UNIVERSIDAD DE CUENCA

FACULTAD DE INGENIERÍA CENTRO DE POSGRADOS

"Evaluación en el Nivel de Resistencia de una Subrasante, con el Uso Combinado de una Geomalla y un Geotextil"

TESIS PREVIA A LA OBTENCIÓN DEL TÍTULO DE:

Master en Ingeniería en Vialidad y Transportes

AUTOR: Ing. Andrés Sebastián Bustamante Noboa

DIRECTOR: Ing. Jaime Asdrúbal Bojorque Iñeguez, PhD

CUENCA, ECUADOR 2016

AGRADECIMIENTOS

Agradezco a Dios por darme la oportunidad de cumplir uno de mis tantos sueños. A la/os Ingenieros Jaime Bojorque, Director de Tesis, por compartir sus conocimientos y dirigir el desarrollo de este proyecto; Jaime Guzmán, Director de la maestría, por abrirnos las puertas a los profesionales que tenemos afinidad con esta rama de la Ingeniería y de esta manera demostrar nuestras capacidades y habilidades en la práctica profesional; Karla Santacruz quien oportuna y decididamente supo brindarme su apoyo, con su preparación y conocimientos.

Andrés Bustamante Noboa

DEDICATORIA

A mis padres y hermana quienes son parte fundamental en mi vida, por su apoyo incondicional brindado durante el tiempo que he destinado a este proyecto, objetivo que demandó profundo esfuerzo para construirlo y concluirlo.

Andrés Bustamante Noboa

RESUMEN

En el presente estudio se determinó el nivel de resistencia que puede proporcionar la colocación simultáneamente un geotextil y una geomalla en la interface capa granularsubrasante como estructura de reforzamiento. Además, se estableció una comparación con la resistencia que puede suministrar únicamente la aplicación de un geotextil, una geomalla y sin ninguna clase de reforzamiento.

De este modo, se evaluó la estructura del pavimento que se está colocando en el proyecto de mejoramiento de la carretera Sigsig-Gualaquiza, tramo: Matanga-Gualaquiza, en la Provincia de Morona Santiago, que en este momento se encuentra en ejecución y en el cual se está aplicando esta nueva técnica constructiva.

Para alcanzar los objetivos planteados, se realizaron ensayos en laboratorio que permitieron obtener las curvas esfuerzo/deformación para cada uno de los escenarios analizados. Posteriormente, se simuló el comportamiento alcanzado en laboratorio a través de modelos numéricos evaluados en el Software Plaxis 8.6 (Elementos Finitos), que dieron como resultado los esfuerzos en la interface capa granular-subrasante y la consecuente determinación de los factores de reforzamiento.

Las conclusiones del estudio demuestran una reducción significativa en el espesor de la capa superior a la subrasante y además confirmaron que no existe un mejoramiento representativo cuando se utiliza un geotextil y una geomalla simultáneamente.

Se presentan algunas recomendaciones y sugerencias a corto y mediano plazo para mejorar el desempeño de estos materiales en la construcción, así como incluir en la normativa ecuatoriana un método de diseño que permita sustentar el uso de estos elementos en la ingeniería vial.

Palabras claves:

Geotextil Geomalla Capa granular Subrasante Estructura del pavimento Factores de reforzamiento

ABSTRACT

In the present study was determined the resistance level that can provide simultaneously placing a geotextile and geogrid within subgrade-granular layer interface, as a reinforcing structure. Furthermore, a comparison with the resistance which can supply only application of a geotextile, a geogrid and without any kind of reinforcement is established.

Thus, the pavement structure that is being placed on the project of improving the Sigsig-Gualaquiza road, was evaluated on the Matanga-Gualaquiza section, in the province of Morona Santiago, which at this time the project is running and is being implemented this new construction technique.

To achieve the objectives, laboratory tests that allowed to obtain stress / strain curves for each of the scenarios analyzed were made. Subsequently, the performance achieved in the laboratory was simulated through numerical models in the Software Plaxis 8.6 (Finite Elements), which resulted efforts granular layer-subgrade interface and the consequent determination of strengthening factors.

The findings of the study demonstrate a significant reduction in the thickness of the upper layer over subgrade, also they confirmed that there is no representative improvement when a geotextile and geogrid are used simultaneously.

Some recommendations and suggestions in a short and medium term to improve the performance of these materials in the construction are presented, including some design method that can be implemented in the Ecuadorian legislation that will support the use of these elements in road engineering.

Keywords:

Geotextile Geogrid Granular layer Subgrade Pavement structure Strengthening factors

TABLA DE CONTENIDOS

CAPÍT	ULO I: ANTECEDENTES E INTRODUCCIÓN	14
1.1	ANTECEDENTES	14
1.2	INTRODUCCIÓN	15
Ob	ojetivo General	17
Ok	ojetivos Específicos	17
CAPÍT	ULO II: REVISIÓN BIBLIOGRÁFICA	19
2.1 0	GEOTEXTILES	19
2.2	1.1 Separación	19
2.2	1.2 Filtración	20
2.2	1.3 Drenaje	21
2.1	1.4 Reforzamiento	21
2.2 0	CLASIFICACIÓN DE LOS GEOTEXTILES	22
2.2	2.1 Según el método de fabricación	22
:	2.2.1.1 Geotextiles Tejidos	22
:	2.2.1.2 Geotextiles No Tejidos	23
2.2	2.2 Según su composición	23
:	2.2.2.1 Fibras naturales	23
:	2.2.2.2 Fibras artificiales	24
:	2.2.2.3 Fibras sintéticas	24
2.3 0	GEOMALLAS COEXTRUÍDAS	24
2.4 0	CLASIFICACIÓN DE LAS GEOMALLAS	26
2.4	4.1 Geomallas Coextruidas Mono-Orientadas	26
2.4	4.2 Geomallas Coextruidas Bi-Orientadas	27

2.5 MECANISMO DE FALLA EN LA ESTRUCTURA DE UN PAVIMENTO 28				
2.6 MÉTODOS DE DISEÑO SELECCIONADOS				
2.6.1 Métodos basados en el modo del control de falla.				
2.6.2 Métodos considerando el soporte de la membrana				
CAPÍTULO III: VALIDACIÓN DEL ENSAYO 40				
3.1 MATERIALES UTILIZADOS PARA EL ENSAYO41				
3.2 CONFIGURACIÓN DEL ENSAYO47				
CAPÍTULO IV: ENSAYOS EN LABORATORIO, MODELACIÓN Y RESULTADOS 57				
4.1 ENSAYO A COMPRESIÓN SIMPLE SOBRE UNA ESTRUCTURA DE				
PAVIMENTO BAJO CARGA MONOTÓNICA57				
4.2 OBTENCIÓN DE PARÁMETROS DE LOS MATERIALES, ANTES DE LA				
MODELACIÓN61				
4.2.1 Parámetros del material de subrasante62				
4.2.2 Parámetros de la Capa Base 69				
4.3 MODELACIÓN DE LOS ENSAYOS				
4.4 RESULTADOS DE LA MODELACIÓN 85				
4.4.1 DEFORMACIONES				
4.4.2 ESFUERZOS EFECTIVOS				
4.4.3 COEFICIENTE DE REFORZAMIENTO 104				
CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES				
REFERENCIAS BIBLIOGRÁFICAS11				
ANEXOS				

LISTA DE TABLAS

Tabla 1. Resultados de los ensayos del suelo de subrasante	44
Tabla 2. Resultados de los ensayos del material granular	45
Tabla 3. Propiedades geotextil no tejido NT-1800	46
Tabla 4. Geomalla Biaxial BX-1200	47
Tabla 5. Composición del tráfico año 2015, tramo Matanga - Gualaquiza	47
Tabla 6. Cálculo Factor Camión Global	51
Tabla 7. Resultados de esfuerzos/deformaciones a varias profundidades (pr	ograma
Alize)	53
Tabla 8. Lecturas de ensayo a compresión simple bajo una carga monotónica	59
Tabla 9. Valores típicos de permeabilidad para suelos saturados.	65
Tabla 10. Constantes elásticas de diferentes suelos.	66
Tabla 11. Propiedades de depósitos	67
Tabla 12. Resumen de parámetros de la subrasante	68
Tabla 13. Propiedades de resistencia de diferentes tipos de suelos.	71
Tabla 14. Ángulos de fricción para arenas y limos	72
Tabla 15. Variación del coeficiente de presión lateral de tierras	73
Tabla 16. Resumen de parámetros de la capa de base	74
Tabla 17. Factor de reducción de esfuerzos para distintas interfaces	80
Tabla 18. Deformaciones verticales	95
Tabla 19. Punto de intersección curva deformada/no deformada	95
Tabla 20. Esfuerzos efectivos máximos	104
Tabla 21. Factores de reforzamiento	105
Tabla 22. Rediseño estructura de pavimento proyecto Sigsig-Gualaquiza	109

LISTA DE FIGURAS

20
22
23
24
27
27
29
32
otextil
36
quiza
42
ricos
45
48
48
49
53
54
55
56
bajo
61
75
76
76
77
78
79

