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Abstract. Precipitation event samples and weekly based wa-

ter samples from streams and soils were collected in a trop-

ical montane cloud forest catchment for 2 years and ana-

lyzed for stable water isotopes in order to understand the

effect of sampling frequency in the performance of three

lumped-parameter distribution functions (exponential-piston

flow, linear-piston flow and gamma) which were used to es-

timate mean transit times of waters. Precipitation data, used

as input function for the models, were aggregated to daily,

weekly, bi-weekly, monthly and bi-monthly sampling reso-

lutions, while analyzed frequencies for outflows went from

weekly to bi-monthly. By using different scenarios involv-

ing diverse sampling frequencies, this study reveals that the

effect of lowering the sampling frequency depends on the

water type. For soil waters, with transit times on the order

of few weeks, there was a clear trend of over predictions.

In contrast, the trend for stream waters, which have a more

damped isotopic signal and mean transit times on the order of

2 to 4 years, was less clear and showed a dependence on the

type of model used. The trade-off to coarse data resolutions

could potentially lead to misleading conclusions on how wa-

ter actually moves through the catchment, notwithstanding

that these predictions could reach better fitting efficiencies,

fewer uncertainties, errors and biases. For both water types

an optimal sampling frequency seems to be 1 or at most 2

weeks. The results of our analyses provide information for

the planning of future fieldwork in similar Andean or other

catchments.

1 Introduction

In catchment hydrology, the application of environmental

isotopes as tracers, and particularly stable water isotopes,

was enhanced by the contributions of Maloszewski and Zu-

ber (1982, 1993), who described and applied the method-

ology of tracer dating in detail. In their approach the rout-

ing of water in a catchment was mathematically expressed

by a lumped-parameter transit time distribution function

(TTD). In this method, fundamental conditions are the ho-

mogeneity of the system and steady-state conditions. Al-

though presently more complex models are being tested

(e.g., models dealing with time-variable conditions: Ri-

naldo et al., 2011; Botter et al., 2010, 2011), the lumped-

model approaches are still widely used since they provide

basic inferences of the water paths and the transit times

of water (e.g., Muñoz-Villers and McDonnell, 2012; Hra-

chowitz et al., 2009; Kabeya et al., 2006; Maloszewski et al.,

2006; McGuire and McDonnell, 2006; Rodgers et al., 2005;

McGuire et al., 2002; Soulsby et al., 2000; Dewalle et al.,

1997; Timbe et al., 2014).
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The insights on TTDs and mean transit times (MTTs)

of streams, springs, groundwater or even soil waters to be

gained by the joint application of lumped-parameter models

and tracers also can serve as a starting point towards employ-

ing an improved sampling campaign which integrates more

sources of data or other types of tracers (e.g., Kirchner et

al., 2010; Stewart et al., 2010), not to mention a more accu-

rate sampling length and frequency. Along with the increase

of their applicability, the handling and processing of tracer

data, and even the estimation of uncertainties of the inferred

results, is becoming a routine process in hydrologic research

(e.g., McGuire and McDonnell, 2006). Solutions, formerly

based only on the best fit to a particular model, now fre-

quently include a range of behavioral or possible solutions

(Weiler et al., 2003; Vaché and McDonnell, 2006; McGuire

et al., 2007; Hrachowitz et al., 2009, 2010, 2013; Birkel et

al., 2011; Capell et al., 2012; Muñoz-Villers and McDonnell,

2012; Timbe et al., 2014). However, an appropriate sensitiv-

ity analysis of the model parameters to factors such as the de-

gree of temporal resolution of the input data used to calibrate

tracer-based lumped models is still uncommon as it is in tra-

ditional rainfall–runoff modeling (McGuire and McDonnell,

2006).

Such an analysis is necessary; the predictions provided

by steady-state approaches are simple approximations of the

real functioning of a catchment system, although only valid

in waters in which time-invariant conditions are applicable

(e.g., groundwater systems). Besides, most steady-state anal-

yses of published studies are based on relatively poor infor-

mation in terms of temporal and spatial variability of envi-

ronmental tracers (Rinaldo et al., 2011). For instance, by us-

ing a conceptual lumped model, Birkel et al. (2010) found

that isotope data of high temporal resolution were benefi-

cial for model conceptualization and calibration. That asser-

tion was corroborated by Hrachowitz et al. (2011) who, us-

ing a lumped-parameter model, found evidence of potential

misleading insights when low sampling resolution data were

used. The sampling frequency should be in accordance to the

expected timescale of the transit or residence time of the an-

alyzed waters (McGuire and McDonnell, 2006). However, in

practice, this factor is constrained by logistical reasons, es-

pecially in remote catchments.

Most tracer studies looking for the TTD or MTT of a

catchment are based on weekly, bi-weekly, and less common

on monthly data. Rare are samplings at higher timescales

than weekly (e.g., Kirchner et al., 2000; Birkel et al., 2010).

Sometimes high temporal resolution measurements are used

for the analysis of rainfall–runoff events at smaller spatial

scales, e.g., hillslope, in which the transit time of fast flows

on the order of hours to few days is being searched for.

But for those cases, time-variant rather than steady-state ap-

proaches are necessary (e.g., Heidbüchel et al., 2012; Ri-

naldo et al., 2011; Botter et al., 2011; Weiler et al., 2003;

Barnes and Bonell, 1996). In general, the temporal resolution

of the data employed to infer hydrological process under-

standing from lumped-parameter models can influence the

results, thereby making it difficult to compare predictions

from different studies (Hrachowitz et al., 2011).

To gain insights from the effect of the sampling frequency

on the results of lumped-parameter models, we collected

time series of stable water isotopes in a baseflow-dominated

Ecuadorian tropical montane cloud forest catchment. Data

were aggregated into diverse levels of temporal resolution

in order to analyze their effect on the predictions from three

widely known lumped models, whose applicability was iden-

tified in previous research (Timbe et al., 2014). The temporal

resolution of this study consists of around 2 years of high-

resolution samples of rainfall events, weekly grab samples of

stream waters from the main river and its seven tributaries,

and bulk water samples from six representative soils sites.

For the analyzed waters, only baseflow or steady-state con-

ditions were considered.

The hypotheses on which this study is based are (1) for

the analyzed waters, some temporal resolutions of input data

could substantially influence the results of lumped-parameter

models; in this regard (2) a sensitivity analysis of the sam-

pling resolution is essential as part of analyzing the suitabil-

ity of a lumped-parameter model, similarities or divergences

of results from diverse sampling trade-offs could provide in-

sights on the degree of reliability of a particular sampling

frequency.

