Tratamiento electroacústico de objetos sonoros en obras de Mesías Maiguashca

Tesis de Grado Previa a la Obtención del Título de Magíster en Musicología

AUTOR: LIC. JOSÉ ANTONIO ÁLVAREZ-TORRES YÉPEZ

DIRECTOR: Ph.D. ARLETI MOLERIO ROSA

CUENCA- ECUADOR

2016
RESUMEN

La presente tesis contiene una investigación sobre el tratamiento de objetos sonoros, en obras del compositor Mesías Maiguashca; la misma se propone como punto de partida, una breve biografía descriptiva que enfoca el momento de la aparición de la idea, al componer con objetos sonoros y de integrar estos a sus obras. Se propone además, como aporte, una clasificación organológica de dichos objetos sonoros, así como la cosmología en las obras que contienen objetos sonoros y la nomenclatura respecto a las partituras o indicaciones para la ejecución de objetos sonoros en las composiciones.

Otro aporte de la presente investigación, está en proporcionar un estudio de la evolución de la tecnología utilizada para la cadena electroacústica, implementada en algunas de la obras para objetos sonoros del compositor, más una propuesta de experimentación con objetos sonoros de fabricación personal.

PALABRAS CLAVES:
MESIAS MAIGUASHCA, OBJETO SONORO, ELECTROACUSTICA, CLASIFICACION ORGANOLOGICA.
ABSTRACT

This thesis is the investigation of the treatment of sound objects, in works of the composer Mesías Maiguashca, is intended as a starting point a short descriptive biography, which focuses on the time of the emergence of the idea of composing with sound objects and integrate them in their works. An organological classification of sound objects is proposed, as well as the cosmology in the works that has sound objects and the nomenclature regarding scores, or indications for the implementation of sound objects in his compositions.

Another contribution of this research is to provide a study in the evolution of the technology used for chain electroacoustic, deployed in some of the works to the composer more sound objects a proposal of experimentation with these.

KEYWORDS:

MESIAS MAIGUASHCA, SOUND OBJETS, ELECTROACUSTIC, ORGANOLOGICAL CLASSIFICATION
ÍNDICE

RESUMEN... 2
ABSTRACT... 3
ÍNDICE ... 4
INTRODUCCIÓN.. 9
CAPÍTULO I: MESÍAS MAIGUASHCA ... 13
 1.1. Ecuador. Nace un ruidista en Ecuador: Con el ruido en la vida 13
 1.2. Nueva York: Una beca y un cambio estético .. 15
 1.3. Argentina: La cara de la “nueva música” en América Latina 17
 1.4. Alemania y Europa .. 20
CAPÍTULO II: OBJETOS SONOROS ... 28
 2.1. Clasificación organológica .. 29
 2.1.1. Propuesta de clasificación organológica .. 34
 2.1.2. Propuesta de clasificación, tomando la revisión MIMO 35
 2.2. Cosmología ... 39
 2.3. Forma de interpretación .. 45
CAPÍTULO III: ELECTROACÚSTICA DEL OBJETO SONORO 67
 3.1. Micrófonos piezoelectrónicos ... 70
 3.2. Software .. 71
 3.2.1. El enlace de la programación musical ... 77
 3.2.2. Programación musical por objetos .. 82
 3.3. Experimentación con objetos sonoros ... 85
 3.3.1. Objetos sonoros de metal ... 90
 3.3.2. Objetos sonoros de madera ... 97
 3.3.3. Móvil sonoro metálico ... 104
 3.3.4. El sonido a través del software .. 106
CONCLUSIONES ... 110
RECOMENDACIONES ... 113
REFERENCIAS BIBLIOGRÁFICAS ... 114
ANEXOS ... 119

AUTOR: JOSE ANTONIO ALVAREZ-TORRES YEPEZ
Universidad de Cuenca

Cláusula de derechos de autor

José Antonio Álvarez-Torres Yépez, autor de la tesis “Tratamiento electroacústico de objetos sonoros en obras de Mesías Maiguashca.”, reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar éste trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de Magister en Musicología. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autor.

Cuenca, 21 de Julio de 2016

[Signature]

José Antonio Álvarez-Torres

Yépez

C.I: 170823226-7
José Antonio Álvarez-Torres Yépez, autor de la tesis “Tratamiento electroacústico de objetos sonoros en obras de Mesías Maigashca.” certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor.

Cuenca, 21 de Julio de 2016

José Antonio Álvarez-Torres

Yépez

C.I: 170823226-7
DEDICATORIA

Dedico este trabajo a mi hijo Mael, a su Madre por entregarme el regalo de la vida, a mi Padre que en paz descansa y que siempre me alentó a culminar esta meta, a mi Madre por siempre estar ahí, a mis hermanos, a mis hermosas tías que han cuidado y mimado como si fueran mis madres y en general a la familia.
AGRADECIMIENTO

Agradezco a Dios por bendecir mi camino en esta etapa, a la PhD. Arleti Molerio por su paciencia, cariño y empeño; y a mis compañeros de trabajo en la UDLA por ser un equipo de personas increíbles.
INTRODUCCIÓN

En las primeras dos décadas del siglo XX se puede ver la tendencia histórica en la ruptura de la tradición musical en los movimientos vanguardistas europeos de esta época. Para 1910 y 1911, Pratella expresa los manifiestos de ruptura: “Manifiesto del músico futurista” y “Manifiesto técnico de la música futurista”. Estos acontecimientos derivan en el manifiesto de Russolo de 1913: “El arte del ruido”. La idea de estos manifiestos era proponer la ruptura de los conceptos del sonido temperado, para conquistar las posibilidades infinitas del ruido. Estos hechos se pueden considerar el inicio de la música concreta y la música electroacústica, pero no es hasta mediados del siglo XX que surge la música electrónica con el uso de la cinta magnética como medio para almacenar sonidos. Con el liderazgo de Pierre Schaeffer y el grupo técnico de la radio de París inicia la experimentación con sonidos grabados y luego alterados en el cambio de la velocidad de reproducción, a lo que Schaeffer llama objetos musicales. Esto hechos se pueden establecer como referente para la concepción de la idea de objetos sonoros de Mesías Maiguashca y el tratamiento de los mismos.

En la presente investigación se delimita como objeto de estudio al tratamiento de objetos sonoros en obras del compositor ecuatoriano Mesías Maiguashca, en la cual se realiza un análisis histórico, descriptivo y experimental sobre el uso de estos objetos, así como su tratamiento electroacústico. En la actualidad, existen algunos estudios sobre Mesías Maiguashca y sobre sus obras; el autor ha publicado diversos textos de autoanálisis sobre sus planteamientos compositivos relacionados con el uso de objetos sonoros.
El problema se presenta, debido a la ausencia de investigaciones que determinen el modo de captación, análisis y procesamiento de objetos sonoros en sus obras; para la presente investigación se tomarán en cuenta siete obras, en las que se considera el material de construcción, el metal o la madera, y las partituras facilitadas por el autor.

Considerando el estado actual de los trabajos analíticos realizados sobre las obras, surge la siguiente interrogación: ¿Cómo contribuir al estudio del modo de captación, análisis y procesamiento de objetos sonoros en la obra de Mesías Maiguashca?

De esta manera se plantea la hipótesis, de que la captación, análisis y procesamiento de señal, en las obras para objetos sonoros de Mesías Maiguashca aportada en la composición de música electroacústica a través de la innovación, en la concepción de instrumentos de fabricación personal contribuye al conocimiento integral de la obra del compositor.

La presente tesis justifica su elaboración basándose en la necesidad de dar a conocer la metodología de captación, procesamiento y análisis de objetos sonoros de Mesías Maiguashca, para así delimitar un proceso que pueda incidir en otras disciplinas como la acústica, electroacústica, a nivel del flujo de información, a través de la cadena electroacústica y composiciones electroacústicas. Los recursos a utilizar para realizar esta investigación serán de medición y documentación en base a la experimentación con objetos sonoros de fabricación personal, para establecer posibilidades de experimentación e implementación en la presente tesis.

El objetivo principal de la investigación es: caracterizar los diferentes equipos y métodos de captación, síntesis sonora y procesamiento que se utilizan en obras
para objetos sonoros de Mesías Maiguashca, para de esta manera, comprender la cadena electroacústica y su implementación.

Entre los objetivos específicos se enuncia la necesidad de: valorar la evolución de los sistemas tecnológicos físicos y los programas informáticos para el manejo de audio; determinar la implementación que utiliza Mesías Maiguashca para sus obras con objetos sonoros, y determinar el tipo de objetos sonoros con los cuales ha trabajo Mesías, y cómo estos interactúan en las obras.

Como parte de los objetivos de la presente tesis, nos proponemos determinar una propuesta de clasificación organológica de los objetos sonoros de Mesías y el enfoque cosmológico presente en los objetos sonoros y el contexto en sus composiciones.

La metodología presente en la tesis conjuga varias manifestaciones de la investigación cualitativa, en este caso, la investigación biográfica, además de incursionar en la evolución de la tecnología que rodea el concepto de objeto sonoro y su contexto en las composiciones; se emplea además como método empírico, la entrevista, que aparece en el anexo de la tesis; por otro lado, se emplea la metodología descriptiva para proponer una clasificación organológica y describir la postura cosmológica en las obras para objetos sonoros.

Se añade el empleo de la metodología experimental, por medio de la cual es posible determinar el porqué de la implementación tecnológica en el análisis y procesamiento del sonido que se produce, al ejecutar el objeto sonoro y de este modo llegar al posible proceso, para el cual Mesías estructuró su concepto de objeto sonoro y determinó su uso en sus composiciones, y futuras implementaciones.
La presente tesis está estructurada en tres capítulos: el primero dedicado al estudio biográfico del artista y sus inicios en Ecuador, luego su formación y desarrollo como compositor y ejecutante en Nueva York, Argentina y Alemania; el segundo, se centra en el análisis de los objetos sonoros, su clasificación y propuesta organológica, además de tomarse la clasificación MIMO, su cosmología y formas de interpretación; el tercer y último capítulo contiene el estudio de la electroacústica del objeto sonoro, micrófonos piezoeléctricos, los softwares, la experimentación de objetos sonoros (madera y metal), específicamente en relación con la obra de Mesías Maiguashca. Se anexa la entrevista realizada al artista para la recogida fáctica de la información.
Para el presente capítulo, se muestra una breve biografía descriptiva del compositor Mesías Maiguashca; en este se plantea una línea del tiempo con énfasis en la aparición del concepto de objetos sonoros en las obras que tienen presente este concepto. La base biográfica que muestra el capítulo, indica cómo el compositor se vincula con la nueva música y encuentra un camino estético-musical, del cual se derivan conceptos como, objeto sonoro; este concepto representa el centro de atención en la presente tesis. Por otra parte el presente capítulo se presenta subdividido en cuatro espacios que encaminan estéticamente al compositor.

1.1. Ecuador. Nace un ruidista en Ecuador: Con el ruido en la vida

La vanguardia y el empirismo en lo musical, son elementos que podrían identificar al compositor ecuatoriano Mesías Maiguashca\(^1\), quien empezó su vida en el barrio quiteño de San Diego\(^2\); inició sus estudios en el Colegio Americano de Quito e ingresó a temprana edad, en el conservatorio nacional de música de Quito. Los padres de Mesías lograron la educación inicial de sus hijos, gracias a las posibilidades que les ofrecieron diversas becas; las mismas contribuyeron también a la formación del compositor, porque a la edad de veinte años obtuvo una beca concedida por la comisión Fulbright y deja el Ecuador para estudiar en Nueva York.

A pesar de que en su familia no existió un contacto profundo con la música, Mesías llegó a ella, según expresa en la entrevista, por “azar”; su padre -Segundo

\(^1\) Nacido el 24 de diciembre de 1938.
\(^2\) Barrio de Quito colonial ubicado en lo que actualmente se considera el centro de la ciudad.
Maiguashca recibió un piano vertical y una vitrola con discos de música académica, como parte del pago que le fuera efectuado por una actuación profesional como abogado de causas populares, y decidió que su hijo tomaría clases para la práctica de ese instrumento; relata además el artista, que “aprendió rápido” y con esto logró entrar al conservatorio de la ciudad de Quito.

Su formación en el conservatorio estuvo dirigida hacia una temática principalmente clásica o académica, de la mano del maestro Ángel Honorio Jiménez, a quien Mesías recuerda con cariño como, “Don Angelito”; señala, como en ese entonces, se censuraba la interpretación de la música nacional, por ello dentro de las posibilidades, esperaban que las autoridades del conservatorio salieran de la institución y a altas horas de la noche regresaban de manera secreta -tanto alumnos como profesores- para practicar esta música considerada prohibida.

A la temprana edad de diez y ocho años, Maiguashca tiene la predisposición de componer una sonatina para piano aunque sin la debida instrucción en la composición; con esto se confirman tres hechos: primero, la música no existe como objeto sino como proceso; segundo, tanto él como cualquier otra persona, podía crearla y tercero, considera el artista que, aprender supone el salir de las estructuras dadas, gracias a métodos empíricos y autodidactas (Maiguashca, M., 1995).

El desenvolvimiento de Mesías, como músico, se vio desde un inicio bifurcado entre lo académico y lo popular al marginar, de alguna manera, su capacidad compositiva en un inicio, por instrucción de su maestro; ello lo condujo primero a aprender las reglas que gobiernan la música y la composición.

3 Antiguo artefacto reproductor de sonido, que consta de un caja de resonancia y representa un mueble ornamental. Se lo conoce también como fonógrafo.
El aire nacionalista inicia su movimiento hacia 1920 e intenta señalar a la música de tradición andina, perfilándola en el sistema de musical occidental; esta la aparta y la convierte en una marca cultural trascendente, frente a los cánones de la música local institucionalizada.

A pesar de que Maiguashca tuvo, y ha tenido, una permanencia itinerante en Ecuador y su vida se desenvuelve principalmente en Colonia, Alemania, no debe obviarse que se trata de un artista ecuatoriano que durante su carrera se ha mantenido en constante contacto con colaboradores nacionales; de esta manera, crea y mantiene viva la esencia de su enseñanza a través de varios artistas ecuatorianos con quienes trabaja en el exterior; ejemplo de ello, es el concierto “La Canción de la Tierra” en el que se integran: la Orquesta de Instrumentos Andinos, la Banda Sinfónica Metropolitana de Quito, el Coro Mixto de la Ciudad de Quito con una instalación electroacústica basada en el fenómeno de ondas estacionarias y un tótem de madera, diseñado por Gabriel Maiguashca, en representación de un móvil sonoro.

1.2. **Nueva York: Una beca y un cambio estético**

Hacia 1958, a los veinte años de edad y demostrando su talento como ejecutor del piano, Mesías Maiguashca viaja a los Estados Unidos, debido a una beca otorgada por la comisión *Fullbright*, para estudiar música en *Eastman School of Music*, en Rochester, considerada como una excelente escuela de alto nivel técnico musical, para la práctica instrumental y de la pedagogía tradicional.

En este sentido, cuenta Maiguashca, que los cursos de composición no fueron del todo interesantes, porque se limitaban a la reproducción de las prácticas en el estudio de Hindemith y Howard Hanson, considerados posrománticos.
norteamericanos, a los cuales las tendencias musicales de la considerada “nueva música” europea, le concedían poca atención ya que compositores como John Cage, Charles Ives y Henry Cowell eran mencionados con “sonrisas irónicas” (Castiñeira de Dios, 2011, pp. 33-61).

Nueva York significa para Mesías Maiguashca, la posibilidad de romper algunos esquemas a nivel estético y compositivo; su formación le tomó cuatro años y es allí donde encuentra la posibilidad de bifurcar su vida musical, entre ser ejecutante o compositor. En esta etapa, señala que su idea inicial era continuar con su formación como pianista, porque en Ecuador era muy reconocido en este ámbito y en base a la gran competencia, pensó optar por la dirección orquestal, decisión que cambió por la composición.

Uno de los primeros antecedentes del giro del quehacer estético de Maiguashca, fue acudir al recital de Pierre Boulez en la presentación de Le Marteau sans maître (“El martillo sin maestro”) logrando desviar el hábito académico: a este acontecimiento se le atribuye la decisión de su cambio. La obra The Tiger (“El Tigre”) de Henry Cowell, basada en la obra del escritor inglés William Blake, también contribuyó a formar el carácter musical del compositor. Esta es una obra para piano con fuertes cambios en la intensidad en la ejecución, en la que predomina el clúster⁴ como entidad armónica; las charlas establecidas con Cowell permitieron a Maiguashca, el conocimiento de compositores como Arnold Shönberg y su discípulo Anton Webern, lo que desató en él un proceso para expandir su sentido de lo musical (Kueva, 2013, p. 11).

⁴ El clúster es también considerado un racimo de notas o un acorde compuesto por varios semitonos o tonos consecutivos.
Se puede tomar en consideración, que esta corriente de “nueva música” no era bien apreciada en la época, y en especial donde Maiguashca se estaba formando; estos compositores eran tomados a la ligera y no se les daba importancia; a pesar de ello, estos compositores y este tipo de música, llamaron la atención del compositor Maiguashca, quien estaba todavía en formación y a punto de dar un paso hacia lo que sería algo definitivo para su punto de vista musical.

1.3. Argentina: La cara de la “nueva música” en América Latina

Durante su estancia en Nueva York, Mesías Maiguashca tuvo un primer contacto con el compositor Alberto Ginastera, quien interpretó la obra “Cantata de la América Mágica” en Eastman School. Una vez terminado su recorrido por Estados Unidos, fue a Buenos Aires, Argentina, como becario del Centro Latinoamericano de Altos Estudios Musicales (CLAEM) del instituto Torcuato Di Tella, dirigido por Ginastera.

Este evento fue considerado un hito en relación con la renovación de las artes en Sudamérica; entre los instructores de la CLAEM se encontraban compositores de la vanguardia europea como Oliver Messiaen, Iannis Xenakis y Karlheinz Stockhausen, con quienes se tuvo el primer contacto con la música electroacústica. Sobre la base de este acontecer, es posible fundamentar que la CLAEM fue un centro fundacional para los músicos de América Latina que buscaban lo que se concibió como “nueva música”, la cual buscaba tomar fuerza dentro de una modernidad incontenible en la época.