Figura 26	Interfaces del suelo	79
Figura 27	Parámetros del pistón	31
Figura 28	Desplazamiento prescripto	31
Figura 29	. Semiplano de la muestra de pavimento	32
Figura 30	Etapa de cálculo, datos generales	33
Figura 31	Etapa de cálculo, parámetros	34
Figura 32	Etapa de cálculo	34
Figura 33	Nodos a analizar de la muestra	35
Figura 34	. Muestra deformada (sin reforzamiento)	36
Figura 35	Perfil de deformación (sin reforzamiento H=28 cm)	37
Figura 36	Perfil de deformación (sin reforzamiento H=28 cm)	38
Figura 37	. Muestra deformada (con geotextil)	38
Figura 38	. Perfil de deformación (con geotextil H=28 cm)	39
Figura 39	. Perfil de deformación (con geotextil H=24 cm)	90
Figura 40	. Muestra deformada (con geotextil y geomalla)	91
Figura 41	. Perfil de deformación (con geotextil y geomalla H=28 cm)	92
Figura 42	. Perfil de deformación (con geotextil y geomalla H=24 cm)	92
Figura 43	. Muestra deformada (con geomalla)	93
Figura 44	. Perfil de deformación (con geomalla H=28 cm)	94
Figura 45	. Perfil de deformación (con geomalla H=24 cm)	94
Figura 46	. Graficas de esfuerzos efectivos horizontales y verticales (sin reforzamient	o)
		96
Figura 47	Esfuerzos efectivos en la subrasante (sin reforzamiento)	97
Figura 48	Esfuerzos efectivos en la capa base (sin reforzamiento)	98
Figura 49	. Graficas de esfuerzos efectivos horizontales y verticales (con geotextil) 9	98
Figura 50	Esfuerzos efectivos en la subrasante (con geotextil)	99
Figura 51	. Esfuerzos efectivos en la capa base (con geotextil)10	00
Figura 52	. Graficas de esfuerzos efectivos horizontales y verticales (con geotextil	у
geomalla)		00
Figura 53	. Esfuerzos efectivos en la subrasante (con geotextil y geomalla)	01

Figura 54. Esfuerzos efectivos en la capa base (con geotextil y geomalla) 10)2
Figura 55. Graficas de esfuerzos efectivos horizontales y verticales (con geomalla). 10)2
Figura 56. Esfuerzos efectivos en la subrasante (con geomalla) 10)3
Figura 57. Esfuerzos efectivos en la capa base (con geomalla)10)4

Universidad de Cuenca Cláusula de derechos de autor

Andrés Sebastián Bustamante Noboa, autor de la tesis "Evaluación en el Nivel de Resistencia de una Subrasante, con el Uso Combinado de una Geomalla y un Geotextil", reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de Master en Ingeniería en Vialidad y Transportes. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autor

Cuenca, 02 de agosto de 2016

Andrés Sebastián Bustamante Noboa

C.I: 010415200-4

Universidad de Cuenca Cláusula de propiedad intelectual

Andrés Sebastián Bustamante Noboa, autor de la tesis "Evaluación en el Nivel de Resistencia de una Subrasante, con el Uso Combinado de una Geomalla y un Geotextil", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor.

Cuenca, 02 de agosto de 2016

Andrés Sebastián Bustamante Noboa

C.I: 010415200-4

CAPÍTULO I: ANTECEDENTES E INTRODUCCIÓN

1.1 ANTECEDENTES

La infraestructura de una carretera está concebida principalmente para soportar las cargas ocasionadas por los volúmenes de tráfico que por ésta van a circular. Es así que, el paquete estructural de un pavimento debe estar diseñado de tal manera que los espesores de los material que la constituyen (mejoramiento, subbase, base, asfalto) sean los necesarios, para absorber en conjunto las cargas estáticas y dinámicas que los vehículos van a transmitir a la subrasante.

Fundamentalmente, los problemas surgen cuando la subrasante de una vía está constituida por suelos de mala calidad, tal es el caso de estratos arcillosos, limosos y orgánicos, que presentan una baja capacidad portante al momento en que empiezan a transitar los vehículos sobre la calzada, las cargas transmitidas a través de los neumáticos, generan un proceso de consolidación del suelo de la subrasante, lo que se traduce en fallas por corte y ahuellamiento en la capa de rodadura; razón por la que se ha buscado en el campo de la ingeniería vial, evaluar diferentes tipos de materiales y métodos constructivos que permitan mejorar las condiciones adversas que presenta un suelo de cimentación en malas condiciones y que incluye: excavación y reemplazo de suelos inadecuados, empalizados, compactaciones profundas, estabilización química, entre otras, que por sus excesivos costos o su corta vida útil han sido rechazados.

La aplicación y uso de materiales textiles y sintéticos en la construcción de vías, ha llegado a convertirse en una solución exitosa y útil a los problemas técnicos y económicos presentes en cualquier proyecto. Desafortunadamente, su uso se lo ha realizado de manera empírica en función de conocimientos obtenidos en el campo y mejorados con el pasar del tiempo.

Se han desarrollado algunas metodologías de diseño, enfatizado la caracterización del comportamiento mecánico de los suelos, al incluir geosintéticos en la interface subrasante-capa granular, tomando en cuenta variables de gran importancia como: la capacidad de carga, deformación, tráfico, clima, condiciones de drenaje y geometría. No obstante, estos métodos están sujetos a constantes cambios y cuestionamientos debido a la consecución de nuevos ensayos, que dan como resultado la influencia de otras variables que pueden alterar las condiciones encontradas originalmente en el campo. Se considera ésta como una nueva técnica constructiva que se está aplicado recientemente en nuestro país y de la cual se tiene escaso conocimiento sobre metodologías de construcción y diseño, por ello, el análisis ha realizarse, brindará algunas opciones en el uso y aplicación de geosintéticos en la construcción de vías.

1.2 INTRODUCCIÓN

El Geosintético es un producto en el que, por lo menos, uno de sus componentes es constituido a base de polímero sintético o natural, y se presenta en forma de filtro, manto, lámina o estructura tridimensional, usada en contacto con el suelo o con otros materiales dentro del campo de la Geotecnia o de la Ingeniería Civil (Geosistemas PAVCO, 2012, p.5).

Según el Ministerio de Transporte y Obras Públicas del Ecuador (MTOP) en las Especificaciones Generales para la Construcción de Caminos y Puentes (2002) se indica: "La colocación de la geomalla biaxial, deberá complementarse además con la colocación de un geotextil, que sirve como separador del suelo y de una capa de material granular adecuado, que proteja a la geomalla y permita la circulación vehicular sobre la misma" (p. IV-27)

En este contexto y para comprender de mejor manera la función que desempeña un geosintético en una estructura de pavimento, se debe definir claramente las propiedades físicas-mecánicas con las que cuentan estos elementos para proporcionar un mejor

comportamiento en ella. Con este propósito, se especifican tres funciones básicas que han sido reconocidas por muchos fabricantes:

- Funciona como un separador de materiales, evitando que las partículas finas de la subrasante migren hacia la capa de agregado. Esto se podría producir por las acciones mecánicas en el proceso constructivo y por las cargas vehiculares bajo las condiciones de servicio.
- Ayuda al drenaje lateral por la filtración de las aguas lluvia a través de una capa granular, reduciendo la saturación de la subrasante. Favorece a la disipación del exceso de presión de poros en las capas subyacentes.
- Tiene la capacidad de proveer reforzamiento a la estructura del pavimento ya que absorbe los esfuerzos de tensión que se producen en la interface agregadosubrasante. Mejora también las características de esfuerzo-deformación de la capa de base y disminuye la carga transmitida de los vehículos a la subrasante.

La tecnología en el uso de geosintéticos en obras viales ha tenido últimamente un gran incremento en su demanda, debido a que es una técnica constructiva relativamente nueva que se ha venido implementando en nuestro país, no obstante, por falta de conocimiento de las ventajas que su uso puede proporcionar, no se ha logrado obtener su beneficio total para las diferentes aplicaciones a las que puede ser destinada. El análisis en el servicio y comportamiento eficaz y eficiente que los geosintéticos pueden brindar, ha planteado un desarrollo investigativo más exhaustivo tanto en el campo de la geotecnia como en la ingeniería civil. Dentro de las normas nacionales se contempla el uso de estos elementos como un apoyo al reforzamiento y estabilización de la estructura vial, sin embargo no existe una metodología de diseño que sustente estas afirmaciones.

Esto ha conllevado a formular algunas interrogantes que no han podido ser absueltas hasta el momento, tales como: ¿Por qué se usan los geosintéticos sobre la subrasante?, ¿Mejoran o no la capacidad portante del suelo y en qué magnitud lo hacen?¿Qué otro tipo de elementos se podrían utilizar para lograr un mejor desempeño en la estructura

vial?, y muchas otras incógnitas que requieren de procesos experimentales para que se aclaren las dudas al respecto.

El desarrollo de este trabajo representa una contribución a estudiantes y profesionales afines a esta rama que tienen el interés de investigar sobre la aplicación y uso de los geosintéticos en proyectos viales. Además, significará un aporte a la investigación y a la formulación de nuevas metodologías de diseño, resultado de experimentar con otro tipo de materiales que proporcionen un mejor desempeño a la subrasante dentro de una estructura vial.