2 Materials and methods

2.1 Study area

The study area of the San Francisco River catchment

(76.9 km2, Fig. 1) is located in the eastern escarpments of

the Andean mountains in southern Ecuador. The local tropi-

cal climate is mainly influenced by easterly trade winds and

thus by the Atlantic circulation patterns (Beck et al., 2008).

The mean annual temperature ranges from 15 ◦C in the lower

part of the catchment to 10 ◦C on the ridges. Annual precip-

itation ranges from 2500 to 4000 mm in wet years. Rainfall

intensities are low (less than 10 mm h−1) and the relative hu-

midity is high, up to 96 % at the ridges. The topography of the

area has an altitudinal range of 1725 to 3250 m a.s.l. and is

characterized by steep valleys with an average slope of 63 %.

Seven main tributaries feed the San Francisco River, their

catchment areas vary in size from 0.7 to 34.9 km2 and in their

land cover, constituted mainly by pristine forest and pastures

(Goettlicher et al., 2009). According Timbe et al. (2014),

who used weekly isotope data, MTT of water in the surficial

horizons is on the order of few weeks to months. The stream

waters of the river and its tributaries are perennial and base-

flow dominated. Previous research accounted the groundwa-

ter contribution in 85 % of the total runoff, characterized by

MTTs on the order of 2 to 4 years (Timbe et al., 2014; Crespo

et al., 2012). A detailed description of the physical, hydro-
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Figure 1. San Francisco catchment with sampling locations and delineation of corresponding drainage area. Names and acronyms are shown

in bold. Framed image shows the zoomed area of the lower part of the catchment.

logical and land cover characteristics of the catchment and

main tributaries are given in Timbe et al. (2014), whereas ad-

ditional information on the climate and ecosystem gradients

of the research area can be found in Bendix et al. (2008),

Fiedler and Beck (2008) and Wilcke et al. (2008).

2.2 Sampling site selection and methodology

For the present study, the same field data used in Timbe et

al. (2014) was employed. In brief, for around 2 years and

starting in mid-August 2010, samples for isotopic analy-

ses (δ18O and δ2H) were collected in the study catchment.

Weekly based dip samples were taken for stream waters

at every sub-catchment and main catchment outlets while

volume-weighted samples for soil waters were collected us-

ing wick samplers located in soil sites covered with pastures

and forest (Fig. 1). As stream water samples represent an

instantaneous condition in time, in order to account for the

baseflow conditions of the catchment, samples taken dur-

ing extreme rainfall–runoff events were discarded. Rainfall

samples for isotopic analyses were taken after every rain-

fall event, in the lower part of the catchment at 1900 m a.s.l.

The end of every event of rainfall was marked by a time

span of at least 30 min without rainfall. The isotopic vari-

ation of rainfall through the catchment was inferred from

the sampled point by using the altitudinal isotopic gradient

of −0.22 ‰ δ18O, −1.12 ‰ δ2H and 0.6 ‰ deuterium ex-

cess per 100 m elevation gain, as estimated by Windhorst et

al. (2013) for the same investigated area. In this study only

δ18O was selected for further analysis since δ18O and δ2H

showed a high linear correlation. The stable isotope signa-

tures are reported in per mil value relative to the Vienna Stan-

dard Mean Ocean Water (VSMOW) (Craig, 1961). The water

isotopic composition was analyzed by wavelength-scanned

cavity ring down spectroscopy (WS-CRDS) with a precision

of 0.1 ‰ for δ18O and 0.5 ‰ for δ2H (PicarroL1102-i, CA,

USA).

It should be noticed that while the aim of Timbe el

al. (2014) was to identify the most reliable TTDs and to

characterize the MTTs for all the sampled sites (i.e., a

total of 32 sites covering waters from streams, soils and

springs) based on the intercomparison of fitting efficiencies

and ranges of uncertainties provided by predictions of seven

lumped-parameter models, for the present research we fo-

cused on accounting the average trends of predictions as a

result of using diverse sampling frequencies. In Timbe et

al. (2014) a fixed weekly sampling frequency was used. To
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avoid overrepresentation of a specific isotopic signal in the

depiction of general predictive trends, the number of ana-

lyzed stream waters was limited to the seven main nested

sub-catchments: Navidades (QN), Pastos (QP), Cruces (QC),

Milagro (QM), Ramon (QR), Francisco Head (FH), Zu-

rita (QZ) and the main catchment outlet Planta (PL) (Fig. 1).

Accordingly, only lumped models were considered. Since

differences between soil water sampling sites were bigger

than on-site differences (Timbe et al., 2014) in this study we

limited the number of soil depths from three to one specific

soil depth, more precisely at 0.25 m, resulting in a total of

six sampling locations (A, B, C, D, E, F) instead of 18 as

performed in Timbe et al. (2014). In the latter research wa-

ter samples were collected at three depths, respective at 0.10,

0.25 and 0.40 m below surface.

Besides selecting only representative sampling locations,

also a slight variance in the length of the data set charac-

terizes both studies. In the present study rainfall and stream

waters were analyzed for the period of the 1 October 2010 to

mid-August 2012, while in Timbe et al. (2014) the used data

set stretched from mid-August 2010 to mid-August 2012.

The decision to shorten the time series by shifting the begin-

ning of the study period to the last quarter of 2010 was taken

in order to homogenize the different time series for the ag-

gregation into different sampling frequencies (up to 3 months

during tryouts) and to assure that divergences among predic-

tions are only due to the applied temporal resolutions. An

additional reason for shortening the time series is that the

wick samplers for the collection of soil water samples were

installed after October 2010 (Timbe et al., 2014).

2.3 Lumped-parameter equation and distribution

functions to infer transit times of water

For the calculation of the MTT, the lumped-parameter ap-

proach was utilized. This method considers the aquifer sys-

tem as an integral unit, while the flow pattern is assumed to

be constant. Particular for conservative tracers, the transport

of a tracer through a catchment can be mathematically ex-

pressed by the convolution integral equation for stable tracers

(Eq. 1), in which the tracer’s outflow composition Cout at a

time t (time of exit) consists of the tracer’s input composition

Cin that falls uniformly on the catchment in a previous time

step t ′ (time of entry). Cout is lagged according to a TTD that

rules the tracer’s transit time (τ ). This TTD is represented

by the normalized distribution function of the tracer g(τ) in-

jected instantaneously over an entire area.