Hacia 1964 se implementa uno de los primeros estudios de música electroacústica de la región; entre estos, Maiguashca es considerado un compositor orientado estéticamente, con una amplia serie de recursos compositivos que
encaminan su interés hacia la música tecnificada, develando varias composiciones, un cuarteto para vientos, un cuarteto de cuerdas dedicado a Alberto Ginastera, “Tres Canciones del viento”, diseñadas para voz femenina y grupo de cámara; entre ellas, también se encuentra “Boletín y elegía de las mitas”, basada en la obra del poeta ecuatoriano César Dávila Andrade, obra que le tomó cuarenta años para su concepción, hasta su estreno en el año 2007; la misma describe el episodio de la explotación al indígena andino por parte de la colonización española (Kueva, 2013, pp. 12-13).

Fuente original, gentileza de María de von Reichenbach (Castiñeira de Dios, 2011, p. 59)

La estadía del compositor en Buenos Aires fue de dos años; en lo referente a la duración del curso, le proporcionó la ejecución de varios conciertos de música contemporánea de la temporada de Teatro Colón; entre los maestros principales del curso estuvieron personajes como: Riccardo Malipiero, Luigi Dallapiccola y Alberto
Ginastera, a este último lo describe como una persona paternal, gentil, discreto y a la vez distanciado, pero siempre enseñando en sus clases de manera precisa y objetiva dentro de su canon estético.

La característica más importante señalada por Maiguashca sobre su estadía en Argentina, fue la creación de una comunidad de compositores sin rivalidades, hecho que se manifestaba frecuentemente entre los compositores de las capitales latinoamericanas de la época, apreciado en la misma Argentina con la dicotomía presentada entre los compositores Juan Carlos Paz y Alberto Ginastera; la posibilidad de fraternizar entre compañeros le permitió mantener contacto con algunos de ellos y un necesario seguimiento de sus carreras.

Los cursos de la CLAEM le permitieron llegar a la conjugación de lo aprendido, esto lo localizó de manera técnica y estética; una fuente que considera importante, es el contacto con la llamada “Segunda Escuela de Viena” y sobre todo con el compositor austriaco Anton Webern.

Con la experiencia que adquiere de la música electrónica y el conocimiento de creación musical en computadoras, Maiguashca desarrolla una actitud doble, definida como: “un decidido actuar empírico a ser interrogado luego por un cuestionamiento, una «teoría». Primero actuar y luego reflexionar, para actuar nuevamente y luego reflexionar” (Maiguashca, M., 1995). Todo este estudio musical desencadena en el compositor una madurez musical, que será reforzada en su siguiente experiencia de formación en Alemania; esta etapa le proveerá de lo necesario para un concreto desenvolver estético musical (Castiñeira de Dios, 2011, p. 61).
1.4. Alemania y Europa

Tras salir de la CLAEM, Maiguashca regresa a Ecuador en 1965 y asume, por corto periodo de tiempo, la dirección del Conservatorio Nacional de Música de Quito; su breve permanencia se debió al peso administrativo y a las limitaciones institucionales. En 1966 tramita una beca en Alemania, en la Deutscher Akademischer Austauschdienst (DAAD). A pesar de la gran actividad de la llamada “nueva música” en esa institución, Maiguashca no sintió que sus expectativas estaban resueltas y para 1967, solicita su pase a una escuela en la ciudad de Colonia, allí ve la posibilidad de encontrarse con quien considera, era la figura que más había influido en él, Karlheinz Stockhausen: “Stockhausen ha sido la figura que más ha influenciado mi música. (…). La característica más sobresaliente de su personalidad: su voluntad creadora, el deseo de crear, con orquesta, con piano, con electrónica, con piedras, con lo que sea” (Kueva, 2013, p. 14).

Con esto, Mesías Maigushca se define dentro de su quehacer y su estética musical, debido al aprendizaje y la tutela de Stockhausen, y de su actividad como ayudante en la radio emisora Westdeutscher Rundfunk (WDR), dirigida por Heinrich Strobel5. Maiguashca inicia su asistencia en la radio WDR debido a una ayuda brindada a un colaborador, quien dejó el cargo a su disposición en 1967 mientras Stockhausen producía su obra “HYMNEN”.

Una vez contratado, relata que tuvo que aprender la cadena electroacústica y el funcionamiento de la radio en apenas dos semanas, para disponerse a colaborar con el compositor polaco Włodzimierz Kotóński; esto confirmó como lo empírico y lo

5 Esta institución había influido en él desde la década de 1950, gracias al despunte de la Europa de la posguerra.
autodidacta eran los métodos más cercanos a su manera de ser, y así vio ampliada su habilidad compositiva, utilizando las herramientas de la electrónica y la electroacústica; de esta experiencia se derivan tres de sus obras: “Hör-zu”, “Ayayayayay” y “Oeldorf 8”.

Hacia 1973 Mesías Maigushca deja de trabajar con Stockhausen, después de adquirir experiencia en eventos como los circuitos de festivales de la “nueva música” alrededor del mundo, y dedica su siguiente etapa al colectivo Oeldorf, con quienes logra por primera vez, un proyecto autosustentable que le permite realizar giras y dar a conocer de mejor manera su quehacer musical (Kueva, 2013, pp. 14-15).

Para este entonces, ya centrado en la línea de la “nueva música” de la Alemania de ese entonces, Mesías se orienta hacia la generación de colectivos y redes colaborativas que le permitieron establecer diálogos y trabajos articulados,
con artistas y productores de varias disciplinas, generaciones y sectores; como resultado de estos contactos, se derivó la posibilidad de establecer autogestión para crear obras y construir una audiencia para una escena musical.

Para ello, tomó como punto de partida los conciertos públicos en espacios poco convencionales. Con esta misma temática, y con la ayuda de Wilson Hallo, se organizó en el Pasaje Royal de Quito, el primer concierto electroacústico del Ecuador en 1969; para este evento se contó con la participación del Grupo VAN\(^6\) y con Los Cuatro Mosqueteros\(^7\), desde las artes plásticas.

Esta época representa también para Mesías, la posibilidad de transitar por diversos festivales y encuentros en varias ciudades donde se encontraba el movimiento de la “nueva música” y con esto, la posibilidad de relacionarse con compositores de la talla de Iannis Xenakis, Oliver Messiaen, John Cage, Karlheinz Stockhausen entre otros. Todo este movimiento se produce en parte, debido a la creación de organismos como el Institut de Recherche et de Coordination Acoustique/Musique llamado también IRCAM, fundado por Pierre Boulez en el año de 1970, el cual funcionaba en el Centro Pompidou de París desde el año 1977.

Esta institución se considera el punto de desarrollo de lo estético y lo tecnológico de la “nueva música”, debido esencialmente a la implementación de un sistema de comisión de obras y estancias, para investigadores y compositores. El mencionar el IRCAM de París, tiene una importancia especial en Maiguashca debido a la evolución que presenta entre las técnicas analógicas y las digitales; la llegada

\(^6\) Grupo Vanguardia Artística Nacional conformado por Hugo Cifuentes, Enrique Tábara, Aníbal Villacís, León Ricaurte, Gilberto Almeida, Oswaldo Moreno y Guillermo Muñoz

\(^7\) Grupo de artistas plásticos conformado por José Unda, Nelson Román, Washington Iza y Ramiro Jácome.
del compositor a estas instalaciones, se produce en la década de 1980 y en ella aprendió los rudimentos de la música digital; de este encuentro nacieron composiciones como *FMelodies* y “El baile del Sacateca” (*Sacateca’s Dance*) (Kueva, 2013, p. 16).

Entre las vivencias de Mesías Maiguashca, se encuentra su fase como docente, ejercida entre 1978 y 1987 en el *Centre Européen pour la Recherche Musicale de Mertz* (CERM) en Francia; durante este período, el compositor presenta clases magistrales, seminarios y cursos en universidades, conservatorios y en festivales a nivel mundial, entre estos tuvo a alumnos como Milton Estévez, Arturo Rodas, Diego Luzuriaga y Efraín Gabela. En esta instancia compuso la obra “Intensidad y Altura”\(^8\), para seis percussionistas y cinta magnética estrenada en el festival de Metz de 1980.

Otro avance en el quehacer estético de Maiguashca en esta época, es el surgimiento del concepto de *objetos sonoros*, un concepto pensado durante el trabajo con una alumna de ese entonces. Al principio, este concepto pensado para utilizarlo en objetos metálicos, después se aplicó a objetos de madera; esta idea consiste en suspender por medio de cables, objetos que cuelgan de una estructura metálica en forma de cubo y de recolectar el sonido que este emite, por medio de

\(^8\) Vease la diferencia de la obra de mismo nombre del autor peruano César Bolaños del año 1963, la cual tiene una duración de 5:10s (cinco minutos, diez segundos); a diferencia de la obra del compositor Mesías Maiguashca la cual se registra en 1979 y tiene una duración de 17:44s

AUTOR: JOSE ANTONIO ALVAREZ-TORRES YEPEZ 23
piezoeléctricos pegados al cable que sustenta el objeto, el cual puede ser ejecutado de varias maneras, ya sea percutido o frotado mediante diferentes técnicas\(^9\).

La posibilidad de desarrollar la docencia en el Metz, generó el primer núcleo de “Música contemporánea” en Ecuador, gracias a la colaboración de algunos de sus alumnos ecuatorianos en Francia; según señala Maiguashca, ello activó tres procesos importantes:

- Primero, inicio del Departamento de Investigación y Creación Musical (DIC), como parte del Conservatorio Nacional de Música de Quito, el cual estaba bajo la tutela de Milton Estévez con el apoyo de IBM del Ecuador; en él se implementó el primer estudio y programa de enseñanza de música electroacústica del Ecuador.

- Segundo, la creación del Festival Ecuatoriano de Música Contemporánea en 1987; se celebraron once versiones del mismo hasta el año 2008 con el apoyo de IBM del Ecuador, contó con seminarios, conciertos y clases magistrales con invitados internacionales y fue dirigido en un inicio por Milton Estévez, y después por Julián Pontón.

- Tercer proceso: impulso a la investigación musicológica y la crítica musical, lo cual desencadenó la apertura de la revista \textit{OPUS}, publicación periódica de la Musicoteca del Banco Central de Ecuador, que tuvo como editor a Arturo Rodas. La revista contenía ensayos, traducciones de publicaciones de Karlheinz

\(^9\) Con el propósito de ampliar esta información, consúltense las siguientes fuentes: 2008-05 \textit{Objetos Sonoros}: Ponencia en el XV Festival de Música Latinoamericana, Caracas y las partituras para \textit{objetos sonoros} provistas por el autor.
Stockhaussen, Pierre Boulez y análisis de obras contemporáneas, material que era muy complicado conseguir en la época.

Para el año 1979 se funda en Linz, Austria, la ARS ELECTRONICA CENTER, diseñada para unir las artes, la ciencia y la tecnología. Hacia 1987 se crea Prix Ars Electrónica, como reconocimiento para proyectos artísticos-tecnológicos; es en este periodo, cuando Maiguashca ahonda en el trabajo de composición con sistemas informáticos basados en el uso del computador, y participa en 1990 en el festival Digital Traume (“Sueño Digital”) con su obra “A Mandelbox”, diseñada en 1988 para el festival Donauschingen, de Alemania.

Esta obra consiste en la creación de sonido e imágenes a partir del algoritmo de Mandelbrot, del cual toma su nombre, produciendo imágenes de tipo fractal. La misma consta de dos instancias: la primera, crea tanto un sonido como una imagen, tomando como punto de partida los cálculos fractales y la segunda, consta de 17 obras pequeñas que fueron recolectadas con anterioridad. El concepto de esta obra está sustentado en la novela Solaris de Stanislaw Lem\(^1\), en la cual se integraron textos y citas de la misma.

\(^1\) Escritor satírico-filosófico de origen polaco (1921 – 2006).
Esta obra, interpretada en segunda instancia, fue realizada con la colaboración de Bernard Geyer y titulada “Videomemorias”; la misma fue estrenada en el planetario del Instituto Geográfico Militar de Quito en el año 1991 e interpretada con un computador Atari 1040 ST, proyector de video y sintetizador. Este concierto se considera de gran importancia para la obra artística de Maigushca, debido a la huella que dejó en la juventud artística que asistió al evento (Kueva, 2013, p. 17).

Una de las últimas obras presentadas por Maigushca fue “La Canción de la Tierra”, obra basada en su antecesora de Gustav Mahler, compuesta entre 1907 y 1909; esta posible reedición de Maigushca es una canción de la tierra dedicada al “nuevo mundo”. Tomando en cuenta esta expresión, con la que suele llamarse a nuestro continente, decide componer la obra con un aspecto diferente al de Mahler; según el compositor, coloca al hombre al servicio de la creación, basando su pensamiento en los saberes ancestrales de la cultura andina, presentando una
composición con base en esta cosmovisión: en ella, el sol da la energía necesaria para la continuidad de la vida; basada en este concepto, la obra se inicia el 21 de junio en el solsticio de verano, entre las cinco y las seis de la mañana, para ver la salida del sol.

Esta obra está escrita para la Orquesta de Instrumentos Andinos, la Banda Sinfónica Metropolitana de Quito, el Coro Mixto Ciudad de Quito compuesto por seis voces femeninas y seis masculinas, una instalación electroacústica basada en el fenómeno de ondas estacionarias, un tótem como instalación sonora diseñado por Gabriel Maiguashca y dos grupos de objetos sonoros, uno de metal y otro de madera.

La perspectiva cronológica en la visión de la formación y vida artística de Mesías Maiguashca, constituye un enfoque para determinar posibles influencias en el concepto de objeto sonoro y su integración en sus obras; esta idea nació en una época en la que Maiguashca era docente en IRCAM de París, institución que contaba con laboratorios bien acondicionados para este tipo de experimentación.
CAPITULO II: OBJETOS SONOROS

En el presente capítulo se extiende el concepto de objeto sonoro, con el propósito de proveer una propuesta de clasificación organológica, mostrar la cosmolología que representan los objetos sonoros en las obras y mostrar la notación e interacción con la ejecución con objetos sonoros que propone Mesías Maiguashca.

El término objeto sonoro como tal, fue planteado como ente musical desde la perspectiva de Pierre Schaeffer en su libro, Tratado de los Objetos Musicales; este autor aborda la problemática de los tipos de escuchas, la acusmática referida a escuchar un sonido sin saber de dónde proviene, y la separación y conjunción de la música concreta con la música electrónica; en ella, la música concreta toma sonidos de la realidad como voces, instrumentos autóctonos, sonidos de otros idiomas o de lugares específicos como industrias, entre otros; estos sonidos son recopilados y transformados mediante diversas manipulaciones acústicas. Mediante estas cualidades se establece la diferencia con la música electrónica e intenta sintetizar sonidos a partir de frecuencias puras, los cuales son producidos en algunos casos por sintetizadores físicos y virtuales como lo es el diseño de sonidos por ordenador (Schaeffer, 2003, pp. 24-89).

Con respecto al compositor Mesías Maiguashca, se puede evidenciar la mixtura de los conceptos de música concreta y electrónica; en algunas de estas obras se encuentran objetos sonoros, para los que se proponen tres enfoques: organológico, cosmológico e interpretativo. El propósito de estos es entender el concepto del objeto sonoro y su interacción con las composiciones; para Mesías
Maiguashca el concepto de objeto sonoro es todo aquel sonido que carece de una nota o altura específica, por lo tanto son los que tienen espectros no armónicos.

2.1. Clasificación organológica

La concepción de los objetos sonoros, en las obras de Maiguashca, se dio hacia los años ochenta en conjunto con una de sus alumnas, Andrea Atlanti; con esto se agrega una herramienta compositiva que radica en el principio de objeto sonoro, influyendo en el recorrido de su vida artística; este concepto no proviene de una idea original de Mesías Maiguashca, ya que su evolución se observa desde las propuestas de Pierre Schaeffer e incluso podemos encontrar concepciones mucho más antiguas de la existencia de esta idea.

La concepción de Maiguashca en sus objetos sonoros está en recrear una pequeña instalación en forma de cubo, del cual cuelga en hilos de nylon, objetos sonoros que en un principio fueron metálicos, y estos a su vez interpretados por percutores, arcos de cello o arcos de diferente tipo; el sonido es captado por medio de micrófonos de contacto o piezoelectrónicos, esta señal no fue pensada en un principio para ser procesada por medios electrónicos, puesto que la simple sonoridad de ellos bastaba, así nace la primera obra para objetos sonoros llamada The Tonal, ejecutada por dos músicos que improvisan a partir de reglas no tan precisas.

Cabe recalcar, que estos no son considerados como instrumentos por Maiguashca, ya que carecen de propiedades como altura y timbre definitivo, y gracias a esto determina en obras siguientes, una evolución a la que denomina Hi-Tech, para jugar con efectos de procesamiento digital sobre el sonido captado realzando las posibilidades armónicas que cada objeto provee.
Para 1998, gracias a la sugerencia de Gabriel Maiguashca -artista plástico, hijo de Mesías Maiguashca- se inicia una nueva era en la posibilidad tímbrica al utilizar la madera como objeto sonoro; este fue un proceso iniciado por el diseño de los mismos hasta encontrar la posibilidad de hacerlos sonar, para así ubicarlos de la misma manera, colgados con hilos de nylon en una estructura cúbica colocando micrófonos de contacto para la recepción del sonido de cada uno de los objetos sonoros.

Como consecuencia de este proceso artístico, Maiguashca desarrolla una notación caracterizada por la evolución, en base a la necesidad de cada una de sus composiciones; como resultado de ello, para esta investigación surge la necesidad de categorizar y organizar de manera organológica, las cualidades de estos objetos sonoros, constituyendo un aporte de este estudio (Maiguashca, 2008d).