Para este estudio, se analizará la estructura de pavimento del proyecto: "ESTUDIOS DE FACTIBILIDAD, IMPACTO AMBIENTAL E INGENIERÍA DEFINITIVOS PARA LA RECTIFICACIÓN Y/O MEJORAMIENTO DE LA CARRETERA SIGSIG –GUALAQUIZA, TRAMO: MATANGA- GUALAQUIZA, EN LA PROVINCIA DE MORONA SANTIAGO", que en este momento se encuentra en ejecución y se está aplicando esta técnica constructiva.

Objetivo General

Determinar el nivel de resistencia sobre una subrasante, utilizando simultáneamente un geotextil y una geomalla como estructura de reforzamiento y establecer una comparación con la resistencia que pueden proporcionar los siguientes escenarios:

- a) Con el uso de un geotextil.
- b) Con el uso de una geomalla.
- c) Sin ninguna clase de reforzamiento.

Objetivos Específicos

• Obtener el número estructural (SN) del pavimento para los cuatro escenarios antes mencionados, es decir, con y sin el aporte que brindaría la colocación combinada

de un geotextil y una geomalla, para cuantificar el aumento o disminución en la resistencia que proporcionaría el uso de geosintéticos.

• Analizar el equilibrio de fuerzas que se genera en la fibra superior de la capa de subrasante, producto de los estados deformacionales y tensionales que se desarrollan por acción de una carga axial aplicada.

• Recomendar la aplicación de algún método de diseño que sustente y solvente las afirmaciones que se describen en las Especificaciones Generales para la Construcción de Caminos y Puentes del Ecuador con relación a la colocación combinada de geotextiles y geomallas.

CAPÍTULO II: REVISIÓN BIBLIOGRÁFICA

En el presente capítulo se revisará información y documentación relacionada a las características generales, tipos, clasificación y diferentes funciones de los geosintéticos. Además, se abordarán los métodos empíricos de diseño que se han desarrollado en los últimos años, considerando el reforzamiento de los geocompuestos en la estructura de un pavimento.

2.1 GEOTEXTILES

Según Geosistemas PAVCO (2012) los geotextiles que se definen como: "Un material textil plano, permeable polimérico (sintético o natural) que puede ser no tejido, tejido o tricotado y que se utiliza en contacto con el suelo (tierra, piedras, etc.) u otros materiales en ingeniera civil para aplicaciones geotécnicas". (p.5)

En la mayoría de las aplicaciones, el geotextil puede cumplir simultáneamente varias funciones, aunque siempre existirá una predominante que determinará la elección del tipo de geotextil a utilizar (Tsai, 1995).

2.1.1 Separación.

El geotextil desempeña esta función para prevenir la penetración de las partículas de agregado dentro de la subrasante (Tsai, 1995). Esto se produce por acciones mecánicas durante el proceso de construcción o por las cargas vehiculares bajo las condiciones de servicio. Esta mezcla de materiales es descrito como una intromisión de la subrasante hacia la capa de agregado, enfatizando los movimientos ascendentes de finos como se puede observar en la Figura 1.

En suelos limosos saturados, la contaminación de la capa de agregado es más acelerada debido a acciones hidráulicas. El ascenso en el flujo de agua desde zonas con alta

presión de poros en la subrasante, puede causar un irreversible movimiento de las partículas de suelo (bombeo) (Hausmann, 1987).

Figura 1. Concepto del geotextil como un separador Fuente: Tsai W-S (1995) *Evaluation of Geotextiles as Separators in Roadways.*

Los beneficios del uso de geotextiles también se ven reflejados en períodos prolongados de tiempo; cumpliendo con la separación prevista y contribuyendo significativamente para el éxito a largo plazo de la estructura del pavimento (Tsai, 1995).

2.1.2 Filtración.

Esta función impide el paso de determinadas partículas de terreno a través del geotextil (según sea el tamaño de dichas partículas y la abertura del geotextil) sin impedir el paso de fluidos o gases. En la práctica, se utiliza como filtro en muchos sistemas de drenaje (Geosistemas PAVCO, 2012). Para el caso de la ingeniería vial, contribuye en mantener la integridad de las capas de suelo que conforman la estructura del pavimento (Hausmann, 1987), incluso la no migración de finos se mantiene a lo largo de varios años sin que el geotextil presente un deterioro acelerado ni daños apreciables en su estructura.

2.1.3 Drenaje.

Consiste en la captación y conducción de fluidos y gases en el plano del geotextil. La eficacia del drenaje de un suelo dependerá de la capacidad de drenaje del geotextil empleado y del gradiente de presiones a lo largo del camino de evacuación del fluido. Para realizar el drenaje satisfactoriamente, el espesor debe ser suficiente al aumentar la tensión normal al plano de conducción. Adicionalmente, el geotextil debe impedir el lavado o transporte de partículas finas, las cuales al depositarse en él, reducen su permeabilidad horizontal (Geosistemas PAVCO, 2012). Los geotextiles con mayor grosor proporcionan un drenaje lateral adicional y pueden ayudar a disipar el exceso en la presión de poro en subrasantes saturadas (Hausmann, 1987).

2.1.4 Reforzamiento.

En esta función, se aprovecha el comportamiento a tracción del geotextil para que se genere una buena fricción y anclaje con el agregado, así como es un complemento para mejorar las propiedades mecánicas del suelo de la subrasante, con el fin de controlar los esfuerzos transmitidos tanto en la fase de construcción como en las condiciones de servicio.

El geotextil actúa como un elemento estructural y de confinamiento de las partículas de suelo, permitiendo repartir las tensiones locales tanto en la interface agregado subrasante como dentro de la estructura del agregado. Estas acciones aumentan la capacidad portante y reducen las tensiones en la subrasante (Geosistemas PAVCO, 2012). Adicionalmente, con la deformación del geotextil debido al ahuellamiento de los neumáticos, puede desarrollar una componente vertical que soporta parcialmente la carga de los vehículos transmitida a los neumáticos y reducir las tensiones en la subrasante (Tsai, 1995).

2.2 CLASIFICACIÓN DE LOS GEOTEXTILES

2.2.1 Según el método de fabricación

2.2.1.1 Geotextiles Tejidos.

Son aquellos formados por cintas entrecruzadas en una máquina de tejer. Pueden ser tejidos de calada o tricotados (Geosistemas PAVCO, 2012, p.5).

Los tejidos de calada son los formados por cintas de urdimbre (sentido longitudinal) y de trama (sentido transversal).

Su resistencia a la tracción es de tipo biaxial (en los dos sentidos de su fabricación) y puede ser muy elevada (según las características de las cintas empleadas). Su estructura es plana.

Los tricotados están fabricados con hilo entrecruzado en máquinas de tejido de punto. Su resistencia a la tracción puede ser multiaxial o biaxial según estén fabricados en máquinas tricotosas y circulares. Su estructura es tridimensional.

En la Figura 2, se detallan algunos tipos de geotextiles tejidos.

a. Monofilamento Tejido

b. Monofilamento Tejido calandrado

c. Multifilamento Tejido

d. Tejido Plano

2.2.1.2 Geotextiles No Tejidos.

Están formados por fibras o filamentos superpuestos en forma laminar, consolidándose esta estructura por distintos sistemas según sea la fabricación empleada para unir los filamentos o fibras. Los geotextiles no tejidos se clasifican a su vez en:

- Ligados mecánicamente o punzonados por agujas
- Ligados térmicamente o termosoldados
- Ligados químicamente o resinados.

e. No Tejido punzonado por agujas f. No Tejido unido por calor

En la Figura 3, se detallan dos tipos de geotextiles no tejidos

Figura 3. Vista microscópica de algunos tipos de geotextiles no tejidos Fuente: Geosistemas PAVCO. (2012) *Manual de Diseño con Geositéticos.*

2.2.2 Según su composición.

Las fibras que más se emplean son las sintéticas, siendo por ello que se las tiende a asociar al geotextil con fibras o filamentos sintéticos. Sin embargo, al existir gran diversidad de aplicaciones, también se fabrican con fibras naturales y artificiales.

2.2.2.1 Fibras naturales.

Pueden ser de origen animal (lana, seda, pelos, etc.) vegetal (algodón, yute, coco, lino, etc.) que se utilizan para la fabricación de geotextiles biodegradables utilizados en la

revegetación de taludes, márgenes de ríos etc. En la Figura 4 se puede observar un geotextil de fibra natural (Subaida, Chandrakaran, & Sankar, 2009).

2.2.2.2 Fibras artificiales.

Son las derivadas de la celulosa, tales como: el rayón, la viscosa y el acetato.

2.2.2.3 Fibras sintéticas.

Se fabrican con fibras o filamentos obtenidos de polímeros sintéticos. Son de gran durabilidad y resistentes a los ataques de microorganismos y bacterias.

Los más empleados son el polipropileno, poliéster, polietileno, poliamida y poliacrílico.

Figura 4. Geotextil de fibra de coco Fuente: Subaida, E., Chandrakaran, S., & Sankar, N. (2009). Laboratory performance of unpaved roads reinforced with woven coir geotextiles.