Cout(t)=

∞∫
0

Cin(t − τ)g(τ )dτ (1)

Based on findings from a previous research (Timbe et

al., 2014), for the stream waters of San Francisco, the

exponential-piston (EPM) and gamma (GM) models were

identified as reliable TTDs in terms of providing predictions

with high fitting efficiencies and low uncertainty ranges;

while the linear-piston (LPM) model and GM were found

most appropriate for soil water data (a detailed description of

the TTD models is shown in Timbe et al., 2014). These mod-

els are widely known among the two-parameter TTD models

(Kirchner et al., 2000, 2001; Maloszewski and Zuber, 1982;

McGuire and McDonnell, 2006; Amin and Campana, 1996).

EPM and LPM are defined by τ and η (η explains the portion

of contribution of each type of flow), while the GM is defined

by the shape α and scale β parameters.

2.4 Model performance

The convolution method for the calibration of every model,

describing each sampled water and sampling frequency, was

used. Input data for models consisted of isotopic time se-

ries of rainfall, while the observed variation of each analyzed

effluent (e.g., stream or soil waters) were used for calibra-

tion. The used approach follows nearly the same methodol-

ogy applied in Timbe et al. (2014), with some slight modifi-

cations to allow the analysis of diverse sampling resolutions.

Briefly, the goodness of fit of every simulation, as defined

by the Nash–Sutcliffe efficiency coefficient (NSE) (Nash and

Sutcliffe, 1970), was calculated. To automate and standard-

ize the equation’s resolution, we repeated 10 000 simulations

by randomly sampling, using the Monte Carlo based Gen-

eralized Likelihood Uncertainty Estimation (GLUE) (Beven

and Freer, 2001) method. Behavioral solutions, for which

weighted quantiles between 0.05 and 0.95 (90 % of the be-

havioral limits) were calculated, were selected for every pre-

diction based on a lower limit (5 %) which were dependent

on the best NSE reached for every case. From these values, in

order to ease intercomparisons, the magnitude of uncertainty

for each predicted parameter was calculated by subtracting

the lower behavioral limit from the maximum one (1τ ,1α,

1η). For the best predictions, the root mean square error

(RMSE) and the bias with respect to the mean (BIAS) were

calculated to account for errors and deviations of predictions.

In both cases they were reported in ‰ units.

In most simulations, the convergence of solutions towards

one solution peak was clearly defined within a predefined

fixed range dependent on the type of model: τ [0–10 years],

α [0.01–10], η [1–10]. For cases with more than one solu-

tion peak, in order to improve the convergence of τ , we re-

stricted the behavioral solutions to the largest peak for the

second model parameter (assumption made by the authors).

It should also be noticed that for the particular case of LPM,

in order to easy the interpretation of results and at the same

time improve the convergence of τ , the lower limit value for

η was set to 1 instead of 0.5 as it was in Timbe et al. (2014).

The latter consideration was performed after accounting the

results from the referred study in which for most of the ana-

lyzed soil water sites the best solutions provided by an LPM

were characterized by a η slightly larger than 1.
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Similarly to Timbe et al. (2014) and other related stud-

ies (Hrachowitz et al., 2011; Muñoz-Villers and McDonnell,

2012) an artificial warm-up period was generated by repeat-

ing measured isotopic rainfall time series in a loop. For our

case, to guarantee stable results, the warming-up period was

set to 20 times the length of the observed time series.

2.5 Temporal resolution of data

Solving the convolution method requires a fixed time step for

the input function Cin, which in turn will be the same time

step resolution of the predicted output data Cout. In order to

check the effect of the temporal resolution of sampling on

the predictions, the simulations were performed by aggregat-

ing high-resolution samples of rainfall (i.e., per event) into

five levels of temporal resolution: daily, weekly, bi-weekly,

monthly and bi-monthly. For each data set, the isotopic com-

position for every event was weighted according to the col-

lected volume for the considered time span. For time spans

corresponding to zero rainfall, the isotope signal of the an-

tecedent time step was used. By using a predefined TTD

function g(τ), Eq. (1) could be solved and it became pos-

sible to derive the best possible fit to the observed data for

every outflow by varying the model parameters. Depending

on how we aggregated the data, two distinct scenarios were

considered.

Scenario 1: for every sampled site, observed isotopic data

series of rainfall and outflows were aggregated into coarser

levels of data resolution. Since the finest resolution of out-

flow waters was weekly, we used this data resolution to cal-

ibrate models having daily rainfall data sets as input. For

weekly, bi-weekly, monthly and bi-monthly data sets, we

used the corresponding time step resolution. For stream wa-

ter, due to the smooth variation between two successive iso-

topic data, no volumetric weighting was applied, but a simple

averaging of weekly isotopic values. For soil water, volumet-

ric weighting was applied.

Scenario 2: diminishing the sampling resolution in both

types of observed data at the same time (rainfall and out-

flows), as performed in Scenarios 1, could lead to incom-

plete insights if we consider that coarse data resolutions, such

as monthly or bi-monthly, could provide fewer uncertainties

or better simulation statistics than finer data resolutions (by

the simple fact that less data are involved in the analyses).

In this regard, a second scenario was set up, in which only

the highest temporal resolution data of observed outflows

(i.e., weekly) was considered for calibration; while the rain-

fall data were considered the same as in Scenario 1. Results

from this second scenario facilitate to discern the adequacy

of a particular time resolution over another.

It should be noted that, given these considerations, the

predictive results for daily and weekly time resolutions are

the same for both scenarios. For data resolutions larger than

weekly, the combination of two different levels of informa-

tion in the same lumped-predictive model (e.g., monthly data

for the input function of rainfall and weekly for the ob-

served outflows) was handled through considering weekly

time steps, although previously those rainfall values were

derived as volumetrically weighted rainfall data from bi-

weekly, monthly or bi-monthly sampling resolutions.

Analysis of these two scenarios provides a quantifiable ef-

fect of data resolution on parameter estimation of the applied

models. For comparative purposes among sampling trade-

offs, the finest analyzed temporal resolution (i.e., daily rain-

fall and weekly outflow data) was considered as the main

reference in order to define a particular result as a lower or

higher estimate. In order to look for similarities, divergences

and trends between predictions, results were visually com-

pared using box-and-whisker plots and the respective median

(expressed in this text with a tilde on the top of a parameter

symbol, e.g., τ̃ ) for the grouped six soil water sites and the

eight stream water sites. Interpretation of the physical mean-

ing of results considers that the MTT of water can be ade-

quately characterized by τ .