La clasificación de instrumentos es compleja, pues hay que tomar en cuenta las características de tipo físico, así como la forma en la que estos se ejecutan. Desde el S.XIX se han desarrollado sistemas para clasificar esta información; museólogos y organólogos, como Hornbostel y Sachs, han propuesto un sistema. Teniendo en cuenta las necesidades de clasificación de los objetos sonoros de Mesías Maiguashca, se tomó como punto de partida el sistema de clasificación organológica Sachs-Hornbostel, al observar la posibilidad de ejecución de estos objetos sonoros, los que varían según la composición; por lo tanto, se puede sugerir, el agregar decimales a una parte del árbol de posibilidades que el sistema Sachs-Hornbostel (S-H) provee, y encontrar una variación posible para cada uno (Kolozali, Barthet, Fazekas, & Sandler, 2011, pp. 467-469).
(S-H) proponen una clasificación que subdivide los instrumentos musicales en cuatro grandes familias; dentro de cada una de estas existen ramificaciones cada vez más específicas, para llegar a la clasificación puntual de cada instrumento; todo esto conduce a pensar a muchos musicólogos, en clasificaciones de instrumentos más autóctonos de cada zona y así agregar cada vez, más decimales. Las cuatro familias de esta clasificación inicial son:

- Primero: idiófonos.
- Segundo: membranófonos.
- Tercero: cordófonos.
- Cuarto: aerófonos.

Estas cuatro familias llevan, en un inicio a encerrar o cuadrar a los objetos sonoros en la primera clasificación, ya que de cualquier manera estos son percutidos, por lo tanto el primer número que sugiere esta clasificación es 1 pues en este el sonido se produce por vibración de un cuerpo sólido; el segundo número de la clasificación, determina cómo es ejecutado este idiófono; aquí surge la interrogante de la clasificación, puesto que el objeto está diseñado en diferentes materiales y tiene varias maneras de ser interpretado. (S-H) sugiere cuatro formas; estas son:

- De entrechoque.
- De flexión.
- De fricción.
- De soplados.
Se puede sugerir en esta clasificación, que el segundo número sea agregado como ejecución mixta, y en base a las obras existentes, determinar una posible sub división, según Sachs & Hornbostel von, (s/f, pp. 1-22).

Es importante tomar en consideración en base a las obras, el material para el cual están diseñadas y la forma de ejecución, por lo tanto hemos separado las composiciones que consten de objetos sonoros metálicos y de madera, mediante una breve descripción de su ejecución; de acuerdo con estas posibilidades, se determina la siguiente tabla señalando las obras del autor que contienen estos objetos sonoros.

<table>
<thead>
<tr>
<th>Composición</th>
<th>Material</th>
<th>Instrumentación</th>
<th>Año</th>
<th>Ejecución</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Tonal</td>
<td>Metal</td>
<td>Dos percusionistas</td>
<td>1993</td>
<td>Percusión directa y frotación con vara</td>
</tr>
<tr>
<td>The Nagual</td>
<td>Metal</td>
<td>Dos percusionistas y cinta magnética</td>
<td>1993</td>
<td>Percusión directa y frotación con vara</td>
</tr>
<tr>
<td>“Los Funerales”</td>
<td>Metal</td>
<td>Seis percusionistas (obra no terminada)</td>
<td>1994</td>
<td>No es posible determinar.</td>
</tr>
<tr>
<td>Holz arbeitet I</td>
<td>Madera</td>
<td>Cuatro percusionistas</td>
<td>2005</td>
<td>Percusión directa, objeto frotado con arco, objeto frotado con vara dentada y objeto acariciado.</td>
</tr>
<tr>
<td>Holz arbeitet II</td>
<td>Madera</td>
<td>Dos percusionistas y electrónica</td>
<td>2005</td>
<td>Percusión directa, objeto frotado con arco, objeto frotado con vara dentada y objeto acariciado.</td>
</tr>
<tr>
<td>Título</td>
<td>Material</td>
<td>Descripción</td>
<td>Año</td>
<td>Descripción Adicional</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>---</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>“El Negro Bembón”</td>
<td>Madera</td>
<td>Para piano, objetos sonoros de madera y la electrónica</td>
<td>2008</td>
<td>Percusión directa con mazos de madera, mazos metálicos y frotación con arco. Se determinan posibles alturas en los objetos sonoros</td>
</tr>
<tr>
<td>“Lamento por el sapo de, Stanley Hook”</td>
<td>Metal y madera</td>
<td>Para objetos Sonoros, dos percussionistas y Grupo de Rock.</td>
<td>2010</td>
<td>Percusión directa y frotación con vara.</td>
</tr>
<tr>
<td>...es schwingt…</td>
<td>Madera</td>
<td>Instalación sonora de madera.</td>
<td>2011</td>
<td>La ejecución de este es en base al movimiento de sustentación con resortes.</td>
</tr>
<tr>
<td>“Bagatelas2”</td>
<td>Madera</td>
<td>Trombón Bajo, Cello y Objetos Sonoros.</td>
<td>2012</td>
<td>Percusión directa que puede tener opciones de altura, objeto frotado con arco, objeto frotado con vara dentada y objeto acariciado.</td>
</tr>
<tr>
<td>“La Canción de la Tierra”</td>
<td>Metal y madera</td>
<td>Orquesta y objeto sonoro.</td>
<td>2011-2012</td>
<td>La ejecución de este es en base al movimiento de sustentación con resortes, la percusión directa y la frotación con arco.</td>
</tr>
</tbody>
</table>

Tabla 1. Composiciones para objetos sonoros de Mesías Maiguashca
Como se puede apreciar, existen composiciones con modos particulares de ejecución, así como variaciones en el material del cual están diseñados. Por lo tanto, la posible clasificación basada en el modelo S-H puede ser representada en la ramificación de dígitos que se presentarán a continuación.

2.1.1. Propuesta de clasificación organológica

En su primera parte, esta clasificación divide los instrumentos en cuatro familias principales, y de estas se deriva el segundo dígito para la ejecución, y sugiere agregar el número cinco para este tipo; a partir de este sugerirá un tercer dígito para los tipos de ejecuciones mixtas y separado de un punto, un cuarto dígito para la clasificación por el material del que están hechos.

1. Idiófonos

 11 Idiófonos de entrechoque
 12 Idiófonos de flexión
 13 Idiófonos de fricción
 14 Idiófonos soplados
 15 Idiófonos de ejecución mixta

 151 De percusión directa y frotación con vara

 151.1 De metal
 151.2 De madera
 151.3 De metal y madera

 152 De percusión directa, objeto frotado con arco, objeto frotado con vara dentada y objeto acariciado

 152.1 De metal
 152.2 De madera
152.3 De metal y madera

153 De Percusión directa, objeto frotado con arco, objeto frotado con vara dentada y objeto acariciado
 153.1 De metal
 153.2 De madera
 153.3 De metal y madera

154 De ejecución en base al movimiento de sustentación con resortes.
 154.1 De metal
 154.2 De madera
 154.3 De metal y madera

155 De ejecución en base al movimiento de sustentación con resortes, percusión directa y la frotación con arco.
 155.1 De metal
 155.2 De madera
 155.3 De metal y madera

2.1.2. Propuesta de clasificación, tomando la revisión MIMO

Continuando con la clasificación organológica de los objetos sonoros, se ha tomado en cuenta la revisión del consorcio MIMO (Musical Instruments Museums Online). Como propuesta, consideramos en algunas de estas obras, la presencia de la electroacústica y la electrónica, las que influyen en las composiciones de Mesías Maiguashca. MIMO propone agregar una quinta familia de instrumentos: los electrófonos; los describe como instrumentos que utilizan materiales generando sonidos acústicos, conectados de alguna manera a circuitos electrónicos para producir señales eléctricas, los que al pasar por altavoces, entregan sonidos.
Dentro de esta quinta familia, se sugieren seis sub-familias, entre ellas se encuentra la clasificación organológica del uso de la electroacústica y la electrónica en estas composiciones; en el numeral 51 ubica a los instrumentos y dispositivos electroacústicos; siguiente a este, en el numeral 511 se agregan los idiófonos electroacústicos (Montagu & Consortium, 2011, p. 22).

En esta revisión no se toma en cuenta que estos idiófonos electroacústicos pueden subdividirse en los que tienen la capacidad de producir sonidos con alturas definidas y los que no, por lo tanto se puede sugerir separar con un punto y ubicarlos como 511.1 instrumentos temperados capaces de reproducir la altura de notas; 511.2 instrumentos capaces de reproducir un sonido sin altura definida.

En la clasificación 523 se encuentra la descripción para dispositivos que pueden grabar y reproducir sonido, como la composición The Nagual; esta consta de un dispositivo de reproducción y grabación de cinta magnética. Más adelante ubica la clasificación de los dispositivos de procesamiento de sonidos por medios electromecánicos como efectos de reverberación, retardo, filtrado, entre otros; La obra Holz arbeitet II consta de electrónica para dar efectos sonoros a estos objetos, al emitir la señal por altavoces.

Hacia el final de esta revisión, se ubica en los numerales 55 y 56, las configuraciones híbridas análogo/digitales y al software, estas también representan a los dispositivos que forman parte de algunas de estas obras, conjugando varios modos de ejecución, hibridación de posibilidades en la interpretación y uso de materiales como el metal y la madera para producir sonidos; en algunos casos estos no están atados a ningún tipo de dispositivos electroacústicos ni medios electrónicos, y en otros, son parte inicial de una cadena electroacústica en cuyo
recorrer se puede transformar el sonido original para dar posibilidades armónicas amplias y diferentes (Montagu & Consortium, 2011, p. 24).

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Material</th>
<th>Año</th>
<th>Clasificación (S.H.)</th>
<th>Clasificación con revisión MIMO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Ecos”</td>
<td>Metal</td>
<td>1981-1982</td>
<td>No es posible determinar pero se sugiere: 151 De percusión directa y frotación con vara 151.1 De metal</td>
<td></td>
</tr>
<tr>
<td>The Tonal</td>
<td>Metal</td>
<td>1993</td>
<td>151 De percusión directa y frotación con vara 151.1 De metal</td>
<td>523</td>
</tr>
<tr>
<td>The Nagual</td>
<td>Metal</td>
<td>1993</td>
<td>151 De percusión directa y frotación con vara 151.1 De metal</td>
<td></td>
</tr>
<tr>
<td>“Los Funerales”</td>
<td>Metal</td>
<td>1994</td>
<td>No es posible determinar, la obra no fue terminada pero se sugiere: 151 De percusión directa y frotación con vara 151.1 De metal</td>
<td></td>
</tr>
<tr>
<td>Holz arbeitet I</td>
<td>Madera</td>
<td>2005</td>
<td>153 De Percusión directa, objeto frotado con arco, objeto frotado con vara dentada y objeto acariciado 153.2 De madera</td>
<td></td>
</tr>
<tr>
<td>Holz arbeitet II</td>
<td>Madera</td>
<td>2005</td>
<td>153 De</td>
<td></td>
</tr>
</tbody>
</table>
Percusión directa, objeto frotado con arco, objeto frotado con vara dentada y objeto acariciado

<table>
<thead>
<tr>
<th>Título</th>
<th>Material</th>
<th>Año</th>
<th>Descripción</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Negro Bembón”</td>
<td>Madera</td>
<td>2008</td>
<td>Percusión directa, objeto frotado con arco, objeto frotado con vara dentada y objeto acariciado</td>
<td>153.2 De madera</td>
</tr>
<tr>
<td>“Lamento por el sapo de Stanley Hook”</td>
<td>Metal y madera</td>
<td>2010</td>
<td>Ejecución en base al movimiento de sustentación con resortes, percusión directa y la frotación con arco.</td>
<td>155.3 De metal y madera</td>
</tr>
<tr>
<td>“...es schwingt...”</td>
<td>Madera</td>
<td>2011</td>
<td>Ejecución en base al movimiento de sustentación con resortes.</td>
<td>154.2 De Madera</td>
</tr>
<tr>
<td>“Bagatelas”</td>
<td>Madera</td>
<td>2012</td>
<td>Ejecución en base al movimiento de sustentación con resortes, percusión directa y la frotación con arco.</td>
<td>531</td>
</tr>
</tbody>
</table>

| “La Canción de la Tierra” | Metal y madera | 2011-2012 | 154 De ejecución en base al movimiento de sustentación con resortes. 154.2 De Madera 153 De Percusión directa, objeto frotado con arco, objeto frotado con vara dentada y objeto acariciado 153.2 De madera |

2.2. Cosmología

Para buscar un enfoque cosmológico en composiciones para objetos sonoros de MM, se tomaron en consideración algunas de sus obras, entre ellas figuran: The Nagual y The Tonal; estas dos obras forman parte de un ciclo de seis composiciones, llamado Reading Castañeda, el cual le tomó casi diez años de trabajo, estrenado en 1993.

El prefacio del libro de Carlos Castañeda señala el indicio del significado cosmológico de estas palabras.

En el curso de la caída mi percepción experimentó dieciséis rebotes entre el tonal y el nagual. Al moverme dentro del nagual viví mi desintegración física. No era capaz de pensar ni de sentir con la coherencia y la solidez con que suelo hacer ambas cosas; no obstante, como quiera que fuese, pensé y sentí. Por lo que a mis movimientos en el tonal respecta, me fundí en la unidad. Estaba entero. Mis percepciones eran coherentes. Consecuentemente, tenía visiones de orden. Su fuerza era a tal punto compulsiva, su intensidad tan real y su complejidad tan vasta, que no he logrado explicarlas a mi entera satisfacción. (Castañeda, 2007, p. 2)
Derivado del análisis realizado, puede entenderse este proceso como dos estados mentales antagónicos, en los cuales se concibe la dualidad como parte elemental de un equilibrio, ejemplo de ello es la relación entre el bien y el mal; todas estas composiciones están basadas en textos de Castañeda que hablan sobre la «brujería de los indios “yaqui”» en México; estas composiciones representan según Maiguashca, las reflexiones acústicas para escuchar en las pausas de la lectura de los textos (Maiguashca, 1995).

Entre los citados textos de Castañeda, se puede encontrar la lucha del conocimiento para el ser humano; este conocimiento llega gracias a la experimentación con plantas medicinales y alucinógenas, que fueron provistas como pupilo de las enseñanzas de don Juan Matus, mostrando a Castañeda la existencia del Tonal como el estado físico en el que percibimos la realidad normalmente, y la existencia del Nagual representando un estado elevado de conciencia que permite percibir una realidad alterna (Robles Robles, 2002, pp. 77-81).

La composición “Los Funerales”, es una obra diseñada para una ceremonia, que según el autor nunca se llegó a celebrar; estos son los funerales de José Gabriel Túpac-Amaru, a quien se lo conoce por ser el indígena que lideró la rebelión anticolonial del S.XVI, muerto a manos del corregidor Antonio de Arriaga. Esta obra podría considerarse como un réquiem compuesto por Maiguashca para dicho evento (Maiguashca, M., 1993b, s/p).

La visión contenida en la composición “El Negro Bembón” está referida a la dualidad desde un punto de vista musical y sonoro; Mesías Maiguashca señala al piano como un instrumento importante, por su capacidad de ser temperado y lograr tonos armónicos; dentro de su composición propone la afinación de uno de los dos
pianos, un cuarto de tono más bajo para lograr batimentos\(^{11}\) que entreguen no solo un sentido armónico sino también rítmico; por otro lado están los objetos sonoros, estos por su capacidad de producir sonidos no armónicos o tonos claros, formulan una especie de antítesis del piano: lo que el piano puede tocar, el objeto sonoro no; lo que el objeto sonoro puede tocar, el piano no (Maiguashca, M., 2008, s/p).

En la obra, “Lamento por el sapo de Stanley Hook”, se aprecia también un sentido de dualidad entre las anécdotas del primer ensayo con la banda de rock; lo primero que hizo fue pedir que la banda tocara lo más suave posible para lograr dominar el sentido de la intensidad de los sonidos, y así de lo más suave a lo más fuerte en volumen (Maiguashca, M., 2009b, s/p).

La obra …es schwingt… es una instalación sonora, cuya visión está basada en un objeto sonoro que cuelga de una estructura metálica, atada de cuatro resortes provistos de cuatro piezoelectrónicos; están conectados a cuatro canales que emiten señal por cuatro altavoces ubicados en diferentes lugares de un recinto; mediante un contacto o un empujón, el objeto genera sonidos rítmicos que pueden llegar a mantenerse por casi tres minutos, de ahí su traducción al español: “…que flota…”

La obra nombrada “Bagatelas” para Trombón Bajo, Cello y Objetos Sonoros presenta el sentido de dualidad que tiene la composición “El Negro Bembón”, comparando al piano con el objeto sonoro por sus capacidades, al emitir o no, sonidos armónicos; en este caso, esta dualidad está entre el trombón bajo, el cello y los objetos sonoros, por otro lado cabe recalcar que las bagatelas hacen referencia

\(^{11}\) Fenómeno acústico que se da cuando dos tipos de onda suenan al mismo tiempo, pero con frecuencias un poco diferentes generando rítmicas en las voces.
a composiciones cortas y ágiles provenientes del romanticismo y están interpretadas en la mayoría de las ocasiones, solo por el piano (Maiguashca, M., 2013b, s/p).

La última obra concebida por Mesías Maiguashca para objetos sonoro, es “La Canción de la Tierra”, compuesta para orquesta y una instalación de un objeto sonoro diseñado por su hijo Gabriel Maiguashca; el compositor toma como tema la obra original y homónima de Gustav Mahler, compuesta entre 1907 y 1909. Esta obra es para Mesías Maiguashca, una de las más conmovedoras de la música europea caracterizada por su melancolía y fatalismo, reflejo del antecedente judío de Mahler y la época de composición al percibir un posible presagio de la Primera Guerra Mundial que estalla en 1914.

La concepción de Maiguashca, al crear esta obra desde el nuevo mundo, nuestro continente americano, debe sonar diferente; con esto, el compositor señala que el punto de inicio es considerar al Sol como un dador inmediato de vida por su relación con la tierra y lo toma como experiencia musical; se trata de dar a conocer una manera andina de percibir el mundo y se pregunta, si ¿Será posible hacerla sonar?

