
3. OBJETIVOS

3.1 Objetivo General

Comparar la efectividad por medio de la tomografía computarizada de haz cónico del uso de aparatología Herbst y Advansync para promover cambios a nivel del espesor y altura del cuerpo mandibular en pacientes clase II esqueletal.

3.2 Objetivos Específicos

- Evaluar los cambios a nivel del espesor y altura en la zona anterior del cuerpo mandibular producidos por el Advansync.
- Evaluar los cambios a nivel del espesor y altura en la zona media del cuerpo mandibular producidos por el Advansync.
- Evaluar los cambios a nivel del espesor y altura en la zona posterior del cuerpo mandibular producidos por el Advansync.
- Evaluar los cambios a nivel del espesor y altura del cuerpo mandibular en la zona anterior producidos por el Herbst.
- Evaluar los cambios a nivel del espesor y altura del cuerpo mandibular en la zona media producidos por el Herbst.
- Evaluar los cambios a nivel del espesor y altura del cuerpo mandibular en la zona posterior producidos por el Herbst.
CAPITULO IV
4. MATERIALES Y MÉTODOS

4.1 Tipo de Estudio

Estudio de cohortes prospectivo longitudinal doble ciego aleatorizado aprobado por el Concejo Académico de la Universidad de Cuenca.

4.2 Universo

El universo estuvo constituido por 2147 individuos, distribuidos entre los pacientes que acudieron a la Clínica de Ortodoncia de la Facultad de Odontología (12) y los estudiantes matriculados durante el periodo lectivo 2016-2017 en Octavo, Noveno, Decimo año de Educación Básica, Primero, Segundo y Tercer año de Bachillerato de las instituciones educativas: Cesar Dávila Andrade (586 estudiantes), Zoila Aurora Palacios (588 estudiantes), Unidad Educativa CEBCI (286) y Colegio Técnico Daniel Córdova Toral (675 estudiantes).

4.3 Muestra

La muestra consistió inicialmente en 30 sujetos, a cada uno se le realizó dos exploraciones CBCT pretratamiento y postratamiento con un intervalo de 10 meses. Se eliminó un sujeto debido a que el registro CBCT pretratamiento no estuvo en óptimas condiciones, siendo el estudio realizado con un total de 29 sujetos.

4.3.1 Reclutamiento de los pacientes:

Se optó por una muestra a conveniencia ya que de los 2147 individuos revisados sólo 30 cumplieron con los criterios de inclusión planteados.

○ Criterios de Inclusión

- Pacientes de sexo masculino o femenino con edades comprendidas entre 11 y 18 años de edad.
- Pacientes clase II división I
• Pacientes clase II división 2
• Pacientes clase II subdivisiones
• Pacientes con dentición permanente o permanente temprana.
• Overjet mayor a 5 mm.
• Overbite mayor a 2,5 mm.

 o Criterios de Exclusión
 • Pacientes con tratamientos previos de ortodoncia u ortopedia.
 • Pacientes que hayan tenido extracciones de piezas dentales.
 • Pacientes con enfermedades sistémicas.

Mediante un sorteo aleatorizado la muestra se dividió en dos grupos constituidos de 15 personas cada uno, se indicó como propulsor mandibular al Grupo 1 el Advansync™2 Class II Molar-To-Molar. Ref. Part N° 600-4200 casa comercial ORMCO y al Grupo 2 el Herbst TS Set Lange 20mm without Key Ref. 607-126-20 de la casa comercial DENTAURUM.

4.4 Metodología del estudio

Todos los participantes ingresados fueron comunicados del protocolo de tratamiento, se llenó la ficha clínica y el consentimiento informado fue firmado por sus representantes legales.

A cada participante se realizó el registro fotográfico intraoral y extraoral con la cámara Digital EOS REBEL T51 CANON modelo EF-S18-55/3.5-5.6 IS STM con un lente EF100/2.8 MACRO USM. Posterior a esto se procedió a la obtención del registro CBCT inicial, para lo cual se estandarizó realizar la exploración inicial y final con el mismo radiólogo utilizando el Tomógrafo NewTom VGi CONE BEAM 3D Imaging con un FOV full cráneo cuello, FSV: 110 KV, 0.98 Ma, SSV: 110Kv, SSV: 3.31 Ma, tiempo de exposición de 3,6 segundos, mAs: 7.47, Air Kerma: 2.65 mGy, DAP: 484.56 mGy. cm², CTDlw: 2.30mGy, CTDlvol: 2.30 Mgy y 0.3 mm de vóxel para hombres y mujeres con la finalidad de evitar sesgos.
4.4.1 Protocolo clínico

Grupo 1:

Se realizó las impresiones de todos los pacientes de éste grupo, se obtuvo modelos de estudio y modelos de trabajo. Los modelos de trabajo fueron enviados a la matriz del depósito dental ORMCO en Quito, lugar en el que se realizó la adaptación de las bandas para la colocación de cada Advansync™2.

Previo a la colocación de ligas separadoras en mesial y distal de las piezas 16, 26, 36 y 46 por un tiempo de 48 horas se cemento el propulsor, las activaciones fueron efectuadas cada tres meses hasta llegar a una mordida cruzada anterior, mordida en la que se dejó por un periodo de 2 meses; permaneciendo en boca el propulsor un tiempo total de 10 meses.

En las activaciones se utilizaron spacers de 1mm o 2mm. En algunos casos fue necesario cambiar la posición de los tornillos, a nivel inferior se colocó en distal y a nivel superior en mesial para llegar a la mordida cruzada anterior.

Grupo 2:

De igual manera que en el grupo 1 se realizó las impresiones de todos los pacientes de éste grupo, se obtuvo modelos de estudio y modelos de trabajo. Los modelos de trabajo fueron enviados a un laboratorio dental privado en Cuenca para el diseño y elaboración del anclaje, mismo que consistió en una férula colada. Cuando la férula colada estuvo lista se hizo su prueba en boca, al no existir ningún problema durante la prueba se solicitó al laboratorio que realice la soldadura del Herbst a la férula en mordida constructiva.
Para la mordida constructiva se pidió al paciente avanzar la mandíbula hasta una posición de borde a borde anterior, en ésta relación se tomó el registro oclusal con un rodete de cera. Finalmente se trasladó a un articulador la mordida constructiva obtenida para la soldadura del propulsor al anclaje.