3 Results

For this study, as a result of the use of a slightly shorter time

series than those used in Timbe et al. (2014), slight differ-

ences for model-parameter predictions can be found when

weekly based predictions are compared to the former pub-

lished results.

3.1 Soil water (Table 1, Fig. 2)

3.1.1 Type 1 scenarios – varying resolution of rain and

soil water isotope data

Median values of NSE for GM and LPM were rather similar,

ranging between 0.76 and 0.86. Likewise, for both models

the RMSE and BIAS were comparable between time resolu-

tions. Furthermore, best predictions of τ , as defined by the

NSE, showed a clear increasing trend of this parameter ver-

sus a decreasing temporal sampling resolution. For GM the

median value of τ between sampled sites (i.e., τ̃ ) for the daily

sampling resolution was 4.66 weeks, while for weekly and

bi-weekly resolutions data this value slightly rose to 5.15 and

5.89 weeks. Considering coarser data resolutions, as monthly

or bi-monthly, τ even went up to 6.62 and 8.99 weeks. The

values and the corresponding trend for LPM were similar to

the one obtained using GM. For LPM τ̃ varied from 4.59 to

8.87 weeks using the finest and the coarsest time resolutions,

respectively. In general, GLUE-based uncertainties for τ es-

timations, as defined by median values (1̃τ ), were lower us-

ing daily rather than coarser sampling resolutions. In this re-

gard, larger differences were found for LPM ranging from

1.44 weeks using daily data to 3.47 weeks using bi-monthly

data; while for GM the range of uncertainty varied from

1.83 to 2.06 weeks.
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Table 1. Soil water simulation results using gamma and linear-piston models considering scenarios 1 and 2.

P Sc SfR SfS AGM BGM CGM DGM EGM FGM X̃GM ALPM BLPM CLPM DLPM ELPM FLPM X̃LPM

τ
[w

ee
k

s]

1 & 2 D W 4.82 4.50 3.42 6.93 6.74 4.44 4.66 4.58 4.61 3.23 5.99 6.14 4.36 4.59

1 & 2 W W 5.33 4.97 3.75 7.48 7.02 4.67 5.15 5.69 4.53 3.79 6.29 6.11 4.49 5.11

1 Bw Bw 6.01 5.41 4.56 8.43 8.26 5.77 5.89 5.96 5.18 4.27 7.71 7.34 5.92 5.94

2 Bw W 5.50 4.99 3.88 7.67 7.21 4.81 5.25 5.80 4.88 3.64 6.88 6.89 4.81 5.34

1 M M 7.27 5.79 4.98 9.30 9.75 5.97 6.62 7.17 7.69 4.19 8.31 9.17 6.18 7.43

2 M W 5.57 5.01 3.95 7.75 7.24 4.49 5.29 5.77 4.72 3.86 6.73 6.88 4.46 5.25

1 Bm Bm 9.68 8.22 7.55 9.74 10.58 8.29 8.99 11.02 8.87 8.87 8.75 8.17 11.60 8.87

2 Bm W 5.38 4.16 2.69 6.46 6.37 4.63 5.00 4.99 3.92 2.83 5.62 6.17 4.37 4.68

1
τ
[w

ee
k

s]

1 & 2 D W 2.05 1.62 1.68 2.03 1.58 1.98 1.83 1.64 1.43 1.67 1.12 1.25 1.44 1.44

1 & 2 W W 2.08 1.92 1.69 2.17 1.95 1.89 1.93 1.75 1.27 1.52 1.43 1.52 1.75 1.52

1 Bw Bw 1.84 2.16 1.75 2.39 2.27 2.06 2.11 1.55 2.22 2.00 1.04 0.93 1.77 1.66

2 Bw W 2.11 2.04 1.79 2.07 2.07 1.97 2.06 1.45 1.35 1.61 1.00 1.31 1.73 1.40

1 M M 1.62 1.93 1.49 2.40 2.55 1.82 1.87 1.60 1.48 3.07 1.59 1.65 1.43 1.60

2 M W 1.87 1.91 1.77 2.52 2.05 1.81 1.89 1.53 1.66 1.81 0.89 1.41 1.74 1.60

1 Bm Bm 1.87 2.41 1.95 2.17 2.44 1.67 2.06 3.49 3.73 3.53 3.31 3.45 3.34 3.47

2 Bm W 1.74 2.30 1.93 2.20 1.84 1.80 1.89 1.35 1.72 2.04 1.60 1.79 1.28 1.66

α
o

r
η
[−
]

1 & 2 D W 1.51 1.76 1.59 2.11 3.64 2.66 1.94 1.02 1.01 1.02 1.00 1.07 1.17 1.02

1 & 2 W W 1.64 1.72 1.71 2.04 2.76 2.21 1.88 1.07 1.01 1.07 1.03 1.00 1.03 1.03

1 Bw Bw 1.85 1.97 3.11 1.93 2.37 1.78 1.95 1.01 1.03 1.02 1.08 1.02 1.19 1.03

2 Bw W 1.70 1.61 1.53 1.76 2.32 1.83 1.73 1.08 1.08 1.02 1.05 1.06 1.08 1.07

1 M M 3.91 4.75 5.06 2.73 2.32 3.55 3.73 1.16 1.22 1.00 1.01 1.12 1.02 1.07

2 M W 1.85 2.38 2.26 1.87 2.31 2.19 2.23 1.06 1.04 1.08 1.00 1.06 1.02 1.05

1 Bm Bm 4.50 4.86 6.19 4.58 3.94 4.52 4.55 1.40 1.15 1.12 1.08 1.03 1.51 1.14

2 Bm W 2.31 1.42 1.37 1.91 3.71 1.65 1.78 1.07 1.03 1.17 1.03 1.26 1.04 1.06

1
α

o
r
1
η
[−
]