2.3 GEOMALLAS COEXTRUÍDAS

Existen diversos métodos para aumentar la capacidad de carga de suelos blandos. Uno de estos, antiguo y todavía efectivo, consiste en reforzar el suelo mediante confinamiento lateral de las partículas de material y aumentar su resistencia a la tensión.

Tradicionalmente, estos efectos se obtenían usando ramas trenzadas o colocando troncos de forma perpendicular (Geosistemas PAVCO, 2012, p.14).

La tecnología actual, permite el uso de productos sintéticos diseñados específicamente para obtener el mismo efecto de confinamiento lateral y resistencia a la tensión, como pueden ser las geomallas bi-orientadas coextruídas.

Las geomallas coextruídas son estructuras bidimensionales elaboradas a base de polímeros, que están conformadas por una red regular de costillas conectadas de forma integrada por extrusión, con aberturas de suficiente tamaño para permitir la trabazón del suelo, piedra u otro material geotécnico circundante (Geosistemas PAVCO, 2012, p.14).

La principal función de las geomallas coextruidas es indiscutiblemente el refuerzo; el uso del tipo de geomalla está ligado a la dirección en que los esfuerzos se transmiten a la estructura del pavimento, se utilizan las geomallas mono-orientadas que son geomallas con una resistencia y rigidez mayor en el sentido longitudinal que en el transversal. Mientras, que en estructuras en que la disipación de los esfuerzos se realiza de forma aleatoria y en todas las direcciones, como por ejemplo estructuras de pavimento o cimentaciones superficiales, se utilizan geomallas bi-orientadas o bi-direccionales las cuales no tienen una diferencia considerable frente a sus propiedades en los dos sentidos de la grilla (Geosistemas PAVCO, 2012, p.14).

Las geomallas coextruídas generan un incremento en la resistencia al corte del suelo. Durante la aplicación de una carga normal al suelo, este es compactado de manera que se produzca una interacción entre las capas de suelo que rodean la geomalla. Con estas condiciones, se requerirá una carga considerablemente mayor para producir un movimiento en el suelo. El compuesto suelo-geomalla reduce la resistencia al movimiento, por lo tanto, el uso de las geomallas produce una condición de cohesión, inclusive en materiales granulares. El compuesto combina la resistencia a la compresión del suelo con la tensión de la geomalla, para crear un sistema que brinda una mayor

rigidez y estabilidad, que un suelo sin ningún elemento que soporte estos esfuerzos. La capacidad que tiene la geomalla para distribuir las fuerzas sobre su superficie, incrementan las características de resistencia contra los desplazamientos de la estructura durante el sometimiento de esta a cargas tanto estáticas como dinámicas (Geosistemas PAVCO, 2012, p.14).

2.4 CLASIFICACIÓN DE LAS GEOMALLAS

2.4.1 Geomallas Coextruidas Mono-Orientadas.

Las geomallas mono-orientadas, son estructuras bi-dimensionales producidas de polietileno de alta densidad, utilizando un proceso de extrusión seguido de un estiramiento mono-direccional. Este proceso permite obtener una estructura monolítica con una distribución uniforme de largas aberturas elípticas, desarrollando así gran fuerza a la tensión y gran módulo de tensión en la dirección longitudinal. La estructura de este tipo de geomallas provee un sistema de trabazón óptimo con el suelo especialmente de tipo granular (Ver Figura 5) (Geosistemas PAVCO, 2012, p.15).

Este tipo de geomallas coextruídas de alta densidad, son totalmente inertes a las condiciones químicas o biológicas que se presentan normalmente en el suelo, poseen gran resistencia a los esfuerzos de tensión, soportando hasta 160 kN/m aproximadamente. Esto, con la capacidad del suelo de absorber los esfuerzos de compresión, da como resultado el concepto de estructura en suelo reforzado, similar al concepto del concreto y el acero de refuerzo (Geosistemas PAVCO, 2012, p.15).

Figura 5. Geomalla coextruída mono-orientada Fuente: Geosistemas PAVCO. (2012) *Manual de Diseño con Geositéticos.*

2.4.2 Geomallas Coextruidas Bi-Orientadas.

Este tipo de geomallas son estructuras bi-dimensionales fabricadas de polipropileno, químicamente inertes y con características uniformes y homogéneas, producidas mediante un proceso de extrusión y luego estiradas de forma longitudinal y transversal. Este proceso genera una estructura de distribución uniforme de espacios rectangulares de alta resistencia a la tensión en ambas direcciones y un alto módulo de elasticidad. Así mismo, la estructura de la geomalla permite una óptima trabazón con el suelo. Este tipo de geomallas coextruídas se componen de elementos y nudos rígidos que proveen un gran confinamiento. Son particularmente efectivas para reforzar estructuras de pavimentos rígidos y flexibles (Ver Figura 6) (Geosistemas PAVCO, 2012, p. 16).

Figura 6. Geomalla coextruída Bi-orientada Fuente: Geosistemas PAVCO. (2012) *Manual de Diseño con Geositéticos.*

2.5 MECANISMO DE FALLA EN LA ESTRUCTURA DE UN PAVIMENTO

La función principal de una subrasante es brindar la estabilidad adecuada a los materiales que conforman la estructura del pavimento, con el fin de prevenir una falla por capacidad de carga debido al peso de los vehículos transferido a los neumáticos y al excesivo ahuellamiento bajo las condiciones de tráfico (Hausmann, 1987, p.202).

El problema más común que se ocasiona al deterioro prematuro de las vías, se da cuando se construye sobre subrasantes suaves de baja capacidad portante que usualmente están constituidas de suelos cohesivos saturados con contenidos de agua en o sobre el límite plástico, suelos saturados no cohesivos muy finos o suelos orgánicos altamente compresible como turbas o Ciénegas (Tsai, 1995, p.3).

En estos casos, el efecto que se produce bajo repetidas cargas debidas al tráfico es que las partículas del agregado penetran en la subrasante suave y las partículas finas de la subrasante se infiltran dentro de la capa de base (Tsai, 1995, p.3), produciendo los siguientes tipos de falla:

Falla general por corte (Ver Figura. 7): se puede reconocer por planos de falla que se extienden desde el borde del área cargada a la superficie del terreno, ocasionando significativos bulbos que se transmiten hacia arriba del suelo. Este tipo de falla es típico en arenas densas y arcillas rígidas.

Falla local por corte (Ver Figura. 7): describe una condición donde cuñas de falla se desarrollan únicamente en el suelo que se encuentra inmediatamente debajo del neumático. El corte y densificación del suelo fatigado causa excesivos asentamientos sin

notables bulbos en la superficie del suelo. Este tipo de falla ocurre en arenas flojas o sueltas y arcillas muy suaves con CBR¹ menor que tres.

Figura 7. Falla por capacidad de carga en suelos cohesivos Fuente: Hausmann, M. (1987). *Geotextiles for Unpaved Roads-A Review of Design Procedures.*

Generalmente la estabilidad más baja de una subrasante se da durante o al final de la construcción de una vía. El exceso en la presión de poros inducido en la subrasante no puede disipar rápidamente el contenido de agua a través de la capa de agregado. Con el tiempo, el proceso de consolidación puede reducir la presión de poros y el contenido de agua en el suelo. Como consecuencia se incrementan las tensiones en la subrasante (Hausmann, 1987).

2.6 MÉTODOS DE DISEÑO SELECCIONADOS

Un método de diseño debe proveer una adecuada capacidad de carga e intentar limitar el ahuellamiento mientras se previenen excesivas tensiones en el textil. Dicho de otro modo, el diseño se reduce al análisis del reforzamiento por la restricción lateral del agregado, la subrasante y la membrana de soporte (Hausmann, 1987).

¹ California Bearing Ratio, es un ensayo desarrollado por la División de Carreteras de California que nos permite determinar la capacidad portante de un suelo bajo niveles de humedad y compactación controlada (Universidad Católica de Valparaíso, s.f.).

Algunas investigaciones con el uso de geotextiles para el reforzamiento en vías sin pavimento, se han desarrollado en los últimos 30 años (Leiva Padilla y Loría Salazar, 2012, p.3).

El mayor avance en esta área se origina con el análisis de tratamientos analíticos que sustentan el concepto de que la membrana proporciona un reforzamiento cuando se genera una deformación sobre la superficie de rodadura. De este modo, se produce un alargamiento en el geotextil, dando como resultado la actuación de esfuerzos tangenciales en la interface geotextil-subrasante y geotextil-base; ofreciendo un soporte vertical adicional a la estructura de la calzada (Hausmann, 1987).

2.6.1 Métodos basados en el modo del control de falla.

Barenberg (citado en Hausmann, 1987), evaluó el desempeño del modelo de un cimiento en un sistema compuesto de piedra triturada y arcilla suave, con y sin geotextil no tejido. La falla, definida por el excesivo ahuellamiento (> 50 mm) luego de un ciclo de carga, fue interpretada usando la teoría de capacidad de carga de Terzaghi. Se encontró que la falla ocurría en niveles de tensión de:

 $Nc = 3.3 \sin textil, y$

Nc = 6.0 con textil.