Una vez listo el propulsor se cemento en la boca del paciente. Las activaciones fueron hechas con spacers de 1mm o 2mm cada tres meses hasta llegar a mordida cruzada anterior, mordida en la que se dejó por un periodo de dos meses; permaneciendo en boca el Herbst un tiempo total de 10 meses.

En ambos grupos simultáneo a la instalación de los propulsores se colocó aparatoología ortodóncica fija brackets de autoligado pasivo Damon Q, torque alto a nivel superior y torque bajo a nivel inferior, iniciando con arcos Cuniti 0.014 hasta llegar a un arco de acero 0.019 x 0.025.

Todos los participantes acudieron a la Clínica de Ortodoncia de la Facultad de Odontología de la Universidad de Cuenca para sus controles una vez al mes durante 10 meses para activaciones y registros fotográficos necesarios. Transcurrido éste periodo se retiraron los propulsores mandibulares y se obtuvo el registro final de fotografías intraorales y extraorales, modelos de estudio y exploraciones CBCT con el mismo
protocolo estandarizado al inicio del estudio. Cuando los registros finales estuvieron completos se colocó aparatoología ortodóncica fija en el resto de la arcada superior e inferior, y se continuó con el análisis de las imágenes tridimensionales.

4.4.2 Medición de las imágenes tridimensionales:

Cada registro CBCT (58 pretratamiento y posttratamiento) fue analizado por el mismo investigador usando el programa NNT Viewer (versión 4.6 NewTom Cone Beam 3D Imaging). Se realizó una sección multiplanar desde distal de la pieza 36 a distal de la pieza 46 con cortes de 0.75 micrómetros y cada 1 mm de distancia en escala 1:1, se obtuvieron varios segmentos en los cuáles se hicieron las siguientes mediciones:

Espesor alveolar vestibulolingual mandibular

- Zona anterior derecha: Espesor bucolingual comprendido entre las piezas 43 y 44, medido a 18 mm desde el borde mandibular. (Fig.4)
- Zona media derecha: Espesor bucolingual comprendido entre las piezas 44 y 45 medido a 18 mm desde el borde mandibular. (Fig.5)
- Zona posterior derecha: Espesor bucolingual comprendido entre las piezas 46 y 47 medido a 18 mm desde el borde mandibular. (Fig.6)
- Zona anterior izquierda: Espesor bucolingual comprendido entre las piezas 33 y 34, medido a 18 mm desde el borde mandibular. (Fig.7)
- Zona media izquierda: Espesor bucolingual comprendido entre las piezas 34 y 35 medido a 18 mm desde el borde mandibular. (Fig.8)
- Zona posterior izquierda: Espesor bucolingual comprendido entre las piezas 36 y 37 medido a 18 mm desde el borde mandibular. (Fig.9)

Altura del cuerpo mandibular

- Zona anterior derecha: Se midió el punto intermedio más alto al más bajo de la zona localizada entre las piezas 43 y 44. (Fig.4)
- Zona media derecha: Se midió el punto intermedio más alto al más bajo de la zona localizada entre las piezas 44 y 45. (Fig.5)
- Zona posterior derecha: Se midió el punto intermedio más alto al más bajo de la zona localizada entre las piezas 46 y 47. (Fig.6)
- Zona anterior izquierda: Se midió el punto intermedio más alto al más bajo de la zona localizada entre las piezas 33 y 34. (Fig.7)
- Zona media izquierda: Se midió el punto intermedio más alto al más bajo de la zona localizada entre las piezas 34 y 35. (Fig.8)
- Zona posterior izquierda: Se midió el punto intermedio más alto al más bajo de la zona localizada entre las piezas 36 y 37. (Fig.9)

En los casos que existieron agenesia de los premolares las mediciones se efectuaron en las zonas localizadas entre los premolares presentes en boca y primeros molares.

Figura 4. Imagen obtenida del tomógrafo (New Tom VGi Cone Beam 3D Imaging) perteneciente al paciente con código #19 del proyecto de investigación. Medición de altura y espesor zona anterior derecha
Figura 5. Imagen obtenida del tomógrafo (New Tom VGi Cone Beam 3D Imaging) perteneciente al paciente con código #19 del proyecto de investigación. Medición de altura y espesor zona media derecha

Figura 6. Imagen obtenida del tomógrafo (New Tom VGi Cone Beam 3D Imaging) perteneciente al paciente con código #19 del proyecto de investigación. Medición de altura y espesor zona posterior derecha
Figura 7. Imagen obtenida del tomógrafo (New Tom VGi Cone Beam 3D Imaging) perteneciente al paciente con código #19 del proyecto de investigación. **Medición de altura y espesor zona anterior izquierda**

Figura 8. Imagen obtenida del tomógrafo (New Tom VGi Cone Beam 3D Imaging) perteneciente al paciente con código #19 del proyecto de investigación. **Medición de altura y espesor zona media izquierda**
Figura 9. Imagen obtenida del tomógrafo (New Tom VGi Cone Beam 3D Imaging) perteneciente al paciente con código #19 del proyecto de investigación. Medición de altura y espesor zona posterior izquierda

4.4.3 Reconstrucción y superposición de los registros tridimensionales

Los cambios óseos hallados reflejados en los cambios de las medidas fueron corroborados con la valoración visual de las imágenes tridimensionales pretratamiento y postratamiento de cada uno de los pacientes.

Todos los archivos DICOM formato 512x512 Matrix correspondientes a los registros CBCT de los 29 pacientes se importaron al software OnDemand3D versión 1.0 (Build 1.0.10.6390) (x64 Edition) Copyright © 2004-2017 Cybermed, Seúl, Corea, se organizaron en la base de datos y fueron analizados por el mismo investigador.

De cada volumen CBCT utilizando el módulo 3D del software se segmentó la zona a estudiar, pudiendo visualizarse únicamente la mandíbula antes de iniciar el tratamiento y al finalizar el mismo. (Fig.10)
Figura 10. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #19 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del módulo 3D

Para la superposición y fusión del Volumen CBCT pretratamiento y postratamiento de cada paciente se utilizó el módulo de fusión del software, primero se hizo el registro manual por aproximación de las estructuras anatómicas de la base craneal anterior seguido de la utilización de la herramienta de registro automático para un registro preciso de la superposición basado en vóxeles para alinear los volúmenes de CBCT. (Fig.11)
La evaluación de los cambios tridimensionales de la mandíbula se cumplió mediante la visualización cualitativa de las estructuras fusionadas (Fig.12) y de los cambios óseos sustraídos (Fig.13) de la fusión de los volúmenes CBCT inicial y final de cada paciente.
Figura 12. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #19 del proyecto de investigación. Mascara del cuerpo mandibular, vista anterior en la que se puede observar los cambios ocurridos al superponer el volumen CBCT final sobre el volumen CBCT inicial y fusionarlos.