La visión de la obra se centra en la analogía que encuentra posible, entre la vibración de una onda sonora con la cosmovisión andina, al relatar tres estados: Hanan-Pacha, representando el mundo de arriba; Kay-Pacha, el mundo central o del “aquí” y el Uku-Pacha, como el mundo inferior; esta, a su vez la compara con la teoría del big-bang; la misma postula que nuestro universo se encuentra en constante expansión mediante la hipótesis de que en algún momento, este pasará a contraerse; de ahí que se pregunte: ¿Terminará ese proceso de contracción en un punto de contracción máxima que provocaría un siguiente big-bang?
Todo esto se representa con el gráfico catorce del libro *Qhapaq Ñan*, de Javier Lajo, una serpiente de dos cabezas llamada *Amaru-Chokora*; este diseña un período\(^{12}\) de vibración mientras se mueven entre los tres estados: *Kay-Pacha, Uku-Pacha y Hanan-Pacha*; según Javier Lajo, simbolizan tres animales totémicos: el Wamán, representado como un halcón; el Puma y el Amaru como una serpiente, que conviven en una simbiosis de un animal híbrido, representado en la obra con la instalación sonora de Gabriel Maiguashca que emula la figura de estos tres (Kueva, F., 2013, pp. 72-73).

El siguiente gráfico está representado en la portada del libro *Mesías Maiguashca. Los Sonidos Posibles* -tomado del libro *Qhapaq Ñan* de Javier Lajo- y representa los tres estados que expresan la ley general del movimiento del tiempo según la cultura Inca; este gráfico puede tener varias maneras de ser representado.

\(^{12}\) Se refiere al período de vibración del sonido.
El quehacer estético y el recorrido de vida artística de Mesías Maiguashca, lo llevaron a concebir el *objetos sonoro*, y tratarlo como un instrumento al que puede manipular según las necesidades de cada composición y del material con el que estén hechos; no contento con estas posibilidades, el autor decide en algunas de
sus composiciones, agregar al instrumentos como parte inicial, una cadena electroacústica para poder manipular su sonido original y llevarlo a otras instancias. Estas posibilidades llevan a este objeto sonoro a convertirse en un elemento más de la composición.

2.3. Forma de interpretación

Las composiciones para objetos sonoros del compositor Mesías Maiguashca tienen como característica esencial, poseer varias posibilidades de notación e interpretación, sin importar si es un objeto sonoro metálico o de madera; en el caso de las instalaciones sonoras, la disposición del objeto -en muchas ocasiones- está suspendido de una estructura a los que pueden estar conectados por hilos o resortes y estos a su vez, llevan conectados micrófonos piezoeléctricos para captar, amplificar, procesar y emitir el sonido que se genera.

Esta cantidad de posibilidades al momento de ejecutar un objeto, representa la necesidad de darle una notación específica para cada una; en las obras del compositor se evidencia una evolución en la notación, según las necesidades de la composición; la forma más común es, percutir con un mazo o baqueta, el objeto sonoro. Una segunda forma es frotar el objeto con un arco, frotar el objeto con una vara irregular o dentada y la última, frotar el objeto con las manos.

Se puede tomar en consideración, una línea de tiempo en las composiciones para objetos sonoros, y evidenciar la evolución en la notación y ejecución, según la necesidad compositiva. Dentro del registro de partituras proporcionadas por el compositor está la obra The Tonal; este es el segundo movimiento del ciclo de composiciones, Reading Castañeda.
THE TONAL son instrucciones para la improvisación de dos músicos que tocan en instrumentos que generan sonidos concretos. Esta composición fue concebida para el Objeto Sonoro desarrollado por mí. Es sin embargo posible tocarla en otros generadores de ruido. Los fundamentos de la ejecución son las reacciones orientadas paramétricamente, que se controlan según las indicaciones de la partitura. Tal partitura consta de varios segmentos. Para cada segmento se determina una serie de símbolos que describen los parámetros del caso. (Maiguashca, M., 1997, s/p)

La partitura empieza con la descripción de la obra, señalando que es una guía de improvisación para los dos ejecutantes la cual además, podría ser ejecutada con generadores de ruido; seguidamente cita nueve instrucciones para la ejecución en la partitura: la primera es la posibilidad de sincronización entre los ejecutantes, y en ella anota simbologías de retardo en la ejecución, a continuación como segundo elemento, el compositor advierte la relación sonora entre los dos objetos y su ejecución para denotar la relación monofónica y polifónica, así como la posibilidad de hacer solos dentro del tema. El tercer punto señalado en la partitura, se refiere al volumen mediante la notación musical convencional para pasar al cuarto tipo: la actividad de los ejecutantes; esta consta de cinco instrucciones:

1. Rígido: casi no se provocan cambios
2. Calmado: se provocan pocos cambios
3. Moderado: se provocan cambios moderados
4. Activa: se inducen cambios
5. Muy Activa: se inducen más cambios

La sexta instrucción describe la textura de la composición, señalando cambios de material con puntos, líneas entrecortadas, líneas largas y el intercambio de las dos primeras. En la séptima instrucción, el compositor señala opciones de
interpretación libre y sincronizada para los ejecutantes y de los símbolos para expresar su modo de sincronía.

Para el octavo punto, señala la vinculación de eventos con dos posibilidades: la primera, con una línea vertical para la interpretación directa y la segunda, con el símbolo de calderón para señalar la espera de los ejecutantes. Esta opción refleja los respiros para la sincronización de los objetos sonoros. En la última instrucción, señala que los parámetros principales son la sincronización y la relación entre los objetos; los símbolos presentados anteriormente, pueden ser interpretados libremente por los ejecutantes.

En general, la obra presenta diez secciones; en ellas, se utilizan la notación y las instrucciones referidas al inicio; en cada una de dichas secciones se señala la sincronía, la actividad, la cantidad de repeticiones de cada una de los sistemas y se evidencia un calderón al final de cada una.

Maiguashca llega a la concepción de The Nagual (1993), confrontando los sonidos físicos producidos por objetos sonoros en vivo, con objetos sonoros virtuales modelados por computador; en este caso, el compositor utiliza un ordenador NeXT, equipo descontinuado en 1993 que contaba con el lenguaje ISPW, capaz de ejecutar en tiempo real el material para cinta magnética en ocho canales; la posibilidad de mezclar los elementos acústicos de los objetos sonoros con los
análogos de cinta, representaron la necesidad de señalar indicaciones para cada uno de los músicos que corresponden al mismo sistema de notación en la obra *The Tonal*, con la diferencia de que en esta notación Maiguashca señala la entrada de un metrónomo para cada músico y con esto, su inicio en cada sección y el funcionamiento de la cinta electromagnética dentro de la obra. Cabe recalcar, que estas obras son interpretadas con percutores y/o arco, señalado en el inicio de cada parte o sección.

Imagen 8. Primeros sistemas de la partitura de la obra *The Nogual*, recuperado de partitura original de la obra.

Las siguientes obras son las primeras que el autor concibe para **objetos sonoros** de madera y llevan por nombre *Holz arbeitet* (I) y *Holz arbeitet* (II) traducidas como “Trabajo de Madera (I)” y “Trabajo de Madera (II)”; las obras fueron creadas en el año 2005 y sus **objetos sonoros** nacen de la idea de Gabriel Maiguashca, la composición y procesamiento pertenecen a Mesías Maiguashca.

Estas obras están escritas para la interpretación de cuatro músicos; el autor montó
cuatro objetos sonoros que cuelgan de una estructura metálica en forma de cubo, cada objeto sonoro tiene dos micrófonos de contacto para dar la sensación estéreo de cada uno, con esto se obtienen ocho señales de manera simultánea.

La notación de esta obra detalla que cada objeto puede ser interpretado de cuatro maneras diferentes:

• La primera: con un percutor golpea el objeto; puede tener intensidades variadas desde ppp hasta fff y se refleja con la figura de una corchea simple.
• El segundo modo de interpretación se realiza con un arco, con el cual se puede frotar el objeto sonoro y realizar el sonido de manera sostenida, este modo de interpretación muestra un rango de intensidad que va desde p hasta ff y señala que es bastante complicado o difícil de interpretar, esta se
refleja en la interpretación con una nota sobre el pentagrama y una línea sólida a la derecha de la misma.

- Tercer modo de interpretación: se utiliza una vara metálica dentada, esta produce una sonoridad ruidosa al ser frotada sobre el *objeto sonoro*, se señala que el rango de intensidad en este caso varía entre *ppp* hasta *fff*, pero debe ser utilizado con precaución; en este caso, la notación se realiza de igual manera con una nota sobre el pentagrama seguida de una línea entrecortada.

- Cuarto y último modo de interpretación: se realiza con las manos, acariciando, rozando o tocando el *objeto sonoro*; a este modo de interpretar se le llama “respiro”; el objeto solo produce intensidades bajas que de manera ocasional lanza intensidades medias-altas y van desde *ppp* hasta *f*, pues, depende del intérprete en el momento de tocar el *objeto sonoro* que tenga, en este caso la notación se detalla con una nota en el pentagrama seguida una línea sólida gruesa.

1) **Impulso con percutor**

2) **Arco**

3) **Arco metálico dentado** (*Ruidoso*)

4) **Usar las manos** (*Susurrante*)

Imagen 10. Notación de interpretación recuperada de la obra original del autor.
Una de las instrucciones importantes en esta notación, es que la altura del sonido es libre en el momento de interpretar la obra y dependerá del *objeto sonoro*; se señala con la letra “V” la instrucción de variación de interpretación para cada instrumentista.

Para los crescendos o decrescendos de intensidad, Maiguashca señala dos figuras: una línea con doble flecha para dar la sensación brusca o lenta al momento de manejar la intensidad o una flecha sólida para señalar un crescendo paulatino en la interpretación del *objeto sonoro*.

Parte importante de esta notación es la señalética de la participación entre músicos o intérpretes, se señala con dos flechas contrarias en sentido vertical seguidas de signos de “igual” (=), “mas” (+) y “menos” (-). Cuando al final de estas flecha se encuentra el signo de “igual” los músicos deben interpretar su *objeto sonoro* de igual intensidad al de su compañero; cuando aparece un signo de “mas” y un signo de “menos” a los extremos de las flechas, él o los músicos, con el signo “mas” deben realizar un solo en su *objeto sonoro*, mientras que él o los músicos con el signos “menos” debe acompañarlo y cuando solo aparece un signo de “mas” para uno de los músicos sin flechas, este debe realizar un solo mientras los otros 3 intérpretes están en silencio.

La notación de esta obra también señala la dificultad de sincronía entre cada instrumento y en su parte inicial, se marca la pauta de no restringir el uso de algún *objeto sonoro* por músico, aunque en los primeros ensayos se determine cuál músico o intérprete toma el *objeto sonoro*.

En la primera parte de la primera composición *Holz Arbeitet (I)* se señalan varios cambios de compas, con repeticiones para todos los instrumentos y
diferentes intensidades; en cuanto termina esta sección, separa los pentagramas para cada objeto sonoro y el tempo de interpretación de cada uno. Es importante señalar, que cada músico tiene un tempo diferente para la ejecución de cada objeto sonoro, por lo tanto la sincronía de estos señala una dificultad mayor.

En el transcurso de toda esta obra, se advierte el cambio de artefacto para interpretar cada objeto sonoro y la duración en segundos de algunos de los espacios de tiempo de la composición. La obra termina con todos los objetos sonoros de manera simultánea.

Imagen 11. Primeros compases de la obra Holz arbeitet I. Recuperado de la partitura original de la obra.

Como parte de la propuesta de la presente tesis, se plantea un análisis de música electroacústica en base al método de eventos, propuesto por Gary Kendal y Mauricio Ardila, sobre el método de análisis de espectro propuesto por Mara Helmut. Esto deriva en la posibilidad de realizar un análisis de tipo espectro-morfológico basado en la propuesta de Denis Smalley. Para el análisis se fragmentará la obra Holz Arbeitet (I), señalando las secciones en donde se encuentran cambios de actividad respecto al modo de interpretación de los objetos sonoros. Las imágenes a
continuación presentan el extracto de espectro de la composición con la imagen de la partitura a la que representa.

![Imagen 12 Primeros compases de la obra en espectro y partitura](image)

En la imagen 12 se denota que la interacción de la interpretación respecto a la coordinación de los eventos como con la intensidad de cada uno; por otro lado se muestra que la conjunción de los sonido presenta muchas frecuencias medias y graves con una distinción en sus armónicos. Hacia el final de la gráfica se muestra la sección en la que los eventos se producen con tempos diferentes para cada objeto y en estos se evidencia la personalidad en armónicos de cada uno.

![Imagen 13 Sección media de la obra en espectrograma con compases correspondientes de la obra](image)
Para la imagen 13 se muestra la interacción de los objetos interpretados por percusión versus el segundo tipo de interpretación en el cual se frota una sección del *objeto sonoro* con arco. Esta acción se muestra claramente en la parte derecha del gráfico en el que se distinguen sonidos de mayor extensión y que presentan cualidades de altura así como la presencia clara de armónicos que distinguen a los dos *objetos sonoros* a los que se les está frotando con el arco.

![Imagen 13: Interacción de objetos interpretados por percusión versus el segundo tipo de interpretación](image)

Imagen 14 segunda y tercera forma de interpretación de la obra en espectrograma y compases de la obra a los que pertenecen.

En la imagen 14 se muestra la interacción de los instrumentos frotados con arco y percutidos versus el tercer modo de interpretación en el que se frota el *objeto sonoro* con una vara dentada la cual produce una sonoridad densa y rugosa muy semejante al ruido pero con posibles armónicos que se evidencian en el espectro.

Existe una diferencia entre *Holz Arbeitet (I)* y *Holz Arbeitet (II)*: en la segunda obra se señala la secuencia de la cadena electroacústica por medio de un flujo grama, en ella se puede visualizar el uso de la señal y cómo estos pasan por efectos como un Vocoder, el cual procesa la señal de audio y ha sido programado en el software MAX/MSP, a su vez se señala la salida de la señal de audio y cómo está

AUTOR: JOSE ANTONIO ALVAREZ-TORRES YEPEZ
diagramado el escenario con los músicos y la instalación del montaje de los objetos sonoros.

Esta obra es para dos intérpretes y mantiene la misma notación, pues tiene cuatro objetos y los intérpretes rotan por estos durante la ejecución del tema. Un aspecto importante de la notación de esta obra, es señalar de manera porcentual, la cantidad de efecto vocoder13 que aplicará para cada parte de la interpretación de los objetos sonoros.

\[\begin{array}{c|c|c|c}
\text{Klangregie.} & \text{Lautstärke:} & \text{Klang-Ob.} & \text{Voc.} \\
\hline
100\% & 000\% & \\
100\% & 050\% & \\
100\% & 100\% & \\
050\% & 100\% & \\
000\% & 100\% & \\
\end{array}\]

Imagen 15. Primera página de la obra \textit{Holz arbeitet II}. Recuperado de partitura original de la obra.

13 Es un efecto analizador y sintetizador de voz desarrollado en en la época de 1930 el cual se utiliza para generar sonido parlantes no orgánicos.
La obra “El Negro Bembón”\(^\text{14}\) de 2008, versionado para su ejecución en el 2013, está compuesta para *objetos sonoros* de madera, cuatro intérpretes, piano, síntesis electroacústica y consta de ocho movimientos:

1. El mar (1)
2. Yambambó
3. El mar (2)
4. Adivinanzas
5. El mar (3)
6. El negro bembón
7. El mar (4)
8. Yambambó (bis)

En este caso, en cada lado del cubo del montaje, los *objetos sonoros* son amplificados -cada uno- por un solo micrófono de contacto, señal que se distribuye al ingeniero de sonido de la sala de conciertos. Los artistas interpretan los *objetos sonoros* con diferentes mazos de madera, mazos de metal y diferentes tipos de arco.

En el pentagrama se señalan cuatro gamas de puntuación: alta, media alta, profunda media y muy profunda. También se señala la altura con la cual se debe interpretar cada *objeto sonoro*, estipulado por las alturas convencionales del pentagrama. Se notan dos tipos de impulso diferenciado por la cabeza de cada nota: la primera es la cabeza sólida en negro como un estilo normal de sonido, y el

\(^{14}\) Versión del poema homónimo del poeta cubano Nicolás Guillén perteneciente al poemario *Motivos de Son* (1930).
impulso con notación de cabeza romboidal en blanco que producirá un sonido de tipo armónico.

El ritmo de esta composición se determina según el poema de Nicolás Guillén; el texto no debe ser hablado pero debe jugar con la lingüística necesaria para dar la sensación de que el interlocutor pasa a través del instrumento. En el caso del piano, se señala la ejecución de clúster cromáticos con figuras cuadradas en alturas específicas del pentagrama.

La cadena electroacústica es detallada en hojas separadas a las previstas por el autor y no fueron entregadas por motivos personales, por lo tanto no puede ser detallada en el presente trabajo.
En el inicio del primer movimiento llamado “El Mar (1)” se detalla la velocidad de interpretación dando un valor de corchea a cincuenta y dos pulsaciones por minuto con una armadura de compás de 4/8, algo importante de detallar en esta obra es que la parte de piano tiene cinco pentagramas: dos en clave de Sol y tres en clave de Fa más el sistema de la ejecución del plano electroacústico.

En el segundo movimiento, “Yambambó”, la velocidad de interpretación es de “blanca” a ciento veinte pulsaciones por minuto, con una armadura de compás rítmica de 4/4 que cambia a 2/4 en el compás veinte y ocho a un velocidad de negra a sesenta pulsaciones por minuto y regresa a una armadura de compás de 4/4 a velocidad de blanca; igual a ciento veinte pulsaciones por minuto en el compás ciento sesenta y siete, presenta otro cambio de compás a 2/4 con velocidad de negra, igual a ciento veinte pulsaciones por minuto en compás dos cientos cuatro.