Estos valores corresponden aproximadamente a la falla por corte general y local de Terzaghi, respectivamente. El geotextil es de este modo utilizado para influenciar en el modo de falla de la subrasante, pues inhibe el efecto de punzonamiento según el tipo de falla en un suelo suave.

Los resultados del ensayo además demostraron que el textil redujo la pre-falla de deformación en la subrasante. Se sugirió posteriormente que los niveles de tensión permisible de la subrasante podrían ser incrementados por un factor alrededor de 1.8

comparado al caso sin textil, el cual resulta en una reducción del requerimiento de espesor de agregado.

2.6.2 Métodos considerando el soporte de la membrana.

Barenberg (citado en Hausmann, 1987), modificó la propuesta original de diseño, en función de incluir el efecto de la profundidad. El nuevo modelo de comportamiento suelo-geotextil-agregado incluye los efectos de la membrana y fue llamado el modelo de tensión del geotextil.

Usando la nueva aproximación, primeramente las tensiones permisibles de la subrasante están expresadas como una función de la cohesión. En segundo lugar, para un espesor de agregado y la geometría del ahuellamiento dados, se calcula las tensiones y deformaciones del geotextil (ver Figura 8). Luego, el apoyo vertical equivalente suministrado por el geotextil, descrito como tensiones diferenciales a través de la interface suelo-geotextil-agregado.

Figura 8. Deformación de la capa base y subrasante, según Barenberg Fuente: Hausmann, M. (1987). *Geotextiles for Unpaved Roads-A Review of Design Procedures.*

En tercer lugar, la tensión permisible en el geotextil es expresada como la suma de las tensiones permisibles de la subrasante y la tensión diferencial a través del geotextil. La actual tensión, calculada de acuerdo a Boussinesq para una superficie de carga dada, es igual a la tensión permisible y a partir de esta expresión, se obtiene el valor de la cohesión no drenada c, como se indica a continuación:

Tensión actual (σ_z) :

$$\sigma_z = p \left[1 - \left(\frac{1}{1 + (a/z)^2} \right)^{3/2} \right] (kPa)$$
(1)

donde:

p = presión de contacto promedio (igual a la presión de aire de un neumático simple o 0.7 a 0.8 veces la presión de aire de un neumático dual, en kPa)

- z = espesor de la capa de agregado (m)
- a = radio del área cargada (m) $= \sqrt{P/\pi p}$
- P = Carga total aplicada (kN)

Andrés Bustamante Noboa - Maestría en Ingeniería en Vialidad y Transportes

$$\sigma_{per} = A\pi c(kPa) \tag{2}$$

donde:

c = esfuerzo de corte de la subrasante².

A = coeficiente adimensional relacionado a la restricción lateral suministrada por el textil (1.9 a 2.0 para los textiles Mirafi 140 y Mirafi 500x ensayado por Barenberg).

La tensión diferencial normal ($\Delta \sigma_{z-f}$) a través del geotextil es:

$$\Delta \sigma_{z-f} = \frac{t_f}{R} (kPa) \tag{3}$$

donde:

R = radio de la forma circular reflejada en el geotextil.

 t_f = tensión en el textil (kN/m) = $\epsilon_f E_f$ ϵ_f = deformación en el geotextil (%) $E_f = m \delta dulo del geotextil (kN/m/%)$

La deformación es determinada desde la falla geométrica asumida (ver Fig. 8b), descrita por:

$$R = \frac{9W^2}{80d} + \frac{5}{6}d\ (m)$$

donde:

d =profundidad de ahuellamiento efectivo de la subrasante (m).

W = ancho de ahuellamiento efectivo de la subrasante (m)

 $\theta = 2 \tan^{-1} \left(\frac{10d}{6W} \right) (grados)$ (4)

$$\epsilon_f = \left(\frac{4\pi R\theta}{135W} - 2\right) 100 \ (\%) \tag{5}$$

² El valor de la cohesión no drenada es igual al esfuerzo cortante máximo del suelo cuando se realiza un ensayo a compresión simple en una muestra no confinada. Es el valor resultante de dividir el esfuerzo vertical instantáneo entre dos (M. Das, Fundamentos de Ingeniería Geotécnica, 2001, p.235).

El ancho de ahuellamiento efectivo de la subrasante (W) (ver Fig. 8b) debe ser estimado desde la expresión:

W = B + 2xdonde: B = ancho de huella de una rueda . x = efecto de expansión

Con los términos definidos en la figura 8a, y donde x representa el efecto de expansión de la capa granular con o sin geotextil. Desde la información suministrada por Barenberg, x está en función de:

$$x = 0.05 + (0.3 a \ 0.6)z \ (m) \tag{6}$$

y los cálculos son hechos para ser relativamente inmunes a x.

El esfuerzo de la subrasante y la acción de balance de la membrana ante la carga aplicada, como se expresa en la ecuación (7), puede ser resuelto para c (esfuerzo de corte de la subrasante o cohesión no drenada)

$$\sigma_z = \sigma_{per} + \Delta \sigma_{z-f} \tag{7}$$

Giroud y Noiray (citado en Hausmann, 1987), observaron que el efecto de un geotextil incrementa la capacidad última de carga, lo que obedece a un comportamiento elástico. Es decir, se determinó que una falla por corte local cambia a una falla por corte general de Terzaghi bajo el efecto del geotextil.

En primera instancia, analizaron estáticamente (sin considerar el efecto del tráfico) los esfuerzos que actúan sobre la subrasante.

La razón básica es el reconocimiento de que el esfuerzo de la subrasante está fatigado si:

$$q_u = p - p_g \tag{8}$$

donde:

 $q_u =$ capacidad de carga última de la subrasante $= (\pi + 2)c_u + \gamma h$

 $c_u =$ cohesión no drenada de la subrasante

 $\gamma = \text{peso específico del agregado}$

h = altura de la capa de agregado

p = presión en la subrasante debido a la sobrecarga

 $p_g = {
m reducción}$ de la presión debido al efecto de la membrana

La presión p es calculada asumiendo que el agregado extiende la superficie de carga en un ángulo \propto (Fig. 9 (a)).

Figura 9. Geometría asumida por Giroud y Noiray: a) distribución de carga; b) geotextil deformado Fuente: Hausmann, M. (1987). *Geotextiles for Unpaved Roads-A Review of Design Procedures.*

Incluyendo el peso del agregado se encuentra que:

$$p = \frac{P}{2(B+2h\tan\alpha)(L+2h\tan\alpha)} + \gamma h \tag{9}$$

donde *P* es la carga por eje y γ es el peso específico del suelo. La rueda dual es asumida como un conjunto de neumáticos cubriendo un área de *B* veces *L*. Para una llanta de presión p_c , estas dimensiones son obtenidas para dos diferentes casos que son los siguientes:

Para autopistas con camiones:

$$B = \sqrt{\frac{P}{p_c}} \tag{10}$$

$$L = \frac{B}{\sqrt{2}} \tag{11}$$

Para autopistas sin camiones:

$$B = \sqrt{\frac{P\sqrt{2}}{n_{\star}}} \tag{12}$$

$$L = \frac{B}{2} \tag{13}$$

Giroud y Noiray (citado en Hausmann, 1987), consideran que el geotextil puede tener una influencia en el valor de α pero establecido para un valor conservador de 31° (o tan $\alpha = 0.6$), el cual corresponde a una inclinación teórica de planos de falla en el agregado con un ángulo de fricción de 28°. (El efecto de variación α es más discutido cuando se expandió este método de diseño para geomallas).

La determinación de p_g está basado en la suposición de que la forma de un geotextil deformado representa secciones de parábolas, entonces el volumen de la zona central deformada está relacionada al desplazamiento del suelo por asentamiento (ver Figura 10b). La deformación del geotextil puede luego ser determinado desde:

$$\epsilon = \frac{b+b'}{a+a'} - 1 \ para \ a' > a \tag{14}$$

$$\varphi = \frac{b}{a} - 1 \quad para \ a > a'$$
(15)

los anchos a y a' son obtenidos de las siguientes relaciones:

$$2a = B + 2h \tan \alpha \tag{16}$$

$$2a' = e - B - 2h \tan \alpha \tag{17}$$

donde e es el ancho de carril.

Para $b \ y \ b'$ que representan la mitad de la longitud de las cuerdas de las parábolas que se forman por el ahuellamiento (ver figura 10 (b)), son obtenidos desde las siguientes dos ecuaciones:

$$\frac{b}{a} - 1 = \frac{1}{2} \left[\sqrt{1 + (2s/a)^2} + \frac{a}{2s} \ln \left\{ \frac{2s}{a} + \sqrt{1 + (2s/a)^2} \right\} - 2 \right]$$
(18)

$$\frac{b'}{a'} - 1 = \frac{1}{2} \left[\sqrt{1 + \left(\frac{2(r-s)}{a'}\right)^2} + \frac{a'}{2(r-s)} \ln \left\{ \frac{2(r-s)}{a'} + \sqrt{1 + \left(\frac{2(r-s)}{a'}\right)^2} \right\} - 2 \right]$$
(19)

donde *s* representa la deformación en la capa de rodadura.