Figura 13. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #19 del proyecto de investigación. Cambios óseos producidos a nivel de la mandíbula después de utilizar 10 meses el propulsor mandibular. Se obtuvo de la sustracción del volumen CBCT final del volumen CBCT inicial.
4.5 Análisis estadístico.

Los resultados se presentan en 3 fases, inicialmente la determinación de cambios existentes en el espesor y altura del cuerpo mandibular pre y post tratamiento en los pacientes; posteriormente se hizo una comparación de diferencias medias entre el grupo de Advansync y Herbst, para éstas dos primeras fases se emplearon medidas de tendencia central y dispersión. En la elección de pruebas a emplearse se realizó la prueba de normalidad para muestras pequeñas Shapiro Wilk, la cual mostró en el antes y después un comportamiento normal (p > 0.05) aplicándose así la prueba T-Student para muestras relacionadas y en las diferencias registradas resultaron comportamientos variados razón por la cual se efectuó la prueba T-Student para muestras independientes en aquellas medidas con comportamiento normal (p > 0.05) y la prueba U-Mann Whitney para aquellas que tenían un comportamiento no normal. (p < 0.05).

Finalmente se estableció la frecuencia de casos exitosos por zona y por tratamiento. Por zona se consideró como éxito cuando existió remodelación ósea (aposición acompañada de reabsorción) y fracaso cuando únicamente se dio procesos de reabsorción ósea, por tratamiento se consideró exitoso cuando el número de zonas exitosas fue igual o mayor al número de zonas fracaso. Para la comparación entre grupos se empleó la prueba exacta de Fisher (utilizado para muestras pequeñas) y para la ilustración se utilizó un gráfico de columnas apilado.

El procesamiento de datos se llevó a cabo en el programa estadístico SPSS STATISTIC 23 y la edición de tablas y gráficos en Excel 2016, las decisiones fueron tomadas con una consideración del 5% (p)

4.6 Hipótesis
4.6.1 Hipótesis Alterna

Existe diferencia significativa al utilizar aparatología Herbst comparado con Advansync en producir cambios a nivel del espesor y altura del cuerpo mandibular.

4.6.2 Hipótesis Nula

No existe diferencia significativa al utilizar aparatología Herbst comparado con Advansync en producir cambios a nivel del espesor y altura del cuerpo mandibular.

4.7 Variables

4.7.1 Variables Independientes

- Herbst
- Advansync

4.7.2 Variables dependientes

- Espesor cuerpo mandibular zona anterior
- Espesor cuerpo mandibular zona media
- Espesor cuerpo mandibular zona posterior
- Altura cuerpo mandibular zona anterior
- Altura cuerpo mandibular zona media
- Altura cuerpo mandibular zona posterior

4.7.3 Operacionalización de Variables
<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>TIPO VARIABLE</th>
<th>ESCALA</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espesor inicial cuerpo mandibular zona anterior de la hemiarca derecha e izquierda</td>
<td>Cuantitativa continua</td>
<td>De razón</td>
<td>mm.</td>
</tr>
<tr>
<td>Espesor inicial cuerpo mandibular zona media de la hemiarca derecha e izquierda</td>
<td>Cuantitativa continua</td>
<td>De razón</td>
<td>mm.</td>
</tr>
<tr>
<td>Espesor inicial cuerpo mandibular zona posterior de la hemiarca derecha e izquierda</td>
<td>Cuantitativa continua</td>
<td>De razón</td>
<td>mm.</td>
</tr>
<tr>
<td>Espesor final cuerpo mandibular zona anterior de la hemiarca derecha e izquierda</td>
<td>Cuantitativa continua</td>
<td>De razón</td>
<td>mm.</td>
</tr>
<tr>
<td>Espesor final cuerpo mandibular zona media de la hemiarca derecha e izquierda</td>
<td>Cuantitativa continua</td>
<td>De razón</td>
<td>mm.</td>
</tr>
<tr>
<td>Espesor final cuerpo mandibular zona posterior de la hemiarca derecha e izquierda</td>
<td>Cuantitativa continua</td>
<td>De razón</td>
<td>mm.</td>
</tr>
<tr>
<td>Altura inicial cuerpo mandibular zona anterior de la hemiarca derecha e izquierda</td>
<td>Cuantitativa continua</td>
<td>De razón</td>
<td>mm.</td>
</tr>
<tr>
<td>Altura inicial cuerpo mandibular zona media de la hemiarca derecha e izquierda</td>
<td>Cuantitativa continua</td>
<td>De razón</td>
<td>mm.</td>
</tr>
<tr>
<td>Altura inicial cuerpo mandibular zona posterior de la hemiarca derecha e izquierda</td>
<td>Cuantitativa continua</td>
<td>De razón</td>
<td>mm.</td>
</tr>
<tr>
<td>Altura final cuerpo mandibular zona anterior de la hemiarca derecha e izquierda</td>
<td>Cuantitativa continua va</td>
<td>De razón</td>
<td>mm.</td>
</tr>
<tr>
<td>Altura final cuerpo mandibular zona media de la hemiarca derecha e izquierda</td>
<td>Cuantitativa continua va</td>
<td>De razón</td>
<td>mm.</td>
</tr>
<tr>
<td>Altura final cuerpo mandibular zona posterior de la hemiarca derecha e izquierda</td>
<td>Cuantitativa continua va</td>
<td>De razón</td>
<td>mm.</td>
</tr>
</tbody>
</table>
CAPITULO V
5. RESULTADOS

La muestra estuvo constituida por 6 mujeres y 23 hombres, de edades comprendidas entre los 11 y 17 años con una media de 14,11 años (DE=1,9). Fueron 14 pacientes tratados con Herbst y 15 con Advansync, además 16 pertenecían a la Clase II división 1, 6 a la Clase II división 2 y 7 a la Clase II subdivisión.