Para el compás dos cientos diez y seis se presenta un cambio de armadura rítmica a 1/4 por un compás y cambia a 2/4 por tres compases, regresa a 1/4 por un compás más para regresar a 2/4 por ocho compases más, y en el compás dos cientos veinte y nueve a 4/4 con velocidad de: blanca igual a ciento veinte pulsaciones por minuto. La parte del piano consta de cuatro claves de Sol.

El tercer movimiento, “El Mar (2)” empieza con la indicación de que todos los intérpretes de objetos sonoros deben tocar con baqueta a intensidad alta, sonidos semejantes al habla y las cabezas blancas de las notas son de forma romboidal, interpretadas como armónicos. Este movimiento empieza a velocidad de: corchea igual a cincuenta y dos pulsaciones por minuto y está en compás rítmico de 4/8 que se mantiene en constante cambio en todo el transcurso de la pieza, y la parte de piano consta de cuatro sistemas, dos en clave de Sol y dos en clave de Fa.
El cuarto movimiento llamado “Adivinanzas” se ejecuta con percutores de metal con compás métrico de 2/4 a velocidad de negra igual a sesenta pulsaciones por minuto, con cuatro sistemas para piano divididos en dos sistemas en clave de Sol y dos en clave de Fa. Para el compás cincuenta y cuatro se presentan instrucciones en los sistemas de objetos sonoros: el primero solicita un impulso diferente en el tono, el segundo pide la eliminación gradual de cada nota, el tercero es igual al primero y el cuarto igual al segundo. En el compás ciento cinco se presenta la instrucción para los intérpretes de objetos sonoros: tocarlos con arco y siempre con tonos diferentes.

En el quinto movimiento “El Mar (5)” se presenta una velocidad de: corchea igual a cincuenta y dos pulsaciones por minuto con una armadura de compás de 4/8. En las instrucciones de objetos sonoros se solicita a los intérpretes utilizar mazos de madera, imitando al piano, con pequeñas diferencias de tono.

El sexto movimiento está en armadura de compás de 9/16 a una velocidad de: negra con punto igual a noventa pulsaciones por minuto y presenta la instrucción en los objetos sonoro: el primero alto, el segundo medio alto, el tercero medio bajo y el cuarto bajo, además todos deben utilizar mazos de madera. El piano presenta dos sistemas en clave de Sol y el primer sistema presenta la rítmica recitativa de la letra presentada en la composición del movimiento. Para el compás treinta y seis se presenta un cambio de compás rítmico de 12/16 que dura un compás y regresa a 9/16 con la instrucción para objetos sonoros de “dos campos muy diferentes”.

En el compás cincuenta y siete se presenta la misma variación de compás ya mencionada con la misma instrucción para objetos sonoros, con la diferencia de que en esta sección, los objetos sonoros ya deben interpretar dos alturas diferentes con
intervalo de quinta justa ascendente. En compás ochenta y uno se presenta un cambio de armadura de compás a 9/16 y con interpretación de tonos diferentes ad libitum.

En el séptimo movimiento, “El Mar (4)”, los objetos sonoros uno y cuatro, utilizan percutores de madera, y los objetos dos y cuatro utilizan arco; es un movimiento de corta duración con compás métrico de 4/8 a velocidad de: corchea igual cincuenta y dos pulsaciones por segundo, y consta de dos sistemas para el piano. El octavo y último movimiento llamado “Yambambó (bis)”, es una pequeña repetición de una de las partes del segundo movimiento de mismo nombre, presenta ligeras variaciones a nivel rítmico y tiene una duración de diez compases.

A lo largo de la composición se presentan varias instrucciones sobre el uso de diferentes modos de interpretar los objetos sonoro, en algunos casos estos puede tener interpretación libre sobre la altura y en pocos momentos se señala la altura exacta para cada parte. Por otra parte, es notoria la necesidad de acompañar las secciones con una letra específica y la rítmica que esta representa, por lo general los movimiento llamados “El Mar” son movimiento cortos, sin letra que seguir.

Esta composición representa una confrontación a manera de tesis y antítesis al piano y basa la rítmica en los verso de Nicolás Guillén que dicen: “¿Por qué te pone tan bravo, cuando te disen (sic) negro bembón, si tiene la boca santa, negro bembón” (Maiguashca, M., 2009a).

La obra “Lamento por el Sapo de Stanley Hook” del 2010 está basada en el texto homónimo de Juan Gelman y es una obra para dosintérpretes que varía de objetos sonoros: objetos de metal y objetos de madera, así como la manera de
interpretarlos, esto es alternando entre percutores de metal, madera o arco; los otros instrumentos representan una banda de rock. En la partitura se presentan siete sistemas:

El primero es la banda de tono o “Toneband”, guitarra eléctrica, bajo eléctrico, batería; el quinto y sexto pertenecen a los objetos sonoros y el séptimo es un sistema de notación rítmica de una línea. En esta composición no se señala una armadura de compás rítmico, pretende una libre interpretación del tiempo y detalla en varias secciones, la entrada de cada instrumento de acuerdo a la interpretación de los objetos sonoros, también se señalan indicaciones imitativas para los instrumentos del grupo de Rock; en ellos los integrantes deben hacer sonido como la guitarra o viceversa.

En el trascurso de la composición se señalan crescendos y decrescendos para cada instrumento, pero no se escribe ninguna nota en el pentagrama, esto significaría una libre improvisación por parte de cada uno de los músicos. Cada sección del tema está señalado con pequeñas frases del texto de Juan Gelman. Existe una sección en la que el compositor señala alturas para los instrumentos, con notas, cuyas cabezas están señaladas con una “X” y a partir de esta pequeña señal de alturas, permite la libre interpretación de notas, también se señalan leves aumentos de la velocidad de interpretación y hacia el final de la composición señala dos leyendas para los músicos de la banda de rock:
Imagen 17. Compases 2 al 12 de la obra “Lamento por el sapo de Stanley Hook”.

Recuperado de partitura original de la obra.

Estos dos mensajes son tanto para la banda de rock como para los objetos sonoros, y presentan tres figuras con alturas sobre el pentagrama y la libre interpretación al terminarlas, en esta sección se detalla la interpretación de decrecer de intensidad de un “ff” a un “pp”.

La obra “Bagatelas” del 2012 está formada por tres instrumentos: violonchelo, trombón y objetos sonoros para un solo intérprete y da inicio con un velocidad de: negra igual a setenta y dos pulsaciones por minuto, el violonchelo toca un “Mi bemol” en altura dos y el trombón un “Mi” dos, lo provoca un disonancia de octava disminuida; estos instrumentos entran al primer tiempo y el objeto sonoro una corchea después con percutor, en el compás dos el violonchelo interpreta un “La” cinco en intensidad de “ppp” con nota redonda que se transforma en nota cuadrada por dos compases más, en este caso el compositor señala un poco intoxicante para después unir su interpretación con los objetos de madera que también deben interpretar con arco. En el transcurso de la composición se proveen señales al trombón para interpretar secciones con sordina, así como para el violoncelo la necesidad de interpretar armónicos, pizzicatos y movimientos específicos de arco.
La composición presenta varios cambios de armadura de compás y un *decrescendo a acelerato* de tiempo, en él los instrumentos deben bajar a cincuenta pulsaciones por minuto y subir de manera paulatina a sesenta pulsaciones por minuto. Los *objetos sonoros* presentan varias alturas de notas durante la obra y tanto para violoncelo como para *objetos sonoros*, se estipulan cuatro tipos de cabezas de notas con forma redonda: de interpretación normal, cuadrada de interpretación intoxicante como lo describe en la partitura en forma de “X” en la que se señala el golpe con la mano al cuerpo del instrumento y de forma triangular, lo que se señala como un respiro de arco para los dos instrumentos. Durante toda la composición, existe una constante señalización de acontecimientos a nivel de interpretación y ejecución para cada instrumento, cada una de estas enriquece la obra por la posibilidad armónica y timbrica de cada uno.

La obra “La Canción de la Tierra” de Gustav Mahler (2011–2012) es una composición para orquesta, orquesta de instrumentos andinos, coro mixto y *objetos sonoros*. Solicitamos la partitura al autor pero esta no fue concedida; a pesar de ello,
como resultado del análisis realizado tomando como eje sus composiciones y conociendo la notación de algunas de sus obras, podemos inferir y determinar la forma de notación de la misma, en el sentido de anotar instrucciones sobre la interpretación en específico, en esta obra se presenta un solo objeto sonoro de forma zoomorfa colgando de varios cables a una estructura metálica.

Este objeto sonoro fue diseñado por Gabriel Maiguashca y puede ser interpretado con arco o percutores. Muchas de las interpretaciones se producen en el objeto sonoro y otras en los cables que lo sustentan. Este objeto sonoro representa un cóndor, una serpiente y un puma. Toda esta obra se realizó por el solsticio de verano a las cinco horas de la mañana, momento de la salida del sol en el año 2012.

Como resultado del análisis de todas estas obras, se puede determinar una clara evolución en la notación y en la necesidad de representar de qué manera se deben tocar sus objetos sonoros; todas ellas mejoran a nivel de notación y se debe a que el autor conoce cada vez mejor, el sonido concreto de cada una de las partes de sus objetos sonoros y por lo tanto, puede anotar de manera depurada lo que...
desea expresar en cada parte y qué posibilidades acústicas tiene cada objeto sonoro.

En sus primeras composiciones no se presenta un pentagrama y solo se tiempos de interpretación para los objetos sonoros, con un sistema para cada uno, por lo tanto estos primeros objetos sonoros no tenían la idea de altura sino solo la idea de interpretarlos a nivel de sacar el sonido concreto de cada una; esta forma cambia para las siguientes composiciones, en las cuales ya se presenta un pentagrama para detallar posibles alturas dado la necesidad de combinarlos con otros instrumentos.

En esta misma instancia, consideramos que la notación convencional occidental no es lo suficientemente poderosa o detallada para este tipo de obras y en todos los casos, el autor debe llenar de leyendas o avisos a lo largo de la composición para que se respeten sus necesidades de composición.

A pesar de las nuevas posibilidades de notación existentes desde finales del siglo XX e inicios del siglo XXI, creemos que Maiguashca guarda cierta discreción al momento de escribir para sus objetos sonoros, puesto que en algunos casos, el comportamiento del objeto sonoro podría estar diseñado en base a cualquier necesidad interpretativa; además, resulta interesante encontrar grafías plásticas en algunas de sus composiciones o grafías que detallan el movimiento de frecuencias de filtro y modulación de parámetros en la síntesis de sonido, como podemos encontrar en las obras Studio II de Stockhausen o Boucles, rosettes et serpents de Beatriz Ferreira (Villa, R., 2003, pp. 268-269).
Bajo estas consideraciones, la notación de música electroacústica y música concreta pueda variar de acuerdo al autor y a las necesidades propias de cada composición; en relación con ello, se debe tomar en cuenta la posibilidad de improvisación de cada obra y la del autor sobre la misma. La notación en estos géneros presenta cambios constantes con el transcurso del tiempo y no siempre constará de instrucciones claras para su interpretación, lo que de alguna manera, podría enriquecer el momento de la interpretación.

A pesar de que el concepto de objeto sonoro no es nuevo en el movimiento de la “nueva música”, Mesías Maiguashca lo emplea como una herramienta de composición musical, con su tipo de notación necesaria para la ejecución y en base a esto se ha propuesto una clasificación organológica para ubicar al objeto sonoro dentro los conceptos de instrumento, al poseer características que lo pueden hacer clasificable. Es importante señalar la cosmología en las obras para objetos sonoros, esto señala una herramienta para entender de la mejor manera, el concepto de cada obra.
CAPITULO III: ELECTROACÚSTICA DEL OBJETO SONORO

El objetivo del presente capítulo es señalar la evolución de los sistemas y cadenas electroacústicas utilizadas en la “nueva música” y con esto, mostrar las posibilidades de análisis y manipulación del sonido. Al final del capítulo se presenta una experimentación con objetos sonoros, la cual pretende ejemplificar el proceso de captación, análisis y procesamiento de los sonidos captados y con ello, demostrar de manera práctica un posible acercamiento a los procesos que Mesías Maiguashca realizó para entender el comportamiento del objeto sonoro.

Para penetrar en el mundo musical del compositor Mesías Maiguashca, es necesario tomar en consideración conceptos de electroacústica y llevarlos al contexto del compositor en sus obras e instalaciones; para comenzar, el concepto de sonido se basa en la elasticidad molecular de un medio y cómo en este se producen compresiones y rarefacciones oscilantes para transmitirlo, esto lo convierte en un medio de transporte de energía mecánica.

Imagen 22. Relación de presión por propagación del sonido en el aire. Tomado de: Bohn & Eddy (2013, p. 18)

El sonido como tal, tiene propiedades de altura, intensidad, duración y timbre; la manipulación y conjunción de estos elementos permiten la creación de obras
musicales de todo tipo y para esto, es considerable señalar la existencia de sonidos puros y complejos; en este, un sonido puro solo puede ser generado por computador, será de tipo sinodal y contará con una sola frecuencia fundamental; mientras, los sonidos escuchados normalmente están compuestos de diversos armónicos; los mismos son varias veces más agudos que la frecuencia fundamental del sonido y cada uno de estos armónicos pueden ser descompuestos en distintas formas sinodales, fundamentado en el principio matemático de las series Fourier (Bohn & Eddy, 2013, pp. 11-15).

Imagen 23. Tono de órgano subdividido en armónicos. Tomado de: Bohn & Eddy (2013, p. 22)
Parte importante en las composiciones y el quehacer estético del compositor, es el manejo del ruido como ente sonoro; este elemento está compuesto de todo tipo de frecuencias dispuestas de forma aleatoria, por esto carece de un tono armónico que lo pueda identificar dentro de un rango específico de frecuencias, el sonido de una cascada representa un ejemplo de este. Se puede complementar esta tesis, mediante el hecho de incluir este ente sonoro dentro de la música debido a Luigi Russolo15 y su concepción de una música creada con ruido e implementos de música electrónica, desde la década de 1910 (Bohn & Eddy, 2013, pp. 11-22).

La cadena electroacústica en las composiciones para \textit{objetos sonoros}, consiste en colocar un micrófono piezoeléctrico en el hilo de \textit{nylon} que sustenta el \textit{objeto sonoro}, esta señal puede entrar directamente a una consola de audio y monitorear su sonido directo o en algunos casos, esta señal entra a una computadora que procesa la señal original, la transforma y la envía a la salida de audio.

Se debe tomar en consideración, que en el caso de las composiciones para \textit{objetos sonoros}, se utilizan micrófonos piezoeléctricos unidos directamente a los hilos que sustentan cada objeto; en sus textos, el compositor señala que el material del hilo es \textit{nylon}.

15 Luigi Russolo: pintor, compositor italiano, autor del manifiesto, “El Arte de los Ruidos”, 1913.
3.1. Micrófonos piezoeeléctricos

Existen en la actualidad varias maneras de captar sonido, entre ellas está la posibilidad de utilizar piezoelectricos o también llamados micrófonos de cristal: funcionan determinando la diferencia de potencial al momento de ser deformados por cualquier causa mecánica. Uno de los materiales utilizados es la “sal de
Rochelle" para abaratar costos; materiales más caros que generan mejor calidad, son los de tipo cerámico que contienen plomo, bario, titanio, zirconio, entre otros.

Se puede entender que así como este material genera electricidad al momento de ser deformado, también se puede dar el camino contrario: si se le aplica electricidad, este se deformará y producirá un sonido. Esto se emplea en ciertos tipos de altavoces, como los encargados de la emisión de frecuencias agudas o también llamado *tweeters* (PIEZO SYSTEMS, INC., 2016).

El micrófono piezoeléctrico como tal, puede llevar una alta carga de impedancia, comparada con otro tipo de micrófonos en el que, el piezoeléctrico es de megaohmios versus los ohmios de un micrófono de bobina móvil, esta propiedad de los cristales se ve aplicada en comunicación, medicina, mecánica automotriz y en la música. Su uso más común en la música está en colocar los micrófonos piezoeléctricos en contacto con el instrumento que se desea amplificar, como es el caso de la tapa de un violín, una guitarra o de los metales, un saxofón o una trompeta.

3.2. Software

Referente a la música en ordenador, se puede citar al telégrafo musical (1874) de Elisha Gray, como un descubrimiento precursor para la síntesis de audio y el enlace de lo musical con lo electrónico; en este caso, Gray logró controlar el sonido de un circuito electromagnético oscilante y con esto, un oscilador simple de...
una sola frecuencia cuyo principio inicial era poder enviar múltiples mensajes en
diferentes tonos, lo cuales se podían decodificar basado en este mismo principio.

Todo este concepto evolucionó hasta llegar al año 1951: nacen inventos
como los ordenadores RCA I y II de Harry Olson y Herbert Belar; esta idea es
originaria de la empresa RCA cuya meta inusual de investigación era auto-generar
éxitos de pop, analizando cientos de canciones, para así llegar a la posible fórmula
de cómo un éxito es un éxito, y de este derivar la fórmula para hacer sus propios
éxitos en masa.

Imagen 26. Milton Babbitt, Otto Luening, Vladimir Ussachevsky y otras personas en el RCA Mk II. Recuperado de:
http://120years.net/the-rca-synthesiser-i-harry-olsen-hebert-belarus1952/

En este mismo año, Trevor Pearcey y Geoff Hill, ingenieros británicos,
diseñan el CSIRAC (Council for Scientific and Industrial Research, Automatic
Computer), una primaria computadora digital, que a inicios de los años cincuenta del pasado siglo, fue pensada como un prototipo de una máquina más grande que pudiera manejar audio y video. El CSIR Mk1 tenía como parte integrada un altavoz, que cumplía una función de alarma para avisar al operador que cierta función había terminado dentro del programa o que un posible error había ocurrido. La posibilidad de proveerle sonido a esta computadora, generó la curiosidad de programar música en el altavoz, idea que llevó a programarle varias canciones populares de la época; este puede ser un primer vínculo histórico con varios software de la actualidad.