Finalmente, la tensión del geotextil es obtenida desde:

$$t_f = E_f \epsilon \tag{20}$$

donde:

 t_f = tensión en el geotextil (kN/m) ϵ = deformación en el geotextil (%) E_f = módulo del geotextil (kN/m/%)

y la membrana de apoyo es:

$$p_g = \frac{E_f \epsilon}{a \sqrt{1 + (a/2s)^2}} \tag{21}$$

En la ecuación (8), una relación puede ser establecida entre c y el espesor de agregado requerido para una geometría dada, la configuración de cargas y el módulo del geotextil. Este análisis está referido como un comportamiento casi estático, porque no toma en cuenta al tráfico.

En segunda instancia, analizaron *dinámicamente (considerando el efecto del tráfico),* las vías en donde se ha incorporado un geotextil. Giroud y Noray (citado en Hausmann, 1987), propusieron usar el mismo incremento en espesor de agregado a causa del tráfico, tal como sería determinado para una vía no reforzada.

El espesor de agregado requerido por vías sin geotextil es designado como h_0 sin considerar el tráfico y h'_0 considerando el tráfico. El incremento en el espesor del agregado por lo tanto es:

$$\Delta h = h_0' - h_0 \tag{22}$$

Giroud y Noray (citado en Hausmann, 1987), sugieren que para el primer caso, la sobrecarga en peso es extendida sobre la subrasante como se demuestra en la Figura 9 (a), más la falla de la subrasante se calcula en la siguiente ecuación: $q_u = \pi c_u + \gamma h_0$ (23)

la presión en la interface agregado-subrasante puede ser calculado de acuerdo a la ecuación (9) pero con h_0 en lugar de h. Ahora se puede establecer que:

$$p = q_u \tag{24}$$

y resolverlo para h_0 .

El espesor h'_0 puede ser determinado de la siguiente ecuación:

 $h'_0 = (1.6193 \log N + 6.3964 \log P - 3.7892r - 11.8887)/c_u^{0.63}$ (25) donde:

 c_u = cohesión no drenada de la subrasante = 30 * *CBR*

 $r = \text{profundidad de ahuellamiento} (\leq 75 mm)$

P =peso de un eje simple (lb)

N = número de ejes equivalentes para un eje P

Ahora se obtiene el número de ejes equivalentes a partir de la siguiente expresión:

 $\frac{N_s}{N} = \left[\frac{P}{P_s}\right]^{3.95} \tag{26}$

donde:

 $N_s =$ número de ejes equivalentes para un eje estandar de 8.2 ton

 P_s = eje simple de 8.2 *ton* (*lb*)

haciendo posible calcular Δh , el cual para el diseño con geotextiles, es adicionado al espesor del agregado determinado usando un análisis casi estático.

CAPÍTULO III: VALIDACIÓN DEL ENSAYO

El objeto del presente capítulo es analizar el comportamiento de una estructura de pavimento compuesta por una capa de base y un suelo de subrasante con una baja capacidad portante, bajo la aplicación de una carga monotónica, que representa el peso transferido de un vehículo tipo al suelo a través de uno de sus neumáticos. Además, los ensayos que se llevarán a cabo, permitirán investigar sobre los beneficios que puede brindar la utilización de materiales geosíntéticos en la interface capa base-subrasante.

No se ha reportado un estudio en donde se evalúe el soporte estructural que ofrece el trabajo simultáneo de un geotextil y una geomalla dentro del pavimento y que se expresa a través del número estructural (SN). Sin embargo, en el estudio efectuado por el COE³, se valida el criterio de reforzamiento de un geotextil en vías sin pavimentar pero adicionando la rigidez de una geomalla biaxial. Mediante un ensayo dinámico a escala real, los resultado obtenidos fueron muy útiles para fundamentar la variación en el factor de capacidad de carga de Terzaghi, Nc, y modificar el existente proceso de diseño para el uso de ambos materiales (Tingle & Webster, 2002).

Para el desarrollo de los ensayos, se emplearán materiales extraídos del sitio del proyecto en evaluación (vía Sigsig-Matanga-Gualaquiza), que en este momento se encuentra en ejecución y donde se está utilizando esta técnica constructiva. En el caso de la capa base, se tomará una muestra de material de una de las minas locales, considerando que éste debe cumplir con los rangos granulométricos estipulados en las Especificaciones Generales para la Construcción de Caminos y Puentes (2002), para un material de base clase I. Los geosintéticos que serán utilizados, son los mismos que se están colocando en el proyecto Sigsig-Matanga-Gualaquiza y que corresponden a una geotextil no tejido NT-1800, así como una geomalla biaxial BX-1200. Se dimensionará el

³ COE: The U.S. Army Corps of Engineers (Tingle & Webster, 2002).

tamaño de la muestra a ser ensayada, así como se establecerán las propiedades físicas del suelo, de tal manera que todas las variables que intervienen en el ensayo sean controladas.

Finalmente se registraran las lecturas de carga aplicada versus la deformación desarrollada sobre la superficie de la muestra, de tal forma que se pueda obtener la curva esfuerzo-deformación.

3.1 MATERIALES UTILIZADOS PARA EL ENSAYO.

Para la selección del material de la subrasante, se realizó una evaluación a través de los "Estudios de Factibilidad, Impacto Ambiental e Ingeniería Definitivos para la rectificación y/o mejoramiento de la Carretera Sigsig-Gualaquiza, Tramo Matanga-Gualaquiza, en la Provincia de Morona Santiago" (Consorcio Vial Oriental, 2012), para identificar los rangos más bajos de CBR que ostentan los suelos naturales en donde se cimenta la carretera Matanga-Gualaquiza. Consecuentemente se determinó que el intervalo de los valores de CBR más bajos se encontraban entre el kilómetro sesenta al setenta (ver Figura 10), con un valor promedio estimado del 4% de CBR, es decir, se tomó en cuenta una subrasante en malas condiciones según su capacidad portante.

Figura 10. CBR de laboratorio en los suelos de subrasante. Tramo Matanga-Gualaquiza Fuente: Consorcio Vial Oriental (2012). *Estudios de Factibilidad, Impacto Ambiental e Ingeniería Definitivos Carretera Sigsig – Gualaquiza*

La muestra de suelo se la obtuvo mientras se ejecutaba la etapa de excavación y reposición con material de mejoramiento de la subrasante. Se extrajo la muestra a una profundidad aproximada de 1 m desde la superficie de rodadura existente en la abscisa 62+115, (Anexo fotográfico, 1. Toma de muestras). De esta manera se sujeta a lo establecido en los estudios del proyecto vial, tramo Matanga-Gualaquiza, donde se plantea el panorama de un suelo de cimentación en malas condiciones y en el cual se va a mejorar y rehabilitar una carretera existente.

Posteriormente se efectuaron los correspondientes análisis de laboratorio para determinar las características del material extraído en el campo (ver Anexos, Anexo resultados ensayos de laboratorio, 1.Ensayos subrasante). En primera instancia se realizó la categorización del suelo mediante los sistemas americanos de clasificación

AASHTO⁴ y SUCS⁵, de tal manera que se puede establecer la tipología y condiciones físicas de la subrasante (Anexo resultados ensayos de laboratorio, 1. Ensayos subrasante). Se determinaron parámetros tales como: humedad natural, límite líquido, límite plástico, etc. El resumen de estos resultados se presenta en la Tabla 1.

Luego se llevó a cabo la elaboración del ensayo proctor modificado que tiene el propósito de reflejar las condiciones reales encontradas en el campo cuando se desarrolla la etapa de afirmado de la subrasante. Es decir, para compactarla, se emplea una energía mayor a través de un rodillo de varias toneladas de peso, a diferencia de un vibroapisonador cuya energía de compactación es bastante baja (Das, 2001, p.59), por tal razón se efectuó la prueba proctor modificado en vez de la proctor estándar, cuyos resultados están en la Tabla 1.

Para concluir con el primer grupo de ensayos, se determinó el CBR de la subrasante. Este parámetro será el de mayor trascendencia en este estudio y servirá para determinar el nivel de resistencia del suelo de cimentación en cada una de las fases posteriores de investigación, además representa punto de partida para alcanzar las conclusiones esperadas.

⁴ American Association of State Highway and Transportation Officials

⁵ Unified Soil Classification (Corp of Engineers, Department of the Army y Bureau of Reclamation) (Das, 2001, p. 5 (M. Das, Principios de Ingeniería de Cimentaciones, 2001))

CLASIFICACIÓN DEL SUELO							
sucs	MUOU	Humedad Natural:	35.73%				
3003	MH-UH	Límite Líquido:	52.56%				
AASHTO	476	Índice Plástico	15.78%				
AASHTO	A-7-0	Índice de Grupo	19				
Р	ROCTOR M	ODIFICADO					
$\gamma_{d max} (kg/m^3) =$	1640	Humedad óptima=	22.34%				
	ENSAYO) CBR					
$\gamma_{d\ 12\ golpes}\ (kg/m^3) =$	1404.34	$CBR_{12 \ golpes}$ (%) =	1.21				
$\gamma_{d \ 25 \ golpes} (kg/m^3) =$	1541.36	$CBR_{25 golpes}$ (%) =	1.61				
$\gamma_{d 55 golpes} (kg/m^3) =$	1635.01	$CBR_{55 golpes}$ (%) =	3.02				

A continuación se presentan los resultados obtenidos:

Tabla 1. Resultados de los ensayos del suelo de subrasante

Para el material de la capa base, se tomó una muestra de agregado grueso y fino, ciento por ciento de piedra triturada procedente de una cantera local, cumpliendo parcialmente con lo que establecen las Especificaciones Generales para la Construcción de Caminos y Puentes (2002), que indica lo siguiente para una base clase I: "Son bases constituidas por agregados gruesos y finos, triturados en un 100% de acuerdo con lo establecido en la subsección 814-2 y graduados uniformemente dentro de los límites granulométricos indicados para los Tipos A y B" (p. IV-48).