<table>
<thead>
<tr>
<th>Tabla 1. Caracterización de la muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Característica</td>
</tr>
<tr>
<td>Sexo</td>
</tr>
<tr>
<td>Mujeres</td>
</tr>
<tr>
<td>Hombres</td>
</tr>
<tr>
<td>Clase II</td>
</tr>
<tr>
<td>División 1</td>
</tr>
<tr>
<td>División 2</td>
</tr>
<tr>
<td>Subdivisión</td>
</tr>
</tbody>
</table>

Advansync

Los resultados de los pacientes tratados con Advansync (N=15) revelaron que en las zonas anterior y media de cada hemiarucada no se reportaron cambios significativos, en la tabla 2, se observan las medias de la medidas iniciales y finales de las zonas evaluadas en cada lado.
Tabla 2. Cambios de estructura ósea (mm) zona anterior y media-Advansync (N=15)

<table>
<thead>
<tr>
<th>ZONA</th>
<th>Medida</th>
<th>Media</th>
<th>DE</th>
<th>Diferencia de medias</th>
<th>T</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona Anterior</td>
<td>Espesor</td>
<td>Inicial</td>
<td>10,18</td>
<td>1,35</td>
<td>-0,2</td>
<td>1,234 0,238</td>
</tr>
<tr>
<td></td>
<td>Derecho</td>
<td>Final</td>
<td>9,98</td>
<td>1,19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altura</td>
<td>Inicial</td>
<td>29,41</td>
<td>2,31</td>
<td>0,17</td>
<td>-0,353 0,729</td>
</tr>
<tr>
<td></td>
<td>Derecha</td>
<td>Final</td>
<td>29,58</td>
<td>2,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Espesor</td>
<td>Inicial</td>
<td>10,08</td>
<td>1,3</td>
<td>-0,19</td>
<td>1,967 0,069</td>
</tr>
<tr>
<td>Media</td>
<td>Derecho</td>
<td>Final</td>
<td>9,89</td>
<td>1,38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altura</td>
<td>Inicial</td>
<td>28,59</td>
<td>3,4</td>
<td>0,58</td>
<td>-1,905 0,078</td>
</tr>
<tr>
<td></td>
<td>Derecha</td>
<td>Final</td>
<td>29,17</td>
<td>3,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediana</td>
<td>Espesor</td>
<td>Inicial</td>
<td>10,06</td>
<td>1,35</td>
<td>-0,16</td>
<td>0,888 0,389</td>
</tr>
<tr>
<td></td>
<td>Derecho</td>
<td>Final</td>
<td>9,9</td>
<td>1,43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altura</td>
<td>Inicial</td>
<td>28,73</td>
<td>2,01</td>
<td>-0,13</td>
<td>0,29 0,776</td>
</tr>
<tr>
<td></td>
<td>Derecha</td>
<td>Final</td>
<td>28,59</td>
<td>2,79</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Espesor</td>
<td>Inicial</td>
<td>9,92</td>
<td>1,42</td>
<td>-0,04</td>
<td>0,354 0,728</td>
</tr>
<tr>
<td></td>
<td>Derecha</td>
<td>Final</td>
<td>9,88</td>
<td>1,46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altura</td>
<td>Inicial</td>
<td>27,92</td>
<td>2,87</td>
<td>-0,24</td>
<td>0,436 0,669</td>
</tr>
<tr>
<td></td>
<td>Derecha</td>
<td>Final</td>
<td>27,68</td>
<td>3,98</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: (-) reabsorción.

En el espesor derecho e izquierdo del cuerpo mandibular de la zona posterior (espesor bucolingual entre las piezas 46 – 47 y 36 - 37 medido a 18 mm desde el borde mandibular) se exhibieron reabsorciones significativas con cambios de 0.61 mm y 0.56 mm respectivamente.

Además, el incremento de la altura del cuerpo mandibular de la zona posterior derecha (medida desde el punto más alto al más bajo de la zona localizada entre las piezas 46 y 47) fue estadísticamente significativo (p < 0.05) con un cambio medio de 1.09 mm. Tabla 3
Tabla 3. Cambios de estructura ósea (mm) de la zona posterior - Advansync (N=15)

<table>
<thead>
<tr>
<th>ZONA</th>
<th>Medida</th>
<th>Media</th>
<th>DE</th>
<th>Diferencia de medias</th>
<th>T</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicial</td>
<td>13,01</td>
<td>1,36</td>
<td>-0,61</td>
<td>3,557</td>
<td>0,003*</td>
</tr>
<tr>
<td></td>
<td>Final</td>
<td>12,41</td>
<td>1,17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espesor Derecho</td>
<td>Inicial</td>
<td>24,52</td>
<td>3,72</td>
<td>1,09</td>
<td>-3,396</td>
<td>0,004*</td>
</tr>
<tr>
<td></td>
<td>Final</td>
<td>25,61</td>
<td>2,77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior</td>
<td>Inicial</td>
<td>13,02</td>
<td>1,12</td>
<td>-0,56</td>
<td>3,5</td>
<td>0,004*</td>
</tr>
<tr>
<td></td>
<td>Final</td>
<td>12,46</td>
<td>1,14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura Derecha</td>
<td>Inicial</td>
<td>24,34</td>
<td>3,85</td>
<td>1,09</td>
<td>-2,002</td>
<td>0,065</td>
</tr>
<tr>
<td></td>
<td>Final</td>
<td>25,43</td>
<td>3,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espesor Izquierdo</td>
<td>Inicial</td>
<td>13,02</td>
<td>1,12</td>
<td>-0,56</td>
<td>3,5</td>
<td>0,004*</td>
</tr>
<tr>
<td></td>
<td>Final</td>
<td>12,46</td>
<td>1,14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura Izquierda</td>
<td>Inicial</td>
<td>24,34</td>
<td>3,85</td>
<td>1,09</td>
<td>-2,002</td>
<td>0,065</td>
</tr>
<tr>
<td></td>
<td>Final</td>
<td>25,43</td>
<td>3,35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: (-) reabsorción.
* Diferencia significativa (p < 0.05)

Herbst

En el grupo de pacientes tratados con Herbst (N=14) el análisis mostró que en la altura anterior derecha e izquierda del cuerpo mandibular de la zona anterior (medida desde el punto intermedio más alto al más bajo de la zona localizada entre las piezas 43 y 44 y 33 y 34) se exhibieron reabsorciones significativas con cambios de 0.87 mm y 1.19 mm respectivamente.