1 & 2 D W 2.83 3.02 2.95 2.70 5.64 6.72 2.99 0.17 0.36 0.37 0.27 0.39 0.59 0.36

1 & 2 W W 1.69 2.65 3.69 1.76 3.53 3.56 3.09 0.09 0.34 0.51 0.23 0.45 0.39 0.37

1 Bw Bw 1.98 2.96 4.89 1.51 2.11 2.14 2.13 0.16 0.18 1.16 0.12 0.14 0.17 0.17

2 Bw W 1.90 2.41 4.05 1.40 2.59 3.47 2.50 0.24 0.34 0.54 0.18 0.25 0.39 0.29

1 M M 2.86 4.07 3.26 1.92 1.23 3.51 3.06 0.30 0.26 0.39 0.21 0.21 0.27 0.27

2 M W 2.42 5.39 6.35 1.69 2.80 5.95 4.10 0.29 0.73 1.16 0.17 0.25 0.92 0.51

1 Bm Bm 1.92 4.01 6.28 2.11 1.94 3.38 2.75 0.46 0.48 0.45 0.44 0.44 0.44 0.45

2 Bm W 18.82 2.41 2.45 3.31 9.09 5.19 4.25 0.64 0.42 1.18 0.47 0.92 0.41 0.56

N
S

E
[−
]

1 & 2 D W 0.69 0.76 0.86 0.83 0.78 0.88 0.81 0.70 0.76 0.85 0.82 0.78 0.88 0.80

1 & 2 W W 0.74 0.81 0.89 0.87 0.82 0.94 0.84 0.74 0.80 0.88 0.84 0.81 0.92 0.83

1 Bw Bw 0.81 0.84 0.90 0.88 0.79 0.91 0.86 0.81 0.81 0.90 0.83 0.78 0.87 0.82

2 Bw W 0.73 0.82 0.89 0.86 0.82 0.93 0.84 0.73 0.80 0.88 0.82 0.82 0.90 0.82

1 M M 0.78 0.88 0.87 0.80 0.64 0.92 0.84 0.77 0.87 0.84 0.72 0.58 0.89 0.81

2 M W 0.68 0.82 0.88 0.79 0.76 0.91 0.81 0.68 0.82 0.87 0.77 0.75 0.89 0.80

1 Bm Bm 0.66 0.83 0.83 0.87 0.76 0.82 0.83 0.67 0.78 0.73 0.85 0.70 0.79 0.76

2 Bm W 0.64 0.71 0.77 0.84 0.79 0.81 0.78 0.69 0.70 0.75 0.82 0.79 0.83 0.77

R
M

S
E
[‰
]

1 & 2 D W 1.85 1.65 1.28 1.06 1.36 1.10 1.32 1.81 1.65 1.35 1.10 1.35 1.10 1.35

1 & 2 W W 1.67 1.46 1.14 0.93 1.24 0.79 1.19 1.67 1.50 1.21 1.03 1.26 0.87 1.23

1 Bw Bw 1.36 1.41 1.05 0.89 1.31 0.86 1.18 1.36 1.51 1.08 1.02 1.33 1.05 1.20

2 Bw W 1.71 1.43 1.12 0.96 1.22 0.85 1.17 1.71 1.52 1.22 1.09 1.25 1.00 1.24

1 M M 1.29 1.04 1.13 1.07 1.59 0.78 1.10 1.32 1.09 1.28 1.26 1.72 0.94 1.27

2 M W 1.88 1.42 1.21 1.19 1.44 0.96 1.31 1.88 1.42 1.25 1.24 1.46 1.03 1.33

1 Bm Bm 1.42 1.11 1.28 0.80 1.20 1.05 1.16 1.42 1.25 1.60 0.86 1.35 1.13 1.30

2 Bm W 2.00 1.84 1.67 1.04 1.34 1.37 1.52 1.85 1.87 1.75 1.09 1.34 1.30 1.54

B
IA

S
[‰
]

1 & 2 D W 0.34 0.03 −0.06 0.10 −0.09 0.23 0.07 0.22 0.00 −0.15 0.03 −0.06 0.11 0.02

1 & 2 W W 0.21 −0.06 −0.28 −0.02 −0.14 0.14 −0.04 −0.04 −0.03 −0.10 0.11 −0.03 −0.02 −0.03

1 Bw Bw −0.01 −0.20 −0.39 −0.11 −0.20 −0.07 −0.16 −0.07 −0.01 0.03 0.07 0.00 0.08 0.02

2 Bw W 0.16 −0.14 −0.20 0.00 0.01 0.10 0.01 −0.03 −0.03 0.03 0.04 −0.02 0.09 0.00

1 M M −0.17 −0.30 −0.07 −0.24 −0.13 −0.16 −0.16 0.05 −0.07 0.07 0.08 0.12 −0.05 0.06

2 M W 0.07 −0.28 −0.32 −0.22 0.03 0.13 −0.10 −0.04 −0.14 −0.09 0.00 −0.01 −0.05 −0.05

1 Bm Bm 0.11 −0.09 −0.13 −0.07 −0.05 −0.08 −0.08 0.03 −0.07 −0.17 −.01 0.03 −0.05 −0.03

2 Bm W 0.43 0.23 0.10 0.00 0.07 0.36 0.17 −0.04 −0.04 0.07 0.00 −0.07 −0.04 −0.04

P is parameter; Sc is scenario; SfR and SfS are sampling frequency of rainfall and soil water data: D is daily, W is weekly, Bw is bi-weekly, M is monthly, Bm is bi-monthly; A, B and C are pasture soil water sites

located at 2025, 1975 and 1925 m a.s.l.; D, E and F are forest soil water sites located at 2000, 1900 and 1825 m a.s.l. The subscript of the names of the soil site are related to the lumped model used: GM is gamma,

LPM is linear-piston flow; X̃ is median of results of soil sites per sampling frequency; τ and 1τ are tracer’s mean transit time (best match) and its corresponding uncertainty range length; α and 1α for GM (or η and

1η for LPM) are best matching result for the second lumped parameter and corresponding uncertainty range length; NSE is Nash–Sutcliffe efficiency of best match; RMSE is root mean square error; BIAS is bias

with respect to the mean.
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E. Timbe et al.: Sampling frequency trade-offs in the assessment of mean transit times 1159

Figure 2. Comparison of predictions for soil water sites using gamma (GM) and linear-piston (LPM) lumped models. Subscript in the model

name stands for the type of scenario: Sc1 is aggregation of sampling frequency in the rainfall and also in the effluent, Sc2 is aggregation

of sampling frequency only in rainfall data. Acronyms in the x axis of all plots stands for five types of data resolution: D is daily, W is

weekly, Bw is bi-weekly, M is monthly and Bm is bi-monthly. Box plots markers correspond to quartiles and median values (–). The length

of whiskers is limited to 1.5 times the width of the box and values located further away below the first quartile or above the third quartile are

considered extreme ones (◦).