Con relación a Mesías Maiguashca, en este propio año, 1951, ocurrieron varios acontecimientos que influyeron en su estética y en su quehacer musical: se funda el GRM (Groupe de Recherches Musicals) por Pierre Schaeffer, Pierre Henry y el ingeniero Jacques Poullin, y construyen el laboratorio en las instalaciones de la RTF (Radiodiffusion-Télévision Française).
Este estudio significó la culminación de décadas de trabajo en la música concreta y en los objetos sonoros de Pierre Schaeffer y de sus compañeros del grupo de investigación; el mismo fue construido en base a las teorías del sonido de Schaeffer, las cuales plasmó en su libro de 2003, Tratado de los objetos musicales. El diseño original de este estudio seguía las reglas y fundamentos estrictos de la teoría de Schaeffer, y estaba completamente centrado en la manipulación de cinta magnética, en la grabación y edición de la misma.

Dentro de la investigación, este grupo desarrolló como parte integral del estudio, instrumentos de cinta magnética, entre estos tenemos al phonogéne, del cual se realizaron tres versiones: el phonogéne universal, el phonogéne chromatic and sliding y el morphophone. Estos tres aparatos se diferencian en el manejo de la cinta magnética; el phonogéne chromatic es un bucle de cinta magnética que pasa...
por diferentes cabezas lectoras y tienen una velocidad de rotación específica; gracias a esto, provee alturas cromáticas a la grabación de la cinta magnética, una función semejante a la del muestreo digital de la actualidad.

Como parte de los acontecimientos de los años cincuenta, se encuentra el estudio de música electrónica de la WDR (Westdeutscher Rundfunk) en Colonia, Alemania. El estudio fue fundado por los compositores Werner Meyer-Eppler, Robert Beyer y Herbert Eimert, quien fuera su primer director.

La idea principal de este estudio se formula a partir del escrito *Elektronische Klangerzeugung: Elektronische Musik und Synthetische Sprache*, ("Fuente de sonido electrónico: Música electrónica y voz sintética") de 1949. La tesis de este libro se
basa en la síntesis electrónica del sonido, en contraste con la música concreta de Pierre Schaeffer y la GRM en París.

El despliegue de estos estudios en esa época, se debió a que eran los únicos capaces de incorporar equipos necesarios para la investigación y la difusión, este aporte no solo se debe al ámbito investigativo sino también, al aire nacionalista de progreso y avances tecnológicos para los compositores modernos de la época.

La WDR es considerada como madre de la música electrónica debido a su dote de equipos, entre ellos se encuentran generadores de señal sinodal, rectangular, diente de sierra y generador de ruido, a esto se suman efectos de filtro, generadores de pulsos, moduladores de repique, osciloscopio, altavoces rotativos para la grabación de sonidos espaciales, cámaras de eco y reverberación; estos consistían en grandes cuartos vacíos en los cuales se colocaban altavoces y micrófonos para recolectar la señal con efecto, una con solo de diez y seis canales separados en ocho pares estéreo, un dispositivo para direccionar la señal de audio y varios tipos de grabadoras de cinta magnética (Crab,S., 2016).

Este estudio pasó por actualizaciones de equipos con el pasar de los años; para los años setenta, fue Karlheinz Stockhausen quien especificó la actualización de equipos, representando un enlace con la vida de Mesías Maiguashca; la influencia de Stockhausen y su permanencia en la WDR pueden considerarse la culminación en su etapa de aprendizaje. Estas instituciones, sus directores y sus proyectos dan cuenta del perfil artístico de Maiguashca.

3.2.1. El enlace de la programación musical

El vínculo de lo musical con la programación por ordenador, tiene un primer contacto con Max Vernon Mathews, ingeniero del Instituto de Tecnología de Massachusetts en 1954 y del Instituto de Tecnología de California en 1957; en 1954, Mathews empieza con su trabajo desarrollando la Music 1 en los laboratorios Bell, esta fue la primera de la serie de computadoras Music (una familia de ordenadores diseñados para la programación de audio y de los primeros diseñados para la síntesis de audio y la composición).

Mathews se convirtió en una figura importante para el ámbito del audio digital, la síntesis de audio, y la interacción y ejecución de música por ordenador, gracias a que dedicó su carrera al desarrollo de los programas Music N; estos programas fueron los primeros en investigar y analizar la síntesis de audio. Existieron computadores que reproducían síntesis de audio como el CSIR M1 o Ferranti Mk1, la diferencia de estos con el Music N se debe a que en los anteriores, el audio y la síntesis de audio era solamente una prueba de su funcionamiento, mientras el programa de Mathews estaba dedicado específicamente para objetivos musicales. Esto dejó el precepto de síntesis de audio en los programas de uso actual, como
Super Collider, CSound, Max/MSP y programas de interfaz gráfica modular, como Reaktor, de la casa Native Instruments.

Hacia el año de 1957 Mathews desarrolla Music I: un programa desarrollado en el ordenador de IBM704; en este caso, la salida de audio del ordenador era un tono monofónico en tipo de onda triangular sin posibilidades de control en ataque y decaimiento; en este, los únicos parámetros posibles de modificación eran la amplitud, la frecuencia y la duración de cada sonido; la salida de audio era grabada en cinta magnética y después convertida a señal digital por un convertidor DAC
(Digital to Analog Converter) de doce bit con tecnología valvular desarrollado por EPSCO.

En esos años, los laboratorios Bell eran los únicos en los Estados Unidos de América en tener un convertidor de este tipo; Mathews señala, que el ser los únicos en el mundo en contar con el tipo correcto de convertidor análogo-digital conectado a una transportadora de cinta para ser leída por la computadora, los convertía en el monopolio del proceso de la música por ordenador (Roads, C., 1989, pp. 6-8).

A partir de la creación de Music I, se dispara una evolución determinada por la necesidad de perfeccionar el software y adaptarse a la evolución informática que empezaba a darse; el siguiente cuadro señala la evolución en una línea del tiempo.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>VERSIÓN</th>
<th>LUGAR</th>
<th>AUTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1957</td>
<td>Music I</td>
<td>Laboratorios Bell (Nueva York)</td>
<td>Max Mathews</td>
</tr>
<tr>
<td>1958</td>
<td>Music II</td>
<td>Laboratorios Bell (Nueva York)</td>
<td>Max Mathews</td>
</tr>
<tr>
<td>1960</td>
<td>Music III</td>
<td>Laboratorios Bell (Nueva York)</td>
<td>Max Mathews</td>
</tr>
<tr>
<td>1963</td>
<td>Music IV</td>
<td>Laboratorios Bell (Nueva York)</td>
<td>Max Mathews, Joan Miller</td>
</tr>
<tr>
<td>1963</td>
<td>Music IVB</td>
<td>Universidad de Princeton</td>
<td>Hubert Howe, Godfrey Winham</td>
</tr>
<tr>
<td>1965</td>
<td>Music IVF</td>
<td>Laboratorios Argonne (Chicago)</td>
<td>Arthur Roberts</td>
</tr>
<tr>
<td>1966</td>
<td>Music IVBF</td>
<td>Universidad de Princeton</td>
<td>Hubert Howe, Godfrey Winham</td>
</tr>
<tr>
<td>1966</td>
<td>Music 6</td>
<td>Universidad de Stanford</td>
<td>Dave Poole</td>
</tr>
<tr>
<td>1968</td>
<td>Music V</td>
<td>Laboratorios Bell (Nueva York)</td>
<td>Max Mathews</td>
</tr>
<tr>
<td>1969</td>
<td>Music 360</td>
<td>Universidad de Princeton</td>
<td>Barry Vercoe</td>
</tr>
<tr>
<td>1969</td>
<td>Music 10</td>
<td>Universidad de Stanford</td>
<td>John Chowning, James Moorer</td>
</tr>
<tr>
<td>AÑO</td>
<td>VERSIÓN</td>
<td>PROPIEDADES</td>
<td>HARDWARE</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>1970</td>
<td>Music 7</td>
<td>Queen’s College (Nueva York)</td>
<td>Hubert Howe, Godfrey Winham</td>
</tr>
<tr>
<td>1973</td>
<td>Music 11</td>
<td>M.I.T.</td>
<td>Barry Vercoe</td>
</tr>
<tr>
<td>1977</td>
<td>Mus10</td>
<td>Universidad de Stanford</td>
<td>Leland Smith, John Tovar</td>
</tr>
<tr>
<td>1980</td>
<td>Cmusic</td>
<td>Universidad de California</td>
<td>Richard Moore</td>
</tr>
<tr>
<td>1984</td>
<td>Cmix</td>
<td>Universidad de Princeton</td>
<td>Paul Lansky</td>
</tr>
<tr>
<td>1985</td>
<td>Music 4C</td>
<td>Universidad de Illinois</td>
<td>James Beauchamp, Scott Aurenz</td>
</tr>
<tr>
<td>1986</td>
<td>Csound</td>
<td>M.I.T.</td>
<td>Barry Vercoe</td>
</tr>
</tbody>
</table>

Tabla 3. Línea de tiempo de la evolución del software musical. Recuperado de: http://120years.net/music-n-max-mathews-usa-1957/

La siguiente tabla muestra la evolución de la familia de lenguajes *Music N*, en una línea de tiempo, diferenciando sus capacidades o propiedades, y el hardware o sistema operativo en el que funcionan.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>VERSIÓN</th>
<th>PROPIEDADES</th>
<th>HARDWARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1957</td>
<td>Music I</td>
<td>Monofónico: solo controla amplitud, frecuencia y duración del sonido.</td>
<td>IBM 704</td>
</tr>
<tr>
<td>1958</td>
<td>Music II</td>
<td>Reproduce hasta cuatro voces de manera polifónica y es capaz de generar dieciséis tipos de ondas mediante la introducción de un oscilador de tabla de onda.</td>
<td>IBM 7094</td>
</tr>
<tr>
<td>1960</td>
<td>Music III</td>
<td>Funciona en base a la compilación de diagramas en bloque, lo que permite tener varios bloques de información con diferentes órdenes cada uno.</td>
<td>Trabaja utilizando UG (Unit Generators) generadores de unidades, esto le permite tener efectos de audio como filtros, generados de onda, entre otros.</td>
</tr>
<tr>
<td>1963</td>
<td>Music IV</td>
<td>Representa una evolución de Music III.</td>
<td>IBM 7094</td>
</tr>
<tr>
<td>Año</td>
<td>Software</td>
<td>Descripción</td>
<td>Sistema de Ordenadores</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>1963</td>
<td>Music IV</td>
<td>Utiliza el lenguaje de programación FORTRAN, diseñado IBM en el año de 1957 para cálculos numéricos y matemáticos. Laboratorios Argonne (Chicago) Universidad de Princeton.</td>
<td>Fueron desarrollados sin la tutela de Mathews en diferentes instituciones y por varios autores: Arthur Roberts, Hubert Howe, Godfrey Winham.</td>
</tr>
<tr>
<td>1965</td>
<td>Music IVF</td>
<td>Representa una evolución no sustancial de Music IV.</td>
<td>PDP-6 que sustituye a los ordenadores de IBM.</td>
</tr>
<tr>
<td>1966</td>
<td>Music IVBF</td>
<td>Utiliza el lenguaje de programación FORTRAN, pero con la revisión en la programación por Max Mathews.</td>
<td>IBM 360</td>
</tr>
<tr>
<td>1966</td>
<td>Music 6</td>
<td>Representa el antecesor del software CSound.</td>
<td>IBM 360</td>
</tr>
<tr>
<td>1968</td>
<td>Music 7</td>
<td>Representa una actualización de Music 6, en otra interfaz física.</td>
<td>PDP 10</td>
</tr>
<tr>
<td>1969</td>
<td>Music 10</td>
<td>Es una actualización de Music IV, IVB, IVF.</td>
<td>XDS Sigma 7</td>
</tr>
<tr>
<td>1970</td>
<td>Music 11</td>
<td>Entre las innovaciones importantes está la diferenciación entre las señales de audio y de control; cada una tenía diferente rango de muestreo.</td>
<td>PDP 11</td>
</tr>
<tr>
<td>1973</td>
<td>Music 11</td>
<td>La revisión de este software está basada en la evolución de Music IV y V, con la incorporación del lenguaje de programación “Algol”, el cual consta de operaciones dedicadas a la síntesis de sonido.</td>
<td>DEC KL-10</td>
</tr>
<tr>
<td>1977</td>
<td>Music 12</td>
<td>Está basado en lenguaje de programación C, lo que lo hacía capaz de generar sonidos a tiempo real.</td>
<td>Computadores DEC y PDP.</td>
</tr>
<tr>
<td>1980</td>
<td>Music 360</td>
<td>Fue concebido por su autor como Music 11, en otra interfaz física.</td>
<td>Computadores DEC y PDP.</td>
</tr>
</tbody>
</table>
3.2.2. Programación musical por objetos

Para el año de 1983, Miller Puckette diseña el Music500 en MIT, Boston. Este software fue diseñado para el computador de procesamiento de señal vectorial AP500, es una evolución del diseño de Barry Vercoe del Music11 y representa la base del diseño de lenguajes de programación visual como Pure Data y Max/Msp.

La primera consideración a tomar en cuenta en esta revisión, es la posibilidad de tener mayor capacidad de control sobre mayor cantidad de parámetros, con esto se intenta crear un instrumento más sofisticado para la composición y la ejecución de trabajos musicales; adicionalmente, estaba estructurado como un sistema abierto para que el software pudiera adaptarse a las necesidades del compositor y se reestructuraran las funciones de interconexión de orquesta con partitura, entrada y salida de audio, y los protocolos de control (Puckette, Music500: A new real-time digital synthesis system, 1983).
La importancia de este software y la ramificación de los programas para escribir música, está alrededor de la interfaz con el usuario; las siguientes versiones al Music500 fueron: Pure Data y Max/Msp; estos programas están diseñados como interfaces visuales en base a objetos y se han convertido en parte importante del quehacer artístico de Mesías Maiguashca y de varios autores en la actualidad.

En París, Francia, entre la década 1970 y 1980 se inicia el centro de investigación musical y acústica, IRCAM (Institut de Recherche et Coordinacion Acoustique et Musique), fundado por el compositor Pierre Boulez; este es considerado uno de los tres centros de investigación musical más importantes del mundo, y su historia se inicia desde el año de 1954, una época en la que el movimiento de la “nueva música” trata de salir y hacerse conocer.

Con esta finalidad, Boulez crea la sociedad de conciertos Domaine Musical; utilizando la sala de conciertos Gaveau desde 1956. En ella enarboló la consigna de difundir y hacer conocer la nueva música de vanguardia, con la aspiración de generar un grupo colectivo de mecenazgo que funcionara a través de abonos económicos. Este grupo no llegó a cumplir con las expectativas, y solo alcanzó a convertirse en un grupo pequeño de personas; la mejor época de actividad del Domaine Musical, se da en los años sesenta, conservándose activo hasta 1973, para dar paso a la creación del IRCAM (Pajares,R., 2010, pp. 476-502).

En el año 1969, en Francia, bajo la tutela del presidente Georges Pompidou, surge la idea de abrir el centro de investigación musical; dos años después se da inicio a la construcción del instituto en las instalaciones de la antigua escuela de Saint Merri, instalándose el computador DEC system 1.0; en 1977 se inaugura oficialmente en París, el Centro de arte “Georges Pompidou” (CGP) y el IRCAM,
dando inicio a los primeros cursos para compositores, a la vez que se crearon varios proyectos, entre estos, los programas de ordenador emblemáticos del IRCAM “MAX” por Miller Puckette, desde 1988.

Este es un software basado en la programación gráfica, se encarga de síntesis de audio y manejo de controladores tipo MIDI y representa una evolución importante. Dentro de la evolución del IRCAM, para el año de 1989, se presenta un curso de informática musical con duración de un año y un curso doctoral en musicología, dos años después, el IRCAM inaugura la estación de informática musical (SIM) con el ordenador NeXT y el software MAX/ISPW, este último grupo de siglas son para, IRCAM Signal Processing Workstation que contaba con tres tarjetas de audio fabricadas enteramente en el IRCAM, la cual proveía de doce entradas y salidas de audio analógicas y digitales.

Esta versión de software de ordenador fue el antecesor de MAX/FTS (Faster Than Sound) y salió al mercado como Jmax. Estas herramientas se utilizaron para la obra The Nagual, del compositor Mesías Maiguashca en 1993, en la que procesa la señal de la cinta magnética a tiempo real con el software e interactúa con objetos sonoros.

Para 1994, Puckette, en pos de agregar varias mejoras a MAX, empieza a escribir el programa Pure Data o también llamado PD, y lo hace de fuente abierta; esto quiere decir, que cualquier usuario diestro en manejar el código fuente, puede hacer mejoras al programa y generar más posibilidades. Parte de esta programación fue revisada por David Zicerelli y los utilizó como punto de partida la actualización a MAX/MSP (Music Sound Prosessing) (Puckette, M., s/f, pp. 3-10).
En la actualidad, PD se maneja de igual manera; es un programa multiplataforma y tiene dos versiones: PD Vanilla (una versión básica, escrita casi en su totalidad por Puckette) y PD Extended (la versión original, más una librería de objetos extendida por la comunidad y es capaz de manejar video).

De la misma manera, MAX/MSP actualizó su software implementando cada vez más herramientas, con una interfaz visual más atractiva y fácil de usar. El vínculo de esta sección con el compositor Mesías Maiguashca, se da para entender la evolución de una parte del quehacer musical/artístico del compositor; la presencia de estas herramientas es cada vez más recurrente en la composición electroacústica y electrónica, y está presente en muchas de las obras del autor.

3.3. Experimentación con objetos sonoros

Como parte de la presente investigación, se propone el experimento de recrear objetos sonoros; el objetivo principal de mostrar la experimentación, es proporcionar un punto de vista central del objeto sonoro, tomando en cuenta la
configuración utilizada por Maiguashca, en la que sustenta un objeto con hilo de nylon y coloca él o los piezoeléctricos en contacto con el hilo, de esta manera recibe su señal, la analiza y procesa según la necesidad compositiva. Este punto de vista experimental desean exponer el comportamiento del objeto y proveer resultados del comportamiento de cada una.