Además, en la altura del cuerpo mandibular de la zona media derecha e izquierda (medida desde el punto medio más alto al medio más bajo de la zona localizada entre las piezas 44 - 45 y 34 - 35) y en el espesor de la zona media izquierda se registraron valores estadísticamente significativos (p < 0.05); los cuáles mostraron cambios medios de reabsorciones de 0.45mm, 0.93mm y 0.42mm respectivamente. Tabla 4
Tabla 4. Cambios de estructura ósea de zona anterior y media – Herbst (N=14)

<table>
<thead>
<tr>
<th>Zona</th>
<th>Medida</th>
<th>Media</th>
<th>DE</th>
<th>Diferencia de medias</th>
<th>T</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td>Espesor</td>
<td>Inicial</td>
<td>10,79</td>
<td>2,42</td>
<td>-0,14</td>
<td>0,607</td>
</tr>
<tr>
<td></td>
<td>Derecho</td>
<td>Final</td>
<td>10,65</td>
<td>2,43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altura</td>
<td>Inicial</td>
<td>31,17</td>
<td>3,84</td>
<td>-0,87</td>
<td>2,581</td>
</tr>
<tr>
<td></td>
<td>Derecha</td>
<td>Final</td>
<td>30,3</td>
<td>3,34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>Espesor</td>
<td>Inicial</td>
<td>10,48</td>
<td>2,37</td>
<td>0,22</td>
<td>-0,702</td>
</tr>
<tr>
<td></td>
<td>Izquierdo</td>
<td>Final</td>
<td>10,7</td>
<td>2,51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altura</td>
<td>Inicial</td>
<td>30,56</td>
<td>3,57</td>
<td>-1,19</td>
<td>3,075</td>
</tr>
<tr>
<td></td>
<td>Izquierda</td>
<td>Final</td>
<td>29,38</td>
<td>3,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: (-) reabsorción.
* Diferencia significativa (p < 0.05)

A pesar de las reabsorciones en el espesor e incrementos en la altura, en la zona posterior derecha e izquierda, la prueba T-student para muestras relacionadas no reportó cambios significativos, (p > 0.05). Tabla 5.

Tabla 5. Cambios de estructura ósea zona posterior– Herbst (N=14)

<table>
<thead>
<tr>
<th>Zona</th>
<th>Medida</th>
<th>Media</th>
<th>DE</th>
<th>Diferencia de medias</th>
<th>T</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posterior</td>
<td>Espesor</td>
<td>Inicial</td>
<td>13,16</td>
<td>1,94</td>
<td>-0,21</td>
<td>1,859</td>
</tr>
<tr>
<td></td>
<td>Derecho</td>
<td>Final</td>
<td>12,94</td>
<td>2,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altura</td>
<td>Inicial</td>
<td>26,98</td>
<td>2,9</td>
<td>0,40</td>
<td>-1,409</td>
</tr>
<tr>
<td></td>
<td>Derecha</td>
<td>Final</td>
<td>27,38</td>
<td>2,96</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Espesor</td>
<td>Inicial</td>
<td>13,39</td>
<td>2,01</td>
<td>-0,84</td>
<td>1,036</td>
</tr>
<tr>
<td></td>
<td>Izquierdo</td>
<td>Final</td>
<td>12,55</td>
<td>3,96</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altura</td>
<td>Inicial</td>
<td>26,32</td>
<td>3,42</td>
<td>0,43</td>
<td>-0,979</td>
</tr>
<tr>
<td></td>
<td>Izquierda</td>
<td>Final</td>
<td>26,75</td>
<td>2,71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: (-) reabsorción.
Comparación de aparatología:

En la comparación de los cambios obtenidos (pre y post tratamiento) entre las personas que fueron tratadas con Advansync y Herbst se encontraron diferencias estadísticamente significativas (p < 0.05) en la altura anterior izquierda, en la que existió una reabsorción media de 1.19mm (DE = 1.44) con el Herbst mientras que con el Advansync existió un incremento medio de 0.58mm (DE=1.18) así lo confirmó la prueba paramétrica T-Student para muestras independientes.

Se reportó también que, el espesor de la zona media izquierda se había reducido significativamente más en aquellos pacientes tratados con Herbst que los tratados con Advansync con reducciones de 0.42 (DE=0.53) y 0.04 (DE=0.44) respectivamente (p=0.044). Igual tendencia se observó en la altura de la misma zona, en la que el grupo de pacientes de Herbst tuvieron una reducción de 0.93mm (DE=0.91) frente a los 0.24mm (DE=2.13) de los pacientes de Advansync (p=0.038). Tabla 6.
Tabla 6. Comparación de diferencia de medias entre grupos Advansync - Herbst

<table>
<thead>
<tr>
<th>Medida</th>
<th>Cambio medio</th>
<th>DT</th>
<th>Diferencia de cambios (Advansync - Herbst)</th>
<th>Prueba</th>
<th>T/U</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espesor</td>
<td>Herbst</td>
<td>-0,14</td>
<td>0,84</td>
<td>0,064</td>
<td>T</td>
<td>0,24</td>
</tr>
<tr>
<td>Derecho Advansync</td>
<td>-0,20</td>
<td>0,63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura</td>
<td>Herbst</td>
<td>-0,87</td>
<td>1,26</td>
<td>1,045</td>
<td>T</td>
<td>-1,73</td>
</tr>
<tr>
<td>Derecha Advansync</td>
<td>0,17</td>
<td>1,90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espesor</td>
<td>Herbst</td>
<td>0,22</td>
<td>1,18</td>
<td>0,415</td>
<td>U</td>
<td>68,50</td>
</tr>
<tr>
<td>Izquierda Advansync</td>
<td>-0,19</td>
<td>0,38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura</td>
<td>Herbst</td>
<td>-1,19</td>
<td>1,44</td>
<td>1,766</td>
<td>T</td>
<td>-3,62</td>
</tr>
<tr>
<td>Izquierda Advansync</td>
<td>0,58</td>
<td>1,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espesor</td>
<td>Herbst</td>
<td>-0,42</td>
<td>0,53</td>
<td>0,381</td>
<td>T</td>
<td>-2,11</td>
</tr>
<tr>
<td>Derecho Advansync</td>
<td>-0,04</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura</td>
<td>Herbst</td>
<td>-0,45</td>
<td>0,75</td>
<td>0,317</td>
<td>U</td>
<td>70,00</td>
</tr>
<tr>
<td>Derecha Advansync</td>
<td>-0,13</td>
<td>1,78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espesor</td>
<td>Herbst</td>
<td>-0,93</td>
<td>0,91</td>
<td>0,689</td>
<td>U</td>
<td>57,50</td>
</tr>
<tr>
<td>Izquierda Advansync</td>
<td>-0,24</td>
<td>2,13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura</td>
<td>Herbst</td>
<td>-0,21</td>
<td>0,43</td>
<td>0,392</td>
<td>T</td>
<td>1,88</td>
</tr>
<tr>
<td>Derecha Advansync</td>
<td>-0,61</td>
<td>0,66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espesor</td>
<td>Herbst</td>
<td>0,40</td>
<td>1,06</td>
<td>0,687</td>
<td>U</td>
<td>86,00</td>
</tr>
<tr>
<td>Derecha Advansync</td>
<td>1,09</td>
<td>1,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espesor</td>
<td>Herbst</td>
<td>-0,84</td>
<td>3,04</td>
<td>0,283</td>
<td>U</td>
<td>61,00</td>
</tr>
<tr>
<td>Izquierda Advansync</td>
<td>-0,56</td>
<td>0,62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura</td>
<td>Herbst</td>
<td>0,43</td>
<td>1,64</td>
<td>0,658</td>
<td>U</td>
<td>88,00</td>
</tr>
<tr>
<td>Izquierda Advansync</td>
<td>1,09</td>
<td>2,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: () reabsorción.