Estimations for GM’s α parameter showed a similar me-

dian value for daily, weekly or bi-weekly sampling fre-

quencies (̃α varied from 1.88 to 1.95), while it was larger

for coarser time resolutions; for example, the α value was

3.73 for monthly and 4.55 for bi-monthly data. Using LPM,

the variation of the median value of η slightly changed

among time resolutions (e.g., η̃ varied from 1.02 for daily

up to 1.14 for bi-monthly data). However, results for partic-

ular sites for coarser data, such as monthly or bi-monthly,

showed larger values (e.g., for the A soil site η varied from

1.02 for daily data to 1.40 for bi-monthly data). Median val-

ues of GLUE-based uncertainties for these parameters did

not show a clear trend or significant variation as a function of

the time resolution. In all cases 1̃α varied between 2.13 and

3.09, while 1̃η varied from 0.17 to 0.45.

As a typical case among soil water sites, results for every

sampling resolution using the GM are depicted in Fig. 3 re-

spectively showing the convergence of model parameters, the

simulated versus observed δ18O, and the TTD.

3.1.2 Type 2 scenarios – varying resolution of rain data

and fixed resolution of soil water isotope data

For both models, the NSE, RMSE and BIAS of the best pre-

dictions followed similar trends to that of type 1 scenarios.
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Figure 3. Predicted results for the soil water site C using the gamma lumped model (GM). Results are ranged from top to bottom according

to the data resolution: daily (top panels), weekly, bi-weekly, monthly and bi-monthly (bottom panels). Left column panels show dotty plots

for the model parameters (τ and α) according to NSE using Monte Carlo random simulations (GLUE approach). Red line shows the feasible

range of behavioral solutions of model parameters as a 5 % of the top best prediction (red diamond). Center column panels show the measured

(black filled circles) and simulated δ18O (the black line and the shaded area represent the best possible solution and its range of variation

according to the 5–95 % of weighted quantiles derived from the confidence limits of behavioral solutions shown in the left column). Right

column panels: soil water residence time distribution function corresponding to the best NSE; gray shaded area in each plot corresponds to

the range of possible shapes of the distribution function.

When compared to results from the reference sampling res-

olution, NSE values were higher for weekly and bi-weekly

input data. For instance, using GM the median value of the

best NSE was 0.81 for daily and 0.84 for both weekly and

bi-weekly data. Monthly data sets provided predictions with

similar efficiencies than daily, while for bi-monthly data the

median value of NSE was 0.78, the lowest among all sam-

pling resolutions of type 2 scenarios.

Compared to type 1 scenarios, predictions of parameter

results and uncertainties among time resolutions were more

stable. Using GM, τ̃ for the finest and coarsest time resolu-

tions varied between 4.66 and 5.00 weeks, while 1̃τ showed

extreme values between 1.83 and 2.06 weeks. The varia-

tion of α between sampling frequencies was also smaller: α̃

was between 1.73 and 2.23, while 1̃α was similar to results

from type 1 scenarios (e.g., smaller uncertainties for finer

than coarser resolution data sets: 2.99 for daily and 4.25 for

bi-monthly data). However, there were larger uncertainties

for particular sites when low resolution data sets were used

(e.g., the most extreme case was found for the A site where

there was a 1α increase from 2.83 using daily data to 18.82

using bi-monthly data). Using LPM the trends and values

were similar to the ones obtained with GM. Comparing the

daily and bi-monthly time resolutions τ̃ varied from 4.59 to

4.68 weeks, and their respective 1̃τ ranged from 1.44 to

1.66 weeks. The median value for η was around 1 for all

sampling frequencies. Although small for all cases, 1̃η was
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E. Timbe et al.: Sampling frequency trade-offs in the assessment of mean transit times 1161

Figure 4. Comparison of predictions for stream water sites using the gamma (GM) and exponential-piston (EPM) lumped models. The

subscript in the model name stands for the type of scenario: Sc1 is aggregation of sampling frequency in the rainfall and also in the effluent,

Sc2 is aggregation of sampling frequency only in rainfall data. Acronyms in the x axis of all plots stands for five types of data resolution: D

is daily, W is weekly; Bw is bi-weekly, M is monthly and Bm is bi-monthly. Box plots markers correspond to quartiles and median values

are shown (–). The length of whiskers is limited to 1.5 times the width of the box and values located further away below the first quartile or

above the third quartile are considered extreme ones (◦).

larger for coarser than for finer time resolution data: 0.36 for

daily up to 0.56 for bi-monthly data.

3.2 Stream water (Table 2, Fig. 4)

3.2.1 Type 1 scenarios – varying resolution of rain and

stream water isotope data

Regardless of the used model, the best solutions showed an

increasing trend of NSE values from finer to coarser data res-

olutions. For GM, median NSE values of 0.74 and 0.79 were

reached using monthly and bi-monthly data while for daily

data it was 0.60. Analogously, RMSE values were smaller

for coarse data resolutions. Median RMSE declined from

0.31 ‰ for daily to 0.17 ‰ for bi-monthly data. BIAS re-

mained small for all cases, with an average value of 0.04 %.

For EPM we obtained similar trends and values.

Using GM, parameter results revealed lower values of τ

for coarser time resolutions data when compared to daily

data resolution, e.g., τ̃ went from 2.10 yr for daily data to

1.23 yr for bi-monthly data. Furthermore, a clear decreas-

ing trend of uncertainty lengths was detected. In general 1τ

was smaller for coarser than for finer time resolution data,

e.g., 1.74 yr for daily and 0.58 yr for bi-monthly data. For

the GM’s α showed a trend to higher values proportional to

the decrease of sampling resolution: α̃ was 0.63 for the ref-

erence while it reached a value of 0.93 for bi-monthly data.
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Figure 5. Predicted results for the stream water site PL using the gamma lumped model (GM). Results are ranged from top to bottom

according to the data resolution: daily (top panels), weekly, bi-weekly, monthly and bi-monthly (bottom panels). Left column panels show

dotty plots for the model parameters (τ and α) according to NSE using Monte Carlo random simulations (GLUE approach). Red line shows

the feasible range of behavioral solutions of model parameters as a 5 % of the top best prediction (red diamond). Center column panels

show the measured (black filled circles) and simulated δ18O (the black line and the shaded area represent the best possible solution and its

range of variation according to the 5–95 % of weighted quantiles derived from the confidence limits of behavioral solutions shown in the left

column). Right column panels: stream water transit time distribution function corresponding to the best NSE; gray shaded area in each plot

corresponds to the range of possible shapes of the distribution function.