Para este experimento se emplean tres objetos sonoros de madera, tres objetos sonoros de metal y se propone un concepto de móvil sonoro. En la captación del sonido se utilizaron dos tipos de piezoeléctricos: el primero se utiliza normalmente en la medicina para captar los latidos del corazón, por lo tanto tiene una mayor capacidad de recibir y captar señal; el segundo piezoeléctrico está diseñado para uso musical, en especial para instrumentos de viento metálicos como trompeta o saxofón.

Los micrófonos piezoeléctricos necesitan estar con contacto directo con el objeto para percibir su sonido; en el caso de los objetos sonoros del compositor Mesías Maiguashca, el micrófono piezoeléctrico está conectado directamente en hilo de nylon que lo sustenta, sea este de metal o madera; esto trae la posibilidad de experimentar no solo con el tipo de micrófono piezoeléctrico, sino también con el lugar donde se coloca.

Cabe recalcar, que la manera de ejecución con la que se analiza el sonido del objeto, es solo percutiva. Esto se debe a que la cantidad de resultados arrojados por la experimentación, con diferentes tipos de ejecución y con el lugar donde se coloca el piezoeléctrico, es demasiado alto para la extensión de la presente investigación.
El tipo de análisis dado sobre el sonido del objeto, se realiza obteniendo una imagen espectral de la grabación original, esta imagen arroja resultados de la frecuencia fundamental, los armónicos del sonido, la amplitud o presión sonora y la duración del mismo. El software que se utilizó fue “RX4 Advanced” de la casa “IZOTOPE”, los gráficos de este programa señalan en base a colores, la existencia de armónicos y el comportamiento de los mismos.

Respecto al material de los objetos sonoros, en el caso de los metálicos se utilizó una sección fraccionada y torcida de una placa perforada de hierro, una placa de latón y una placa rectangular de hierro perforada sin deformar.

Para los objetos sonoros de madera se utilizaron dos retazos de madera de guayacán, madera caracterizada por ser muy dura y resistente, y suele tener dos colores que identifican su rigidez: la sección más clara es más blanda, mientras la obscura es rígida, y el tercer madero es una pequeña sección de un tronco de árbol de capulí, el cual es poroso y poco rígido.

El último objeto sonoro representa una propuesta de móvil sonoro, el cual se autoejecuta con el viento, este es básicamente un conjunto de varios objetos metálicos conectados con hilo, de forma que puedan interactuar sonoramente, al momento de entrar en movimiento o actividad.
Imagen 34. Piezoelectrónico 1 diseñado para usos médicos o electrónicos

Imagen 35. Piezoelectrónico 1 diseñado para usos médicos o electrónicos

Imagen 36. Objeto sonoro de metal 1, placa de hierro perforada y torcida. Recuperado de imágenes personales.

A continuación se presenta el análisis del sonido de cada objeto sonoro, según el lugar donde fue colocado el piezoeléctrico y el tipo utilizado en un total de veinte y seis muestras, las que serán graficadas superponiendo la imagen de transiente sobre la del espectrograma: el eje horizontal indica el tiempo; el vertical se diferencia señalando la amplitud en el caso de la transicente y la altura de la frecuencia fundamental y sus armónicos, en el caso de la espectrografía.
3.3.1. *Objetos sonoros* de metal

![Imagen 42. Muestra No. 1. Objeto metálico 1, Piezoeléctrico 1 en hilo.](image1)

Las imágenes 42 y 43 presentan una amplia cantidad de armónicos; se puede visualizar que los armónicos están más separados en la imagen 42, y la estela de sonido que le precede presenta oscilaciones periódicas en tres de sus armónicos; esto se debe, a que el micrófono piezoeléctrico está en el hilo de *nylon* y cada vez que se ejecute el *objeto sonoro*, el micrófono captará el sonido del objeto más la vibración del hilo; en dependencia de la tensión que tenga este y en del peso del objeto, se producirá este tipo de reacción al momento de ser ejecutado.

![Imagen 43. Muestra No. 2. Objeto metálico 1, Piezoeléctrico 1 en objeto.](image2)
En el caso de la imagen 43, se muestra que al momento del ataque del percutor sobre el objeto, están presentes gran parte de los sonidos entre los 400Hz y los 2.5 KHz, y sus armónicos se separan a partir de esta frecuencia. Debido a la unión de frecuencias, el sonido es bastante agudo y estridente.

![Imagen 44. Muestra No. 3. Objeto metálico 1, Piezoeléctrico 2 en hilo.](image)

En el objeto mostrado en la imagen 44, se ve una clara posibilidad de temperamento respecto a la afinación; al acercar la imagen en el eje vertical, se puede ver la presencia de la nota fundamental, más dos armónicos claramente definidos que se repiten con menor intensidad y un grupo de armónicos en la parte superior que agregan brillo al sonido.

La afinación de la frecuencia fundamental está en 820Hz, y lo coloca cerca de un SOL# 5 respecto a los 830.61Hz de la afinación estándar. La altura de los siguientes armónicos está en 978Hz, 1064.5Hz, 1355Hz y 1585: en notas musicales se acercan a un SI 5, DO# 6, la mitad entre un MI y un FA 6 y un SOL 6; intervalos muy disonantes que le agregan su textura sonora.
En la imagen 45 se muestra el impacto del amplio espectro de frecuencias que en tiempo se dispersa, sugiriendo el posible temperamento del objeto en 747Hz, un SOL 5; sugiere que en este caso, el sonido que pasó por el piezoeléctrico del hilo le agregó medio tono en la altura del sonido, respecto al sonido del piezoeléctrico ubicado en contacto con el objeto.

Para las imágenes 46, 47, 48 y 49, con respecto al objeto metálico dos, se presenta un sonido con brillo; las señales de los piezoeléctricos colocados en los hilos que sustenta los objetos, son definitivamente más agudas en comparación con la señal de los piezoeléctricos colocados sobre los objetos; en los micrófonos piezoeléctricos situados en el objeto, se ve la altura de 1362Hz que equivale a un FA 6, mientras las señales de los piezoeléctricos de los hilos están en 1875.5Hz y 2058Hz, representan un Slb 6 y un DO 7, musicalmente, y los ubica a distancias de cuarta justa y una quinta justa, respectivamente, determinando que el segundo piezoeléctrico haya subido la altura de la señal original, un tono más que el primer micrófono piezoeléctrico.
Imagen 46. Muestra No. 5. Objeto metálico 2, Piezoelectrónico 1, en hilo.

Imagen 47. Muestra No. 6. Objeto metálico 2, Piezoelectrónico 1, en objeto.
Para el tercer objeto metálico representado en las imágenes 50, 51, 52 y 53, se puede apreciar que la señal del audio tiene un comportamiento diferente, según el micrófono piezoeléctrico y el lugar donde está ubicado. La señal de los piezoeléctricos ubicados en los hilos presenta oscilaciones y repeticiones claras en armónicos, comportamiento semejante al primer objeto metálico.

Las señales extraídas de los piezoeléctricos en contacto con los objetos, presentan todas las frecuencias al momento del impacto y dejan una estela de
armónicos que les proporcionan una altura. En estos casos es interesante notar, que el comportamiento de la altura del objeto fue afectada por el tipo de piezoeléctrico, el primero arrojó la altura de 587Hz y el segundo 1071Hz, alturas equivalentes a un intervalo de séptima mayor ascendente, mientras la señal de los piezoeléctricos que están en los hilos, arroja 1803Hz al primero y 743Hz al segundo, intervalo equivalente a una octava más una tercera menor descendente.
Imagen 52. Muestra No. 11. Objeto metálico 3, Piezoelectrico 2 en hilo.

3.3.2. **Objetos sonoros de madera**

En la siguiente sección se presenta el comportamiento espectral del sonido, derivado del audio obtenido en la experimentación con *objetos sonoros* de madera; al igual que con los objetos metálicos, se provee de las diferencias obtenidas de captar la señal con dos tipos de micrófonos piezoeléctricos y la ubicación de estos, al momento de grabar la ejecución.

Para las imágenes 54, 55, 56 y 57, correspondientes al objeto de madera uno, los armónicos presentes en las señales de los micrófonos piezoeléctricos son claras y en el caso de los micrófonos en contacto con el hilo, constan de ligeras oscilaciones en el cambio de altura del sonido.

Imagen 54. Muestra No. 13. Objeto de madera 1, Piezoeléctrico 1 en hilo.

Imagen 56. Muestra No. 15. Objeto de madera 1, Piezoeléctrico 2 en hilo.
Las siguientes cuatro muestras pertenecen al objeto de madera de capulí, esta madera es bastante porosa y menos sólida, y se evidencia en todos los gráficos de este objeto; en ellos la presencia de armónicos no es clara; en las imágenes 58, 59, 60, y 61 se muestra claramente, que el sonido tiene un punto de partida a nivel de frecuencias, pero no se muestra una línea clara para determinar la frecuencia exacta a la que se encuentra el sonido.

Las imágenes 58 y 59 representan la diferencia al colocar el micrófono piezoeléctrico en el hilo o en el objeto en sí; las señales son muy parecidas y carecen de un armónico claro que defina su altura, mientras las imágenes 60 y 61, representan las señales del segundo piezoeléctrico y se puede visualizar la presencia de una frecuencia fundamental, acompañada de armónicos oscilando en su altura; este fenómeno se debe a que, el piezoeléctrico está en el hilo y capta la diferencia de peso provocado por el objeto al moverse y con esto, el cambio de altura.
Para la imagen 61 se visualiza una frecuencia fundamental cerca de los 800Hz y varios armónicos, lo característico de esta muestra es como la frecuencia fundamental y los armónicos que se pueden ver, son diferentes al resto, por la cantidad de frecuencias ocupadas; en definitiva, este sonido ocupa más frecuencias que los otros, por lo tanto le hace falta definición.

Imagen 58. Muestra No. 17. Objeto de madera 2, Piezoeléctrico 1 en hilo.

Imagen 59 Muestra No. 18. Objeto de madera 2, Piezoeléctrico 1 en objeto.
Las siguientes cuatro muestras representan al tercer objeto de madera; este es una placa mediana de madera de guayacán, en la misma se puede ver los colores claro y oscuro característicos de este tipo de madera; en el caso de este objeto sonoro, se debe señalar que es el más pesado de los seis objetos ya mencionados, por esta razón está sustentado por dos hilos señal que se puede captar con el primer piezoeléctrico o la sumatoria de los dos. Las imágenes 62, 63, 64 y 65 muestran frecuencias fundamentales y armónicos más claros en
comparación con las imágenes del segundo objeto de madera, semejantes a las del primer objeto, por ser de madera de guayacán.

En la imagen 62 se encuentra una característica no percibida en los otros objetos; en este caso, el primer micrófono piezoeléctrico recibe la señal de los dos hilos que sustentan al objeto, al momento de ejecutarlo, el objeto entra en movimiento y el diferencial de tensión en las cuerdas, causa oscilaciones en la altura para cada hilo, por lo tanto, vemos graficado el cruce de alturas de cada uno.

![Imagen 62. Muestra No. 21. Objeto de madera 3, Piezoeléctrico 1 en hilo.](image)

En la imagen 63 se muestra la estabilidad de los armónicos, debido a que el micrófono piezoeléctrico está en contacto con el objeto; lo característico de este ejemplo es el comportamiento del ataque inicial del audio donde la carga de frecuencias está en el rango de frecuencias graves y medias graves, con estelas en armónicos muy gruesos; en este objeto no se observaron diferencias entre percutirlo en el lado claro o en el obscuro.
Para las muestras 64 y 65 provenientes del segundo piezoeléctrico, se percibe una textura granulada que se identifica desde la primera muestra; se puede decir que es una característica de este objeto. La diferencia del lugar donde es colocado el objeto sonoro también revela un comportamiento diferente, con una carga de frecuencias semejante pero más difusa en el ejemplo de la imagen 59.
3.3.3. Móvil sonoro metálico

En el momento de empezar con el experimento (medir señal de entrada de cada piezoeléctrico, comparar cada uno y la diferencia de la sonoridad al colocarlos en contacto con el hilo o con el objeto) se propone la idea de realizar un objeto sonoro compuesto, que pueda interactuar entre sí y con un elemento de la naturaleza como el viento. La construcción se llevó a cabo con retazos de metal reciclado e hilo de nylon; los piezoeléctricos se colocaron del modo siguiente: piezoeléctrico uno, en un hilo sosteniendo la dos sección más grandes del móvil, mientras el segundo piezoeléctrico hace contacto con la parte circular que sustenta todo el móvil.
En el caso de los espectrogramas de móvil sonoro, se identifica la interacción de frecuencias de la parte donde está conectado el micrófono piezoeeléctrico, con las otras partes del móvil; en la imagen 64 se puede apreciar, que cada una de las tres transientes\(^{16}\) que conforman la muestra, tienen una frecuencia fundamental semejante, pero los armónicos son diferentes en cada uno, esto se debe a la interacción con los otros elementos del móvil sonoro.

\(^{16}\) es una señal o forma de onda que empieza en una amplitud cero. Un ejemplo es el sonido de un disparo.
En la imagen 65 se muestra el espectro de audio de la señal que proviene del segundo piezoeléctrico, caracterizado por tener una textura granulada. Este micrófono está ubicado en la parte superior de móvil que sostiene el resto de las partes, es por este motivo que se puede visualizar un gran número de transientes y cada una de estas con una distribución específica de armónicos. La idea de la experimentación con este objeto, es para determinar posibles implementaciones futuras e ideas que puedan llevarse a cabo como instalaciones y obras electroacústicas.

3.3.4 El sonido a través del software

Para esta sección se pretende simular el paso del sonido del piezoeléctrico, por un ejemplo de programación en MAX/MSP. La idea principal es simular el último paso que realiza Mesías Maiguashca en algunas de sus composiciones para objetos sonoros; en ella se determina que el flujo de señal procesado en el programa MAX/MSP, adquiere un efecto específico y es transmitida a los altavoces del recinto. Los efectos más comunes para este tipo de experimentación son los efectos de manejo de repeticiones del sonido original, en un tiempo determinado. Se
propone el uso de reverberación combinado con el de un filtro de peinilla o Comb Filter, cuyos parámetros de frecuencia y resonancia son modulados por secuenciadores rítmicos de altura.

Es importante aclarar, que la experimentación se realiza con la última versión de MAX/MSP, Max7, consta de una interfaz evolucionada para el usuario, guardando la potencialidad de manejo de sus predecesores. La programación por objetos, consiste en plantear diagramas de flujo entre objetos que tienen una particular función, para llegar a un determinado resultado y de esta manera, llevar este concepto a la experimentación sonora.

Para el ejemplo se plantea la subdivisión gráfica de los seis objetos sonoros y el uno para el móvil sonoro, estos grupos envían la señal hacia mezcladoras de audio conectadas directamente a la cadena de efectos para salir al grabador y altavoces, como se muestra en la imagen 69.

En la imagen 70 vemos una herramienta importante en la programación por objetos, es la posibilidad de guardar un sub-parche o programa dentro de otro, de
esta manera se guardan los efectos dentro de esta caja u objeto contenedor llamado “p EFECTOS” y se accede realizando un doble clic para abrir la ventana que se muestra; la letra “p” es el prefijo para decirle al objeto que debe contener un sub-parche.

En esta sección se muestran los dos secuenciadores rítmicos que proporcionan altura, en este caso en particular, la señal emitida llega a dos entradas que tiene el filtro de tipo peinilla, y controlan la frecuencia y la resonancia, respectivamente. En la parte inferior se encuentran los efectos; la conexión se realiza entregando la señal a la reverberación para agregarle tiempo de acción y después pasarla por los filtros que están modulados. Esta experimentación se encuentra registrada como anexo en los archivos de audio extensión *.aif y en el parche principal de Max7 extensión *.maxpat:

- Experimentación OS Madera FX Max7.aif
- Experimentación OS Metal FX Max7.aif
- Experimentación OS MS FX Max7.aif
- Objetos sonoros 1.maxpat

Dentro de este parche también se encuentran dos sub-parches más, que muestran la reacción del audio en un osciloscopio y en un espectroscopio. Estos sub-parches, llamados “p 1vis” y “p 2vis”, son mostrados en las imágenes 71 y 72, respectivamente.
La experimentación es un recurso para llegar a resultados que muchas veces invitan a salir de lo convencional, para este caso en particular, se inició con la presentación de objetos semejantes a los utilizados por Mesías Maiguashca para llegar a la propuesta de un móvil sonoro, de esta manera también se propone el procesar la señal original con efectos; esto se puede conectar con la composición *The Nagual* de Maiguashca, en la que se procesa el sonido proporcionado por la cinta magnética.
CONCLUSIONES

El investigar sobre la biografía de Mesías Maiguashca, refuerza la comprensión de su enfoque compositivo y artístico, de esta manera es posible entender los precedentes que en él influyeron para llegar a ciertos conceptos; a nivel biográfico, el objeto sonoro llega en la época de Maiguashca como educador, en el IRCAM de París, enlace importante para su vinculación con el software Max y con el concepto de objeto sonoro que ya se había planteado desde el enfoque de Pierre Schaeffer y la GRM, la misma que pasó a ser el antecedente para el IRCAM.

Dentro de las posibles conclusiones para este texto, está el hecho de que la clasificación Sachs-Hornbostel ha dado lugar a clasificar los objetos sonoros del autor, siempre y cuando se agreguen dígitos para determinar su lugar dentro de esta; por otro lado, el uso de la electrónica y la electroacústica también tiene una clasificación, si nos basamos en la revisión de la propuesta de la corporación MIMO que incluye a estos artefactos dentro de las posibles clasificaciones, al agregar una familia más de instrumentos. A pesar de que existen otros métodos de clasificación, como el propuesto por Kolozali, Barthet, Fazekas y Sandler en los que señalan a la clasificación S-H como un esquema lógico de taxonomía a la baja, ellos proponen un sistema semejante, llevándolo a las posibilidades de la programación por computador, para realizar posibles aumentos de clasificación para instrumentos que no han sido considerados como tales.