* Diferencia significativa (p < 0.05)

En el grupo de pacientes tratados con Herbst se registraron entre 1 y 6 zonas con cambios exitosos con una media de 3.43 zonas exitosas (DE=1.40), mientras que el grupo de pacientes tratados con Advansync se registraron al menos entre 2 y 6 zonas con cambios exitosos con una media de 4.8 zonas exitosas (DE=1.32).

En el gráfico 1 se observa que existió más casos de éxito en las zonas posterior derecha e izquierda con 26 (89.7%) y 24 (82.8%) casos respectivamente.
La prueba estadística exacta de Fisher exhibió diferencias significativas en la cantidad de casos de éxito según la aparatología utilizada en lo que se refiere a las zonas medias de ambos lados, siendo el grupo Advansync quienes mostraron mayor éxito de tratamiento; se mostró una significancia de 0.025 en la zona media derecha y 0.009 en la zona media izquierda. Tabla 7

<table>
<thead>
<tr>
<th>Zona</th>
<th>Herbst N=14</th>
<th>Advansync N=15</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior Derecha</td>
<td>8</td>
<td>11</td>
<td>0,450</td>
</tr>
<tr>
<td>Media derecha</td>
<td>5</td>
<td>12</td>
<td>0,025*</td>
</tr>
<tr>
<td>Posterior derecha</td>
<td>12</td>
<td>14</td>
<td>0,598</td>
</tr>
<tr>
<td>Anterior izquierda</td>
<td>7</td>
<td>13</td>
<td>0,050</td>
</tr>
<tr>
<td>Media izquierda</td>
<td>3</td>
<td>11</td>
<td>0,009*</td>
</tr>
<tr>
<td>Posterior izquierda</td>
<td>13</td>
<td>11</td>
<td>0,330</td>
</tr>
</tbody>
</table>

*Diferencia significativa
De manera global fueron 10 de los 14 participantes del grupo Herbst quienes tuvieron un tratamiento exitoso, mientras que en el grupo de pacientes Advansync se dieron 14 casos de éxito de los 15 participantes, sin embargo, no resultó ser significativamente diferente. (p=0.169)
CAPITULO VI
6. DISCUSIÓN

El objetivo del presente estudio fue evaluar los cambios óseos a nivel del cuerpo mandibular en pacientes tratados con Herbst y Advansync mediante el análisis de imágenes tridimensionales.

Algunos estudios se han desarrollado para valorar los cambios óseos mandibulares, teniendo como limitación que se han efectuado en imágenes bidimensionales y con diversas metodologías de medición. Así, Gundega Jakobsone y cols. en una serie de análisis cefalométricos encontraron cambios esqueléticos en lo que respecta a la longitud mandibular tras la utilización de Herbst, cambios que se registraron en un incremento de 1.5 mm. De igual manera Ahmad S. Burhan y cols. en un estudio sobre los efectos dentoesqueléticos producidos por aparato funcional observaron un aumento significativo de 2.42 ± 1.45 mm en la longitud y de 2.52 ± 1.63 mm en la altura mandibular como resultado del uso del Twin Block; con respecto a la altura en el presente estudio se encontró un aumento medio estadísticamente significativo de 1.09 mm para el Advansync y un aumento medio no significativo de 0.43 para el Herbst.

En cuanto al Advansync no existe una literatura abundante disponible, Thikriat Al Jewair y cols. realizaron la comparación entre MARA y Advansync observando un incremento de 1.4 mm en la longitud mandibular. Además Bryce E. Glaber en un estudio retrospectivo desarrollado mediante una serie de análisis cefalométricos, encontró resultados similares a los de Thikriat. Las anteriores investigaciones sustentan los cambios óseos mandibulares como resultado del uso de propulsores mandibulares.

A la fecha no existen estudios en los que se realicen una comparación entre Herbst & Advansync, y que dicha comparación se haya efectuado de manera cualitativa y cuantitativa; comparaciones cualitativas se desarrollaron en ésta investigación utilizando el software OnDemand3D. Weissheimer A. y cols. en investigaciones previas comprobaron la confiabilidad del software, hicieron la superposición de volúmenes CBCT basados en vóxeles de pacientes sometidos a distintas terapias de tratamiento, validando la precisión de éste método tanto para los pacientes que
estuvieron en etapa de crecimiento como para los pacientes que no estuvieron en etapa de crecimiento. La cuantificación de los errores de superposición por distancias superficiales codificadas por colores reveló que el error fue menor a 0.25 mm. Valores similares fueron encontrados por Koerich y cols23 al realizar la superposición mandibular 3D en pacientes en etapa de crecimiento. Lucia Cevidanes quien fue la pionera en utilizar la superimposición de imágenes basada en vóxel también sugiere que es un método que proporciona una evaluación válida y reproducible.20

Megan Lecornu y cols62 en un estudio piloto evaluaron los cambios tridimensionales posterior al uso de Herbst, en el cuál se demostró una proyección anterior del punto B de 2.62 mm. Como limitantes están que se realizó en una muestra pequeña con una metodología de valoración diferente a la ejecutada en ésta investigación. Además los hallazgos se pueden atribuir a varios factores como cambios en el crecimiento mandibular, cambios en la dirección del crecimiento o cambios posicionales del cóndilo-fosa. Teniendo en consideración lo mencionado dichos resultados sirven de base a ésta investigación para analizar las variaciones encontradas en los pacientes posterior al uso de Herbst y Advansync.