The median values of uncertainty lengths for this parameter

(1̃α) only slightly increased from daily (0.14) to the coarsest

data resolution (0.18). On the other hand, for the same con-

ditions but using EPM, τ values only slightly increased with

coarser time resolutions (̃τ varied little from 2.71 to 3.03 yr

between daily and bi-monthly data resolutions). The varia-

tion of 1τ was also small between sampling frequencies.

Extreme 1̃τ values were accounted for daily and bi-monthly

data: 0.28 and 0.37 yr, respectively. The parameter η, as a

median value among sites, depicted subtle smaller values for

lower sampling frequencies. It decreased from 3.01 for daily

data to 2.60 for bi-monthly ones. In general, 1η slightly de-

creased for coarser time resolutions: 1̃η dropped from 0.59

using daily to 0.46 using bi-monthly data.

Results for particular sites follow nearly the trends de-

scribed by the median values for all analyzed sites. Similarly

to results depicted in Fig. 3 for the soil site C, Fig. 5 depicts

the variation in results for different data resolutions applied

to the stream water of the main outlet of the catchment (PL).

3.2.2 Type 2 scenarios – varying resolution of rain data

and fixed resolution of stream water isotope data

Contrary to type 1 scenarios, the median NSE decreased for

coarser temporal resolution data; e.g., NSE for GM dropped

from 0.60 using daily data to 0.44 using bi-monthly ones.

The value of RMSE and BIAS remained low amidst the tem-

poral resolutions. Median RMSE was around 0.33 ‰ while

www.hydrol-earth-syst-sci.net/19/1153/2015/ Hydrol. Earth Syst. Sci., 19, 1153–1168, 2015



1164 E. Timbe et al.: Sampling frequency trade-offs in the assessment of mean transit times

the largest BIAS was 0.11 ‰. The trend of NSE values for

EPM was similar to GM, although less sensitive to temporal

resolution data. It declined from a median of 0.60 for daily

data to 0.54 for bi-monthly. RMSE and BIAS yielded for GM

and EPM were comparable.

Similar to soil waters, for both models the variation of

parameter results among diverse sampling frequencies was

smaller than for the corresponding type 1 scenarios. When

GM was used, τ̃ predictions varied from 2.10 yr for daily data

to 1.70 yr for bi-monthly. The largest estimated α̃ was 0.71

(using bi-monthly data) which was not far from the predicted

value using daily data: 0.63, considering that the range of

behavioral solutions for this parameter was around 0.14 for

every case. Uncertainty ranges for both parameters between

diverse temporal resolution data yielded similar average esti-

mations: 1̃τ ≈ 1.6 yr and 1̃α≈ 0.14. Also for the EPM the

best solution parameters varied slightly amongst data reso-

lutions. For example, considering daily and bi-monthly sam-

pling frequencies τ̃ predictions varied from 2.71 to 2.81 yr

and η̃ from 3.01 to 2.81. Uncertainties for both parameters

were small and similar between time resolutions: 1̃τ ranged

from 0.28 to 0.30 yr and 1̃η from 0.59 to 0.51.

4 Discussion

Results indicate that in some cases, like the present one, it

is not sufficient to assess the supremacy of one model over

another based only on their performance; instead, additional

knowledge on the conceptual functioning of the studied sys-

tem is necessary. For instance in Timbe et al. (2014), where

a weekly time step was considered, EPM and LPM predic-

tions showed fewer uncertainty ranges (for stream and soil

waters, respectively) when compared to predictions provided

by a GM, which in counterpart provided better fitting effi-

ciencies for most of the cases. The current results corroborate

those previous findings. Further research is needed to iden-

tify the best TTD not only in terms of statistical performance;

meanwhile, the use of any of the analyzed models cannot be

discarded.

For studies dealing with coarse stable isotope data sets

(e.g., monthly or bi-monthly), considering the differences of

the performances between data sets of diverse sampling reso-

lutions, the uncertainties associated to the predictions should

be acknowledged and considered at the moment of the evalu-

ation of hypotheses associated to these results. Monthly sam-

pling resolution and monthly data are still frequently used

in stable water isotope studies when either the effort or the

costs are too high to realize a higher sampling frequency

(e.g., Goller et al., 2005; Rodgers et al., 2005; Viville et al.,

2006; Liu et al., 2007; Rock and Mayer, 2007; Chen et al.,

2012), which goes in line with a large share of observation

points of the Global Network of Isotopes in Precipitation and

Rivers (GNIP) of the I.A.E.A.–W.M.O.

4.1 Sensitivity of model-parameter results to sampling

frequency

In general, for soil and stream waters, model parameters

for type 1 scenarios (Tables 1 and 2, Figs. 2–5): τ , α and

η, showed distinct values between results from finer and

lower data resolutions. Keeping this finding in mind, when-

ever a high-resolution isotope sampling is feasible, a sensi-

tivity analysis considering the effect of sampling frequency

should be a common part of the workflow while applying

lumped-parameter models. This practice would help to build

a broader database on the sensitivity of lumped convolu-

tion modeling to sampling frequencies, which might be use-

ful to correct effects caused by coarse sampling frequencies.

In recent literature only two studies dealing with the sam-

pling frequency effect issue could be found: Hrachowitz et

al. (2010) using the gamma distribution model and Birkel

et al. (2010) through adding information from tracers to a

lumped-conceptual hydrological model.

For soil waters, an increasing trend of τ predictions related

to a decrease of sampling data frequency was clear for GM

and LPM. Using GM, best predictions for α were similar for

time resolutions up to bi-weekly sampling (α≈ 1.9), but they

were significantly higher for coarser data resolutions.

Using GM for stream waters, parameter predictions de-

picted a different trend than found for soil waters: τ yielded

lower values for decreasing input resolution data. This de-

scending trend matched the increasing trend of α predictions.

The trend depicted by our results differs from the one ob-

tained by Hrachowitz et al. (2011) who applied the same dis-

tribution function and convolution method to chloride data in

a headwater catchment in Scotland. In their case, a decreas-

ing sampling frequency went hand in hand with a decreasing

trend of α, which consequently affected the estimations for

τ , resulting in systematically larger values. Even though any

further comparison of the two studies is difficult, as they rep-

resent two different hydrological systems and therefore favor

different distribution functions and shape parameters to de-

scribe the transport processes at hand, it can be seen that the

MTTs greatly differ in accordance with the chosen sampling

frequency.