De esta manera se cuenta con un material que posee un valor de CBR igual o mayor al 80% (Ministerio de Obras Públicas y Comunicaciones del Ecuador, 2002), lo que indica que su capacidad portante es bastante alta.

Para confirmar las aseveraciones que la muestra de material obtenida en el campo cumple con lo señalado en la normativa ecuatoriana, se efectuaron los ensayos de análisis granulométrico (Ver Figura 11) y clasificación, así como la prueba proctor

modificado del material (Anexo resultados ensayos de laboratorio, 2. Ensayos Base), en donde se alcanzaron los siguientes resultados que se indican en la Tabla 2:

CLASIFICACIÓN DEL SUELO					
sucs	CC CM	Humedad Natural:	3.29%		
SUCS	GC-GM	Límite Líquido:	25.98%		
AASUTO	A-2-4	Límite Plástico	19.62%		
AASHTO		Índice de Plasticidad	6.35%		
PROCTOR MODIFICADO					
$\gamma_{d max} (kg/m^3) =$	2061	Humedad óptima=	9.71%		

 Tabla 2. Resultados de los ensayos del material granular

NORMA GRANULOMETRICA BASE TIPO 1A

Figura 11. Curva granulométrica del material triturado y límites granulométricos (normativa ecuatoriana)

De esta manera se confirma que el material granular es una base tipo 1A (Ver Anexo resultados ensayos de laboratorio, 2. Ensayos Base).

Un geotextil no tejido NT-1800, se asentará en la interface capa granular-subrasante, para dos de los escenarios que se evaluarán del número total de ensayos a efectuar. Brevemente se debe destacar que este geotextil de polipropileno, está conformado por un sistema de fibras, punzonadas por agujas que le brindan una alta resistencia a la degradación química y biológica. Su abertura aparente es de 0.18 mm y su resistencia a la la tensión es de 9.6 kN/m en su sentido transversal (Ver Anexo, Resultados ensayos de laboratorio, 3. Especificaciones técnicas geotextil y geomalla).

En la Tabla 3, se presentan parte de las características de este material:

GEOTEXTIL NT-1800						
PROPIEDADES MECÁNICAS	UNIDAD	VALOR				
Resistencia a la tensión longitudinal	kN/m	8.8				
Resistencia a la tensión transversal	kN/m	9.6				
Elongación	%	> 50				
Resistencia al punzonamiento	N	310				
Resistencia al estallido	Кра	1587				
PROPIEDADES HIDRÁULICAS	UNIDAD	VALOR				
Tamaño de abertura aparente	mm	0.18				
Permeabilidad	cm/s	0.4				
PROPIEDADES FÍSICAS	UNIDAD	VALOR				
Espesor	mm	1.7				
Resistencia UV	%	> 70				

Tabla 3. Propiedades geotextil no tejido NT-1800Fuente: Geosistemas PAVCO. (2012).

La geomalla biaxial BX-1200, está fabricada de fibra de vidrio cubierta por un material bituminoso (Ver Anexo, Resultados ensayos de laboratorio, 3. Especificaciones técnicas geotextil y geomalla). Garantiza una alta resistencia a la tensión y un alto módulo de elasticidad (Geosistemas PAVCO, 2012). Registra las siguientes características que se indican en la Tabla 4:

GEOMALLA BX-1200						
PROPIEDADES MECÁNICAS	UNIDAD	VALOR				
Resistencia a la tensión longitudinal	kN/m	121.54				
Resistencia a la tensión transversal	kN/m	128.72				
Elongación	%	< 4				
PROPIEDADES FÍSICAS	UNIDAD	VALOR				
Dimensión de la malla	mm	18*18				

Tabla 4. Geomalla Biaxial BX-1200Fuente: ACE Geosynthetics. (2009) Geosynthetics Test Report.

3.2 CONFIGURACIÓN DEL ENSAYO.

El experimento se diseñó de tal manera que se ilustre el comportamiento estático de los vehículos sobre el pavimento. Para ello se determinó el vehículo que presenta las condiciones estáticas más desfavorables de carga transmitida a la capa de rodadura a través de sus neumáticos. Según la composición del tráfico (ver Tabla 5), tanto para el camión tipo 2DB como para el 2S2, la carga estática por eje más alta corresponde al eje simple de rueda dual de 11 ton de peso, como se demuestra en la Figura 12.

AÑO 2015						
TIPO VEHÍCULO	UNIDAD					
Aut	omóvil					
Liviano	153					
	Bus					
3A	40					
Camión de 2 ejes						
2DB	31					
Camiór	n de 3 ejes					
3A	25					
Tracto	o camión					
252	2					
TPDA (inicial)	251					

Tabla 5. Composición del tráfico año 2015, tramo Matanga - GualaquizaFuente: Consorcio Vial Oriental (2012). Estudios de Factibilidad, Impacto Ambiental e Ingeniería Definitivos Carretera Sigsig –
Gualaquiza

Por lo tanto el camión tipo 2DB y el 2S2 reciben una carga por eje simple de 11 *ton*., es el modelo que más se adapta para la simulación de carga aplicada sobre el pavimento, según la Tabla Nacional de Pesos y Dimensiones del MTOP (2012, p.1).

Figura 12. Tabla nacional de Pesos y Dimensiones

Para continuar con la configuración del ensayo, se necesita obtener un factor de escala (Subaida, Chandrakaran, & Sankar, 2009, p.207), a partir del área equivalente que proyecta la rueda dual del camión tipo, que recibe una carga *P* de 5.5 *ton* por par de neumáticos. Según la Norma Técnica Ecuatoriana NTE INEN 2 101:98 (1998), la presión de hinchado de un neumático está dado en función del límite de carga que puede transportar un camión y el tamaño del neumático (p.4). Para este caso el ancho de aro es de 8.5" y el intervalo de presiones de inflado está entre 5 a 8 kg/cm^2 . Se asumió un valor de 8 kg/cm^2 para la carga que recibe la rueda dual. Con todos los datos de entrada, se calcula el área equivalente

Figura 13. Área equivalente

Fuente: MTOP (2012). Comunicado a los señores transportistas de carga pesada, empresas que generan carga, puertos marítimos y terrestres, aduanas, encargados de control de transporte terrestre y afines.

(26)

A. equivalente =
$$\frac{P(carga por eje/2)}{p(presión de inflado)}$$

A. equivalente = $\frac{5500 \text{ kg}}{8 \text{ kg/cm}^2} = 687.5 \text{ cm}^2$

Se determina el diámetro equivalente:

$$r.equivalente = \sqrt{\frac{A.equivalente}{\pi}} = \sqrt{\frac{687.5 \ cm^2}{\pi}} = 14.80 \ cm \tag{27}$$

d.equivalente = 2 * r.equivalente = 2 * 14.80 cm

 $d.equivalente = 29.6 \ cm \approx 30 \ cm$

se asume un diámetro equivalente de 30cm.

El pistón de carga de un equipo de compresión simple mide aproximadamente 5 cm de diámetro. Éste va a simular la carga del neumático aplicada sobre el pavimento.

Figura 14. Equipo para la prueba de compresión simple

A continuación se determina el factor de escala para el ensayo:

$$FE = \frac{d.pistón}{d.equivalente} = \frac{5 cm}{30 cm} = \frac{1}{6}$$
(28)

Para obtener el espesor necesario de agregado, se inicia mediante un análisis estático, utilizando los criterios planteados por los investigadores Giroud and Noiray (Ver figura 9 (a)), quienes aplicaron las siguientes fórmulas:

Se calcula la presión en la subrasante debido a la carga aplicada sobre la muestra de pavimento, según la ecuación (9), donde:

$$P = \text{carga por eje} = 11 \text{ ton} = 108 \text{ kN}$$

$$\propto = \text{inclinación teórica de planos de falla en el agregado} = 31^{\circ}$$

$$A. equivalente = B * L$$
(29)

El valor del área equivalente circular calculada en la ecuación (26), se la transforma a un área equivalente cuadrada cuyas dimensiones son B y L. Los valores de B y L se los puede obtener a partir de la ecuación (11).