En una reciente investigación efectuada por Thomas R. Covington25 se evaluó los cambios esqueléticos tridimensionales de manera cualitativa en la mandíbula después del uso de Herbst, en el que también se observó como resultado de la superimposición de imágenes una proyección anteroposterior diferente a la inicial de la mandíbula que pudo haber estado influenciada por cambios a nivel de la región condilar, más no demostrando si en realidad hubieron cambios a nivel óseo, por lo contrario, en ésta investigación la medición de las imágenes tridimensionales y las superposiciones regionales de la mandíbula permitieron la visualización de los cambios óseos producidos, tanto en la zona anterior, media y posterior del cuerpo mandibular. Ademáes con la sustracción de los cambios óseos dados se pudo corroborar la remodelación ósea como respuesta al tratamiento después de la utilización de los propulsores mandibulares.
Se observó con la medición de las imágenes tridimensionales que los pacientes tratados con Advansync presentaron cambios tanto de reabsorción como de aposición ósea, siendo éstos cambios no significativos estadísticamente en la zona de caninos y premolares de cada hemiarcada. A diferencia de la zona de los molares en la que sí se registraron cambios estadísticamente significativos, hubo una reabsorción media de 0.61 mm y 0.56 mm en el espesor posterior derecho e izquierdo respectivamente, y un incremento medio en la altura de 1.09 mm tanto en la zona molar derecha como izquierda; a pesar que existió reabsorción la aposición ósea fue mayor casi el doble.

En general los pacientes tratados con Herbst presentaron reabsorciones significativas en casi todas las zonas, siendo los valores medios de 0.87 mm en la altura de la zona del canino derecho, de 1.19 mm en la altura de la zona del canino izquierdo, de 0.45 mm en la altura de la zona entre los premolares de la hemiarcada derecha, de 0.93 mm en la altura de la zona entre los premolares de la hemiarcada izquierda y de 0.42 mm en el espesor de la zona entre los premolares del lado derecho. A nivel de la zona de los molares del lado derecho e izquierdo se registraron reabsorciones en el espesor e incrementos en la altura pero no fueron cambios significativos.

Al comparar los cambios producidos por los dos propulsores, si existieron diferencias estadísticamente significativas (p<0.05) en lo que se refiere a la altura en la zona anterior izquierda, existiendo una reabsorción media de 1.19 mm (DE=1.44) con el Herbst a diferencia del incremento medio obtenido de 0.58 mm (DE=1.18) con el Advansync. Siendo los cambios de reducción más pronunciados en los pacientes tratados con Herbst, lo cual se puede deber al tipo de anclaje de éste propulsor, que al ser una férula colada de cromo cobalto cementada en la arcada inferior ejerce una fuerza principalmente en el área de los caninos.

En lo que respecta a los cambios obtenidos en la zona media, se registró cambios importantes tanto en el espesor como en la altura de la hemiarcada izquierda, se dio una reducción media significativa de 0.42 mm (DE=0.53) en el grupo del Herbst frente a la reducción de 0.04 mm (DE=0.44) del grupo Advansync. En la altura, el grupo Herbst presentó una reducción media de 0.93 mm (DE=0.91) y el grupo Advansync una
reducción de 0.24 mm (DE=2.13), de igual manera dichas reducciones presentadas en mayor cantidad en los pacientes que utilizaron Herbst se pueden atribuir al diseño del anclaje del propulsor.

La zona posterior mostró un mayor número de casos de éxito que en las zonas descritas anteriormente, presentándose un incremento óseo en el 89.7% del total de participantes en la zona derecha y un incremento óseo en el 82.8% del total de participantes en la zona izquierda, considerándose como éxito ya que se dio una mayor formación ósea en más del 80% de participantes.

Del grupo Herbst 10 de los 14 participantes tuvieron un tratamiento exitoso, en el grupo Advansync 14 de los 15 participantes resultaron en éxito. A pesar de éstos resultados los cambios producidos por ambos propulsores no son significativamente diferentes.

Por todos los resultados obtenidos se puede inferir que entre los dos propulsores utilizados en ésta investigación, el Advansync muestra una eficacia superior al Herbst debido a que estimula a una mayor remodelación ósea y no solo a cambios posicionales.

Éste estudio tridimensional ha permitido afrontar los problemas relacionados con las limitaciones 2D, se ha cuantificado la remodelación ósea producida en las zonas de interés, además se ha visualizado dicha remodelación teniendo en cuenta que los cambios obtenidos son el resultado de la remodelación y no de un cambio posicional.
CAPITULO VII
7. CONCLUSIONES Y RECOMENDACIONES

- La técnica utilizada en éste estudio para las mediciones permite tener una evaluación tridimensional confiable y reproducible dando una valoración cuantitativa y cualitativa completa de los resultados de las diferentes terapias aplicadas.

- El método de superposición mandibular basado en vóxeles es un proceso que no lleva mucho tiempo, además de ser considerado preciso en la evaluación de estructuras de interés profesional.

- El propulsor mandibular Advansync mostró un mayor incremento óseo que reabsorción, sobre todo en la zona de los molares.

- El propulsor mandibular Herbst mostró reducciones significativas de hueso en la zona de caninos, lo cual se puede atribuir al diseño del aparato.

- En percepción general se encontró una mayor formación ósea en la zona posterior, lo cual lleva a concluir que el Herbst y Advansync además de producir cambios a nivel de cóndilo y fosa glenoidea también producen una verdadera remodelación ósea y no sólo una rotación mandibular.

- El Advansync manifestó una eficacia mayor a la que mostró el Herbst, por lo tanto se puede optar por dicho aparato al momento de requerir un propulsor mandibular.

- Se recomienda realizar estudios sobre el mentón ya que durante el análisis tridimensional de las zonas de interés en dicha estructura se visualizó cambios importantes.
8 Referencias Bibliográficas
8. REFERENCIAS BIBLIOGRAFICAS

25. Thomas R. Covington. THREE-DIMENSIONAL EVALUATION OF MANDIBULAR CHANGES ASSOCIATED WITH HERBST TREATMENT IN
GROWING CLASS II PATIENTS [Tesis]. [Chapel Hill]: University of North Carolina at Chapel Hill; 2015.