Tomando en cuenta la cosmovisión de algunos de sus objetos sonoros, se puede observar el desarrollo de una mentalidad ligada a sus raíces, como latinoamericano y ser andino, que busca reflejar su naturaleza como persona, su evolución y su vida atada desde el exterior a sus raíces como ser humano: la
búsqueda de la relación de la cosmología andina con la universal y el sentido de la dualidad como punto de equilibrio.

El reflejo de contextos profundos, en referencia a la visión de cada composición, del cómo se ejecuta el *objeto sonoro*, de la posibilidad de procesarlo y atribuirle nuevas posibilidades sonoras, convierten a cada *objeto sonoro* en un instrumento de múltiples capacidades y sonoridades.

Es importante investigar los posibles tipos de análisis de música electroacústica y encontrar el adecuado para cada tipo de obra y de esta manera llegar a un entendimiento más profundo de la composición

La posibilidad para captar señal de audio la tienen los micrófonos convencionales, los cuales trabajan en base a transformar energía acústica en mecánica por el movimiento de la membrana en el micrófono y en energía eléctrica para transmitirla al sistema de altavoces donde se realiza el camino contrario y se emite el sonido original; esta posibilidad no es la adecuada para captar el sonido de un *objeto sonoro*, debido a que es necesario captar una señal más directa del sonido emitido por los *objetos sonoros*; por lo tanto, el compositor Mesías Maiguashca utiliza micrófonos piezoeléctricos, que necesitan estar en contacto directo, ya sea con el hilo que sustenta el objeto o con el objeto en sí; la importancia del contacto directo con el objeto o con una parte el, radica en la posibilidad de seleccionar la señal exacta que se desea recopilar, sin tener sonidos extraños al original.

Dentro de las posibilidades del uso de los piezoeléctricos en obras del compositor, se detalla en el lugar donde coloca el piezoeléctrico, específicamente en el hilo que sustenta el objeto; esto se debe a que, al colocar el piezoeléctrico sobre
un objeto metálico, se inhibe de cierta manera la vibración normal del objeto y puede causar vibraciones de roce físico entre el objeto y el piezoeléctrico, que pueden ensuciar innecesariamente la señal a ser captada. Parte de la importancia de colocar el piezoeléctrico en el hilo que sustenta el objeto está en que, una de las maneras de ejecución de los objetos, se realiza por medio de la frotación con un arco de violín, el cual puede frotar el objeto o el hilo que lo sustenta y esto provocará diferencias en el sonido captado.

En la investigación de programas para componer música electroacústica, concreta o electrónica, no es posible determinar si un programa es mejor que otro, pues ello depende siempre de las necesidades del compositor y de la composición. En el caso del compositor Mesías Maiguashca, se evidencia la cercanía con la plataforma de MAX/MSP la cual utiliza para varias de sus composiciones y a la que sigue su evolución desde 1993 con MAX/ISPW para procesar la señal de cinta magnética en el movimiento The Nagual para objetos sonoros de metal y cinta magnética, de la obra Reading Castañeda.
RECOMENDACIONES

Llevar a cabo, estudios sobre la creación artística de artistas que se encuentran con vida, pues ella ofrece la posibilidad de establecer un diálogo sobre los procesos de creación y de conocer sus postulados estéticos para establecer teorizaciones al respecto.

Contemplar varios tipos de análisis para música electroacústica y de esta manera encontrar el tipo de análisis que mejor se apegas al tipo de composición así como la posibilidad de generar nuevas posibilidades de análisis.

Buscar en investigaciones futuras, la clasificación de otras posibilidades compositivas de otros autores así como más posibilidad de implementar clasificaciones para instrumentos ecuatorianos.

Sugerir cosmologías cruzadas entre autores modernos, tomando como modelo las propuestas de la presente investigación con el propósito de validar su metodología.

Estudiar a fondo la notación y la interpretación de esta en obras modernas con el fin de proponer aportes a los estudios musicológicos.

Conseguir implementos para la experimentación con el fin de mostrar estos resultados en vénnetos científicos y en publicaciones especializadas.
REFERENCIAS BIBLIOGRÁFICAS

Álvarez-Torres Y., J. A. “Entrevista a Mesías Maiguashca” [en línea]. Mensaje en:

« ja.alvarez@udlanet.ec». 15-06-2016. (Mensaje electrónico personal).

Crab, S. (2016). 120years.net. [Recuperado el 20 de abril de 2016], de 120years.net: Disponible en: http://120years.net/

Puckette, M. (S/F). *Max at Seventeen*. Department of Music, UCSD.

http://www.soundonsound.com/people/john-chowning

La presente entrevista tiene por objetivo indagar en la vida artística del compositor ecuatoriano objeto de estudio de nuestra tesis, M. Maiguashca, realizada por el autor de esta tesis. Agradecemos al artista su colaboración.

Sistema de preguntas:

José Antonio Álvarez-Torres (JAT): Al principio de su carrera musical fue pianista, ¿Qué obras y autores marcaron su carrera en ese entonces?

JAT: ¿Qué significa Nueva York para usted?

MM: Estudié en la Eastman School de la ciudad de Rochester, en el estado de Nueva York. Allí recibí una formación académica muy amplia. Fue allí donde me fue evidente que yo no tenía posibilidad para hacer una carrera de pianista. Opté entonces, por dedicarme a la composición.

JAT: ¿Cuál es el aprendizaje más importante de su educación en la CLAEM?

MM: Curiosamente fue en Buenos Aires, donde tuve un primer contacto con las prácticas de la música de la vanguardia europea. Pero fue también muy importante el tomar contacto con un grupo de compositores de mi generación de diferentes países de Latinoamérica. Así pudimos, primeramente, conocer nuestros problemas comunes, pero también definir aspiraciones comunes.
JAT: ¿En qué influyó el ambiente de la ciudad de Buenos Aires en su vida artística?

MM: Por primera vez comprendí lo que es el participar en la vida cultural de una comunidad. Pero a la vez comprendí, que Buenos Aires era en ese momento, una ciudad muy cerca de las capitales europeas y que las realidades sociales y artísticas de otras regiones latinoamericanas (la andina, por ejemplo) eran y son muy diferentes, **otro mundo**, por así decir.

JAT: ¿Cuál es la vivencia más representativa para su vida artística del estudio de WDR en Colonia, Alemania?

MM: En el estudio de la WDR aprendí los elementos básicos de la música electroacústica y de la acústica aplicada. Tuve que hacerlo de una manera eminentemente empírica, como autodidacta: “learning by doing”. Este método ha pasado a ser central en mi práctica como músico: actuar, reflexionar, sacar conclusiones, volver a actuar y así sucesivamente.

JAT: ¿Cuál es el aporte más importante de Karlheinz Stockhausen a su carrera y enfoque compositivo?

MM: La personalidad de Stockhausen fue muy polifacética. El aspecto que más me fascinó de su personalidad fue su voluntad y potencia creativa. Por otra parte, su disciplina en el trabajo, y finalmente su amor y respeto por el sonido. Creo que este aspecto ha sido el que más me ha influido en mi trabajo, pues en algún momento me autodenominé yo mismo como “fetichista del sonido”.

JAT: En su vivencia en Alemania, entre 1965 y 1975, se generaron dos movimientos vanguardistas: “Fluxus” y “Neue Musik” ¿Cuáles fueron los
principales problemas que se presentaron al trabajar con un grupo heterogéneo de artistas? Y ¿Qué aportó esto en su vida artística?

MM: Voy a citarle lo que en alguna entrevista manifesté respecto del tema de la práctica de *Fluxus* y de la *Neue Musik* en Alemania, en el periodo en cuestión:

> El *Fluxus* fue un espacio de exploración sin recelos ni miedos, pero también sin mayor disciplina. Su perspectiva fue cuestionar formas estéticas y técnicas establecidas, el de crear un vacío para comenzar, por así decir, desde cero. En este vacío nacieron un sinnúmero de ideas, direcciones, inquietudes, conceptos, en sus acciones están ya implícitos los desarrollos que se irán perfilando hasta el fin del siglo. La *Neue Musik* fue más disciplinada y pragmática, se concentró más en la creación de "obras", por cierto de un enorme acabado técnico, sobre todo en lo formal.

Importante para mí fue ese doble telón de trabajo. Por una parte la experimentación desinhibida, por otra la necesidad de coherencia y disciplina.

JAT: ¿Qué necesidad artística lo llevó a concebir los *objetos sonoros*?

MM: Yo comencé mi experiencia musical con instrumentos europeos. Su perfección y también la sofisticación de la práctica composicional de entonces, particularmente en lo que se refiere a la notación, creó una especie de “super-perfección” en la música llamada “*neue Musik*”, un enrañamiento diría yo. Una de mis reacciones fue el de rebuscar lo lúdico en la práctica musical con el sonido, sin teorías, sin trabas técnicas. Por otra parte, mi experiencia con la música concreta me había acercado ya a sonidos “no armónicos”, a un mundo sonoro cercano al ruido. El poder crear sonidos de este tipo directamente, con las manos, por así decir, encontró su formato en la estructuración de los *objetos sonoros*, proyecto comenzado en un principio con
Andrea Atlanti (alumna mía en Metzt) hacia la década de los años ochenta, luego continuado individualmente por mí.

JAT: ¿Cómo fue la experimentación con el sonido de los *objetos sonoros*?

MM: Un primer paso fue la creación de un “aparato” básico que consistió en un cubo de metal, en donde suspendí objetos, en un principio de metal, luego también de madera, para poder “tocarlos” con percutores y arcos y amplificarlos con micrófonos de contacto. Una vez conformado el “instrumento” el trabajo fue básicamente de “trial and error”: experimentar mucho, para luego rescatar lo más satisfactorio. Parte importante del trabajo consistió en el análisis espectral de esos sonidos, lo que me proporcionó valiosa información que he utilizado en mi trabajo como compositor.

JAT: En la cadena electroacústica, ¿qué recomienda respecto al uso de piezoeléctricos?

MM: Nuevamente este fue y continúa siendo un proceso de “trial and error”. Cada experimentador encontrará materiales apropiados para su manera de trabajar y sus idiosincrasias. No puedo ni deseo hacer recomendaciones.

JAT: ¿Cuándo existe procesamiento de señal de audio utiliza siempre MAX/MSP?

MM: De colocar el micrófono en el objeto mismo, el micrófono estaría impidiendo su vibración libre al ser estimulado. Estando el micrófono en el hilo no estoy impidiendo su vibración libre, las vibraciones del objeto producirán las vibraciones del hilo, estas vibraciones estimularán al micrófono.

JAT: ¿Ha experimentado con otros programas?

MM: En las últimas décadas se han desarrollado varios otros programas: Supercollider, pd, etc. Yo he trabajado siempre con MAX/MSP.
JAT: ¿Qué tipo de efectos o procesadores utiliza para la señal de los objetos sonoros?

MM: La tentación de procesar los sonidos de los objetos sonoros fue en un principio muy grande. Pero pronto me di cuenta que esos sonidos tenían per se un valor y decidí no “degradarlos” con procesamiento de audio. La única obra que utiliza procesamiento es 54/2005: "Holz arbeitet II", für Holzklangobjekte und elektronik en que las señales de los objetos son utilizados para controlar un "vocoder” que procesa esos sonidos con una grabación de una procesión en Quito.

He utilizado los objetos sonoros en diferentes formatos:

- como “solistas”:
 76/2014: "The first law of motion"

 53/2005: "Holz arbeitet I", für Holz-Klangobjekte

 36/1993: "The Nagual", für Metallobjecte, Tonband und 2 Spieler

 35/1993: "The Tonal", für Metallobjecte, 2 Spieler

- En combinación con otras formaciones instrumentales:
 83/2016: "del aire, de la madera y del metal", für Bläserquintett und Klangobjekte

 77/2014: "5 Microgramas", para Guitarra y Cajón

 71/2012: "Bagatelas für Baßposaune, Cello und Klangobjekte"

 70/2011-12: "La Canción de la Tierra"

 60/2008: "El Negro Bembón", für Klavier, Holz-Klangobjekte und Elektronik

 55/2006: "Boletín y elegía de las mitas", Szenische Kantate
-En instalaciones sonoras:

69/2011: "...es schwingt..." eine Holz-Klang-Installation

JAT: ¿Cómo es el motivo para colocar el piezoeléctrico en el hilo y no en el objeto?

MM: De colocar el micrófono en el objeto mismo, el micrófono estaría impidiendo su vibración libre al ser estimulado. Estando el micrófono en el hilo no estoy impidiendo su vibración libre, las vibraciones del objeto producirán las vibraciones del hilo, estas vibraciones estimularán al micrófono.

Mesías Maiguashca

15 de Junio, 2016
Anexo 2
Información del contenido del DVD de la presente tesis

<table>
<thead>
<tr>
<th>OBJETOS SONOROS</th>
<th>AUDIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>metal 1 pz 1 en cable.aif</td>
<td>metal 1 pz 1 en cable.aif</td>
</tr>
<tr>
<td>metal 1 pz 2 en cable.aif</td>
<td>metal 1 pz 2 en cable.aif</td>
</tr>
<tr>
<td>metal 2 pz 1 en cable.aif</td>
<td>metal 2 pz 1 en cable.aif</td>
</tr>
<tr>
<td>metal 2 pz 2 en cable.aif</td>
<td>metal 2 pz 2 en cable.aif</td>
</tr>
<tr>
<td>metal 3 pz 1 en cable.aif</td>
<td>metal 3 pz 1 en cable.aif</td>
</tr>
<tr>
<td>metal 3 pz 2 en cable.aif</td>
<td>metal 3 pz 2 en cable.aif</td>
</tr>
<tr>
<td>metal 3 pz 1 en obj.aif</td>
<td>metal 3 pz 2 en obj.aif</td>
</tr>
<tr>
<td>madera 1 pz 1 en cable.aif</td>
<td>madera 1 pz 1 en cable.aif</td>
</tr>
<tr>
<td>madera 1 pz 2 en cable.aif</td>
<td>madera 1 pz 2 en cable.aif</td>
</tr>
<tr>
<td>madera 1 pz 1 en obj.aif</td>
<td>madera 1 pz 2 en obj.aif</td>
</tr>
<tr>
<td>madera 1 pz 2 en obj.aif</td>
<td>madera 1 pz 2 en obj.aif</td>
</tr>
<tr>
<td>madera 2 pz 1 en cable.aif</td>
<td>madera 2 pz 1 en cable.aif</td>
</tr>
<tr>
<td>madera 2 pz 2 en cable.aif</td>
<td>madera 2 pz 2 en cable.aif</td>
</tr>
<tr>
<td>madera 2 pz 1 en obj.aif</td>
<td>madera 2 pz 2 en obj.aif</td>
</tr>
<tr>
<td>madera 2 pz 2 en obj.aif</td>
<td>madera 2 pz 2 en obj.aif</td>
</tr>
<tr>
<td>madera 3 pz 1 en cable.aif</td>
<td>madera 3 pz 1 en cable.aif</td>
</tr>
<tr>
<td>madera 3 pz 2 en cable.aif</td>
<td>madera 3 pz 2 en cable.aif</td>
</tr>
<tr>
<td>madera 3 pz 1 en obj.aif</td>
<td>madera 3 pz 2 en obj.aif</td>
</tr>
<tr>
<td>madera 3 pz 2 en obj.aif</td>
<td>madera 3 pz 2 en obj.aif</td>
</tr>
<tr>
<td>movil sonoro pz 1 cable.aif</td>
<td>movil sonoro pz 2 cable.aif</td>
</tr>
<tr>
<td>Experimentación OS Metal FX Max7.aif</td>
<td>Experimentación OS Madera FX Max7.aif</td>
</tr>
<tr>
<td>Experimentación OS Movil Sonoro FX Max7.aif</td>
<td>Experimentación OS Movil Sonoro FX Max7.aif</td>
</tr>
<tr>
<td>FOTOS OBJETOS SONOROS</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>MADERA 1.jpg</td>
<td></td>
</tr>
<tr>
<td>MADERA 2.jpg</td>
<td></td>
</tr>
<tr>
<td>MADERA 3.jpg</td>
<td></td>
</tr>
<tr>
<td>MADERA 4.jpg</td>
<td></td>
</tr>
<tr>
<td>MADERA 5.jpg</td>
<td></td>
</tr>
<tr>
<td>MADERA 6.jpg</td>
<td></td>
</tr>
<tr>
<td>MADERA 7.jpg</td>
<td></td>
</tr>
<tr>
<td>MADERA 8.jpg</td>
<td></td>
</tr>
<tr>
<td>METAL 1.jpg</td>
<td></td>
</tr>
<tr>
<td>METAL 2.jpg</td>
<td></td>
</tr>
<tr>
<td>METAL 3.jpg</td>
<td></td>
</tr>
<tr>
<td>MOVIL 1.jpg</td>
<td></td>
</tr>
<tr>
<td>MOVIL 2.jpg</td>
<td></td>
</tr>
<tr>
<td>MOVIL 3.jpg</td>
<td></td>
</tr>
<tr>
<td>MOVIL 4.jpg</td>
<td></td>
</tr>
<tr>
<td>MOVIL 5.jpg</td>
<td></td>
</tr>
<tr>
<td>MOVIL 6.jpg</td>
<td></td>
</tr>
<tr>
<td>MOVIL Y METAL 1.jpg</td>
<td></td>
</tr>
<tr>
<td>MOVIL Y METAL 2.jpg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VIDEOS MOVIL SONORO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVIL 1.MOV</td>
</tr>
<tr>
<td>MOVIL 2.MOV</td>
</tr>
<tr>
<td>MOVIL 3.MOV</td>
</tr>
<tr>
<td>MOVIL 4.MOV</td>
</tr>
<tr>
<td>MAX PARCHE</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>TESIS TEXTO</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>