Considering the GLUE-based uncertainties derived from

type 1 scenarios, results between soil and stream waters were

contrasting. For soil waters the uncertainty magnitudes 1τ

remained similar with decreasing time resolution while for

stream waters they were systematically shorter. By using

type 2 scenarios (Tables 1 and 2, Figs. 2 and 4), where the

same weekly temporal resolution of observed data at out-

flows was kept for the calibration of models, additional in-

sights on the degree of the mismatch of coarse data resolu-

tions compared to finer ones were provided. For these cases,

the NSE, RMSE and BIAS of the predictions were in general

poorer for low temporal resolutions, hinting towards a higher

reliability of finer resolution data sets. Besides the fact that

parameter results derived from finer resolution data sets were
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more similar between each other, they did not show marked

trends of either overestimations or underestimations as com-

pared to using type 1 scenarios.

For our analyses, given the subtle divergence of results

when using daily, weekly or even bi-weekly sampling res-

olutions, we consider them as adequate for the estimation

of MTTs and TTDs. It should be noted that this finding is

valid for semi-steady-state conditions of waters. In this re-

gard, the utility of the highest sampling resolution, as daily

or even sub-daily, could be noticeable when temporal dynam-

ics are to be considered. In this regard Birkel et al. (2010)

provided insights when dealing with the sampling frequency

as part of the evaluation of the performance of a lumped-

conceptual flow-tracer model. They found that the use of

daily isotope data from rainfall and stream water, when com-

pared to weekly or bi-weekly, besides providing higher fit-

ting efficiencies, was beneficial for the conceptualization and

calibration of that model.

4.2 Comparison of distribution functions

Considering all the analyzed sampled frequencies, according

to NSE values, GM performed slightly better than the other

two models (Tables 1 and 2). However, GLUE-based uncer-

tainties were also larger for this model (Figs. 2 and 4), hinder-

ing the clear preference of one model over another. This find-

ing goes in line with previous insights in the same research

area (Timbe et al., 2014) in which a fixed weekly based sam-

pling frequency was used to infer MTTs and TTDs.

For soil waters LPM yielded similar τ predictions to those

of GM, thereby, justifying the use of linear functions such as

LPM as a first approximation, despite of presenting a simpli-

fication of the water movement of real systems. On the other

hand, GM was characterized by a delayed occurrence of the

tracer’s peak signal (α≈ 2).

For the case of stream waters, the comparison of pre-

dicted TTD shows that EPM traces a peak signal delayed

over time. We estimated η values between 2.15 and 3.23, the

largest values we found in related studies that used the same

distribution function. Reported values are normally lower

than 2 (e.g., Hrachowitz et al., 2009; Katsuyama et al., 2009;

McGuire and McDonnell, 2006; Viville et al., 2006; Kabeya

et al., 2006), indicating that a large portion of old water is

released first to the river as depicted by the isotopic com-

position of the stream. On the contrary, when analyzing the

behavior of water flow as derived from GM, the tracer sig-

nal’s peak at the outflow occurs instantaneously, meaning

that a considerable portion of the event rainfall water rapidly

contributes to discharge, as for instance via lateral flow from

near-surface deposits. Over time, the tracer signal decreases

(for either EPM or GM), but once again the implications are

different for both models comparing their flow recessions.

As shown in Timbe et al. (2014) for weekly data, the tracer

signal decreases more rapidly for EPM than for GM. Thus,

depending on which distribution function is used, the inter-

pretation is different. For example, in water management us-

ing the EPM predictions one could argue that the effects of

contamination of water sources will not be immediately re-

flected in the river water and further that its effect will be

rather quickly disappearing. Contrary, inferences provided

by a gamma distribution would tell that pollutants in the

catchment would have an instantaneous impact on the river

water and that the effect will sustain longer over time.

Considering a gamma distribution for the analyzed

streams, τ varied between 1.62 and 4.16 yr and α be-

tween 0.54 and 0.68, using finer sampling resolutions. This

range of α values is similar to findings from other tracer

studies on stream water using spectral analyses and high-

resolution samples of chloride. Kirchner et al. (2000) demon-

strated that an α value of approximately 0.5 provides a more

proper representation of several stream waters in Wales. As

stated by Soulsby et al. (2010) gamma distributions with

α < 1 are most suitable to represent non-linear processes.

Similarly several other studies found α values significantly

smaller than 1 (McGuire et al., 2005; Hrachowitz et al., 2009,

2010; Godsey et al., 2010; Kirchner et al., 2010; Speed et al.,

2010; Birkel et al., 2012; Heidbüchel et al., 2012; Muñoz-

Villers and McDonnell, 2012). On the other hand, our results

reported that when coarse temporal resolutions were used

(monthly or bi-monthly), the value of α approached 1, which

could lead to erroneous deductions.

Bearing in mind that each TTD describes different flow

characteristics although they could yield similar perfor-

mances in terms of fitting efficiencies or uncertainties

(e.g., LPM versus GM), for our study catchment additional

insights (e.g., tracer data associated with different flow paths)

are required in order to correctly unveil the prevailing TTD,

as solely relying on model performances could lead to mis-

leading results. In this regard, studies at smaller spatial scales

using high sampling frequencies and time-variant conditions

should be performed in order to cover a wider spectral range

of the different water sources.

5 Conclusions

Environmental tracer data of rainfall, stream and soil water

were collected in the San Francisco catchment with the ob-

jective to delineate the reliability of transit time predictions

as a function of the input data resolution. The collected in-

formation was used to test the prediction accuracy of com-

monly used lumped models with respect to sampling fre-

quency. Compared to results from coarse data sets, finer tem-

poral resolutions provided more similar outputs. Overall, dis-

crepancies between predictions of diverse sampling frequen-

cies point out that the assessment of the convergence and sen-

sitivity of model parameters is essential for defining a TTD

through model calibration. Especially for waters with damp-

ened isotopic signals (i.e., stream waters), model parameters

seem to be highly sensitive to sampling frequencies, consid-
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erably increasing the risk of misinterpretation of the under-

lying processes.

The study clearly demonstrates that estimations of the

TTD for catchments with similar characteristics or located

in the same region using different frequencies of data sam-

pling provides an additional source of uncertainty, which

might hinder a correct model comparison and misrepresen-

tation of the water routing system. The present research also

provides a better framework for future related research in

the San Francisco basin and similar basins in the Andean

mountain region. Based on the new insights presented in this

manuscript more elaborated sampling campaigns could be

undertaken, which would contribute to a more efficient man-

agement of the water resources of Andean and similar moun-

tain basins.
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