9. ANEXOS
ANEXO A CONSENTIMIENTO INFORMADO

UNIVERSIDAD DE CUENCA,
FACULTAD DE ODONTOLOGÍA
POSTGRADO ORTODONCIA

CONSENTIMIENTO INFORMADO
A usted se le está invitando a participar en este estudio de investigación de la especialidad de Ortodoncia. Antes de decidir si participa o no, debe conocer y comprender cada uno de los siguientes apartados. Este proceso se conoce como consentimiento informado. Siéntase con absoluta libertad para preguntar sobre cualquier aspecto que le ayude a aclarar sus dudas al respecto. Una vez que haya comprendido el estudio y si usted desea participar, entonces se le pedirá que firme esta forma de consentimiento, de la cual se le entregará una copia firmada y fechada.

PROCEDIMIENTOS DEL ESTUDIO
En caso de aceptar participar en el estudio se le realizarán algunas preguntas sobre datos generales del niño y la evaluación a partir de una ficha clínica para determinar las condiciones del paciente. Además de ser sometido a una terapia correctiva no invasiva.

RIESGOS ASOCIADOS CON EL ESTUDIO:
Este estudio no somete a ninguno de los participantes a riesgo alguno. Ya que no estará sujeto a ningún tipo de acción invasiva aplicada por parte de los investigadores.

ACLARACIONES:
• Su decisión de participar en el estudio es completamente voluntaria.
• No habrá ninguna consecuencia desfavorable para usted, en caso de no aceptar la invitación.
• No tendrá que hacer gasto alguno durante el estudio.
• En caso de retirarse del proceso, se anula el anterior punto, por lo que deberá cancelar o indemnizar el costo de los materiales.
• No recibirá pago por su participación.
• En el transcurso del estudio usted podrá solicitar información actualizada sobre el mismo, al investigador responsable.
• La información obtenida en este estudio, utilizada para la identificación de cada paciente, será mantenida con estricta confidencialidad por el grupo de investigadores.
• Si considera que no hay dudas ni preguntas acerca de su participación, puede, si así lo desea, firmar la Carta de Consentimiento Informado anexa a este documento.

Yo, ____________________________________ Padre de familia del niño, _______________________________ he leído y comprendido la información anterior y mis preguntas han sido respondidas de manera satisfactoria. He sido informado y entiendo que los datos obtenidos en el estudio pueden ser publicados o difundidos con fines científicos. Convengo en participar en este estudio de investigación. Recibiré una copia firmada y fechada de esta forma de consentimiento.

Firma del participante

Yo ___________________________________
He explicado al Sr (a). ___________________________ la naturaleza y los propósitos de la investigación; le he explicado acerca de los riesgos y beneficios que implica su participación. He contestado a las preguntas en la medida de lo posible y he preguntado si tiene alguna duda. Acepto que he leído y conozco la normatividad correspondiente para realizar investigación con seres humanos y me apego a ella. Una vez concluida la sesión de preguntas y respuestas, se procedió a firmar este documento.

Firma del investigador

Grafico 2. Cambios óseos zona anterior Herbst-Advansync

Grafico 3. Cambios óseos zona media Herbst-Advansync
Grafico 4. Cambios óseos zona posterior Herbst-Advansync

<table>
<thead>
<tr>
<th></th>
<th>Espesor (Derecha)</th>
<th>Altura (Derecha)</th>
<th>Espesor (Izquierda)</th>
<th>Altura (Izquierda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbst</td>
<td>-0.21</td>
<td>-0.61</td>
<td>-0.84</td>
<td>-0.56</td>
</tr>
<tr>
<td>Advansync</td>
<td>0.40</td>
<td>1.09</td>
<td>0.43</td>
<td>1.09</td>
</tr>
</tbody>
</table>

Zona Posterior

<table>
<thead>
<tr>
<th>Cambio medio (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.00</td>
</tr>
<tr>
<td>-0.50</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.50</td>
</tr>
<tr>
<td>1.00</td>
</tr>
</tbody>
</table>
Fig. 14. PACIENTE DEL PROYECTO DE INVESTIGACION CON CODIGO #2. UTILIZO EL PROPULSOR MANDIBULAR ADVANSYNC

Figura 14a. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #2 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del módulo 3D. Vista anterior pretratamiento

Figura 14b. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #2 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del módulo 3D. Vista lateral derecha pretratamiento
Figura 14c. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #2 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del modulo 3D. Vista anterior postratamiento.

Figura 14d. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #2 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del modulo 3D. Vista lateral derecha postratamiento.
Figura 14e. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #2 del proyecto de investigación. Mascara del cuerpo mandibular, vista anterior en la que se puede observar los cambios ocurridos al superponer el volumen CBCT final sobre el volumen CBCT inicial y fusionarlos.

Figura 14f. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #2 del proyecto de investigación. Mascara del cuerpo mandibular, vista lateral derecha en la que se puede observar los cambios ocurridos al superponer el volumen CBCT final sobre el volumen CBCT inicial y fusionarlo.
Figura 14g. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #2 del proyecto de investigación. Cambios óseos producidos a nivel de la mandíbula después de utilizar 10 meses el propulsor mandibular. Se obtuvo de la sustracción del volumen CBCT final del volumen CBCT inicial.

Fig. 15 PACIENTE DEL PROYECTO DE INVESTIGACION CON CODIGO #8. UTILIZO EL PROPULSOR MANDIBULAR HERBST

Figura 15a. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #8 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del modulo 3D. Vista anterior pretratamiento
Figura 15b. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #8 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del modulo 3D. Vista lateral derecha pretratamiento

Figura 15c. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #8 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del modulo 3D. Vista anterior postratamiento
Figura 15d. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #8 del proyecto de investigación. Segmentación de la región de interés utilizando la herramienta segmentación del modulo 3D. Vista lateral derecha postratamiento.

Figura 15e. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #8 del proyecto de investigación. Mascara del cuerpo mandibular, vista anterior en la que se puede observar los cambios ocurridos al superponer el volumen CBCT final sobre el volumen CBCT inicial y fusionarlos.
Figura 15f. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #8 del proyecto de investigación. Mascara del cuerpo mandibular, vista lateral derecha en la que se puede observar los cambios ocurridos al superponer el volumen CBCT final sobre el volumen CBCT inicial y fusionarlo.

Figura 15g. Imagen obtenida del software OnDemand3D perteneciente al paciente con código #8 del proyecto de investigación. Cambios óseos producidos a nivel de la mandíbula después de utilizar 10 meses el propulsor mandibular. Se obtuvo de la sustracción del volumen CBCT final del volumen CBCT inicial.