Consecuentemente, la capacidad última de carga sobre la subrasante se expresa a través de la ecuación (23), donde la cohesión no drenada está en función del CBR de la subrasante, que para este análisis se asume el valor correspondiente a 55 golpes (ver Tabla 1.), de tal manera que se reflejen las condiciones de consolidación que un suelo de subrasante presenta en el campo.

$$C_u(kPa) = 30 \ CBR \tag{31}$$

Reemplazando los valores:

$$C_u(kPa) = 30 (3.02)$$

 $C_u = 90.6 \, kPa = 0.92 \, kg/cm^2$
(32)

Igualando las ecuaciones antes mencionadas, se obtiene:

$$\pi(0.92) + \chi h = \frac{5500}{(31.18 + 2h\tan 31)(22.05 + 2h\tan 31)} + \chi h$$
(33)

Andrés Bustamante Noboa – Maestría en Ingeniería en Vialidad y Transportes

A partir del cálculo aterior, se determina la altura *h* de la capa de agregado. Los valores resultantes son:

$$h_1(cm) = 14.36$$

 $h_2(cm) = -58.70$ (34)

En síntesis, los resultados no presentan mucha coherencia con un espesor que efectivamente se debería colocar; por lo tanto se utilizó el criterio de cálculo dinámico, en donde interviene el número de ejes equivales en función del TPDA actual del tramo en estudio.

Según la Tabla 6, se determina el Factor camión por tipo de vehículo:

CÁLCULO FACTOR CAMIÓN					
TIPO VEHÍCULO	FC				
A	UTO				
Liviano	0				
3A					
Bus	3.583				
2	2DB				
Camión 2 ejes	3.794				
	3A				
Camión 3 ejes	3.583				
252					
Tracto camión	6.811				
FCg	3.716				

Tabla 6. Cálculo Factor Camión Global

Posteriormente se obtiene el factor camión global a través de la siguiente expresión:

$$FC_G = \frac{\sum FC_i * TPDA_i}{\sum FC_i}$$

$$FC_G = 3.716$$
(35)

El cálculo paso a paso del factor camión para pavimento flexible, se lo puede ver en el Anexo Cálculos.

Luego se busca el número de ejes equivalentes para un eje standard de 8.2 *ton* a partir de la siguiente ecuación:

$$N_{s} = TPDA_{inicial} x FCg$$
(36)
$$N_{s} = 933$$

no se incluyeron factores de crecimiento, pues la metodología de Giroud and Noiray no explica la utilización de estos factores para un horizonte de diseño, ni tampoco se utilizan factores de distribución por considerarse un cálculo simple que no implica llegar a conclusiones inmediatas, sino que es parte del desarrollo completo de este estudio.

Se calcula el número de ejes equivalentes para un eje de 11 *ton* de la expresión (26), y se determina:

$$N = 292$$
 (38)

A partir de la expresión (25), se calcula el espesor de base para un análisis dinámico, considerando el tráfico:

$$h'_0 = (1.6193 \log 292 + 6.3964 \log 108 - 3.7892 * 0.075 - 11.8887)/90.6^{0.63}$$

El espesor necesario es: $h'_0 = 28 \ cm$ (40)

Finalmente se acoge este valor de espesor de la capa de base como el correcto.

Para escoger la altura de la subrasante, se realizará aplicando la teoría de Boussinesq, ecuación (1), la que puede establecer los esfuerzos y deformaciones a cualquier profundidad. Se utilizó para ello un software conocido como Alize (ver proceso de cálculo en el Anexo Cálculos, 2. Determinación de altura de la subrasante) y se obtuvieron los siguientes resultados:

	ΔZ	Profundidad	σz	Def
	(m)	(m)	(Mpa)	(m)
	0	0	0.8	0.1404
ASE	0.08	0.08	0.675	0.9013
BZ	0.05	0.13	0.485	0.8606
A	0.05	0.18	0.297	0.7322
N N	0.05	0.23	0.153	0.6969
	0.05	0.28	0.001	0.9008
	0.05		0.064	1.965
	0.05	0.33	0.07	1.6462
Ë	0.05	0.38	0.06	1.4074
AN	0.05	0.43	0.052	1.2232
AS	0.05	0.48	0.045	1.0772
3R	0.05	0.53	0.04	0.9586
Ĵ,	0.05	0.58	0.036	0.8604
	0.05	0.63	0.032	0.7778
	0.05	0.68	0.029	0.7022

Tabla 7. Resultados de esfuerzos/deformaciones a varias profundidades (programa Alize).

Figura 15. Influencia de la carga (esfuerzos) de una rueda dual (5.5 ton)

Figura 16. Influencia de la carga (deformación) de una rueda dual (5.5 ton)

Se determinó que no existen deformaciones ni esfuerzos influyentes en la subrasante, cuando la profundidad en la estructura de pavimento es de 1,73 m (ver Figura 16), por tal razón se concluye que los espesores necesarios para la subrasante y la capa base son:

espesor capa base = 28 cm espesor subrasante = 1.45 cm

Ahora, estos valores deben ser multiplicados por el factor de escala determinado en la ecuación (28), para obtener los espesores que se asumirán en la elaboración de las muestras de pavimento:

espesor capa base a escala = 4 cm espesor subrasante a escala = 24 cm

Es decir que para los ensayos se necesitará un molde de 28 cm de alto.

Para calcular el ancho del molde, se debe obtener a través de diagramas de bulbos de presión, determinado en la Figura 17:

Figura 17. Diagrama de bulbos de presión Fuente: (M. Das, Fundamentos de Ingeniería Geotécnica, 2001)

Se considera que el ancho medio de un bulbo es igual a 0.9 veces el diámetro de la carga circular aplicada. En este caso se conoce que el diámetro del pistón es de 5 cm, multiplicado por 0.9, se obtiene que el ancho medio del bulbo que es de 4.5 cm y este valor por dos. Finalmente, se determina que el diámetro necesario para el molde es de 9 cm.

En consecuencia las dimensiones necesarias del molde son:

Figura 18. Molde de ensayo

CAPÍTULO IV: ENSAYOS EN LABORATORIO, MODELACIÓN Y RESULTADOS

En este capítulo se expondrán de manera ilustrativa y mediante tablas de resumen, los resultados alcanzados en las etapas de ensayos de laboratorio y modelación. Serán el punto de partida para llegar a las conclusiones esperadas en este estudio a través de valoraciones numéricas.

4.1 ENSAYO A COMPRESIÓN SIMPLE SOBRE UNA ESTRUCTURA DE PAVIMENTO BAJO CARGA MONOTÓNICA.

Tomado como punto de partida el proceso de diseño de los especímenes de una estructura de pavimento que se desarrolló en el capítulo anterior, se proyectaron realizar cuatro ensayos a compresión simple que permitirán analizar la interface subrasante-base y en los otros casos la interface subrasante-geosintético-capa base, de acuerdo a los siguientes escenarios:

- a) Sin reforzamiento
- b) Solo geotextil
- c) Con geotextil y geomalla
- d) Solo geomalla

Para el efecto, se trabajó sobre la muestra de suelo de subrasante obtenida en el campo. Se le añadió la cantidad de agua necesaria para que alcance la humedad natural con la que fue encontrada en el sitio de su extracción, es decir, con un 35.73 % de humedad natural. Posteriormente, se rellenaron moldes de 15 cm de ancho por 30 cm de alto, que son los utilizados para tomar muestras de hormigón, en 5 capas de 4 a 5 cm cada una hasta alcanzar la altura de 24 cm, según las dimensiones determinadas en el capítulo anterior. A cada capa se la compactaba con un número aproximado de 56 golpes mediante un martillo de 10 libras de peso, desde una altura de caída de 18 pulgadas, de

acuerdo con el procedimiento de la prueba proctor modificado (Se intentó replicar las condiciones de confinamiento y consolidación que presenta el suelo en el campo). Sobre esta capa se colocó el geotextil, la geomalla, ambos materiales o ninguno de ellos, dependiendo del escenario que se estaba elaborando. Finalmente, se puso una capa de material base clase I de 4 cm de espesor donde se realizó el mismo proceso de compactación que en las capas de la subrasante (ver Anexos, anexo fotográfico, 3. Ensayos a compresión simple sobre la estructura de pavimento). Así, se llevaron las muestras al laboratorio para ser ensayadas.

Se aplicó una carga monotónica a través de un pistón de acero inoxidable a una velocidad de 1.27 mm/min de forma perpendicular a la muestra de pavimento. Las lecturas de los asentamientos fueron registradas a través de un deformímetro cuyas medidas estaban dadas en pulgadas. Para el caso de la carga, los valores fueron registrados en kilonewtons desde un panel electrónico. Las lecturas de deformaciones fueron transformadas a centímetros y en el caso de la carga, en kilogramos-fuerza, de tal forma que las medidas sean interpretadas mediante el Sistema Internacional (S.I.) que se utiliza de manera cotidiana en el país.

Para el primer escenario de una muestra sin reforzamiento, se alcanzó una deformación máxima de 1.524 cm con una carga máxima de 235.47 kg. Para el segundo y tercer caso, es decir, la muestra reforzada con geotextil y la con geotextil y geomalla respectivamente, se llegó a una deformación máxima de 2.032 cm a una carga correspondiente de 355.76 y 352.70 kg. Para el caso del reforzamiento con geomalla, la deformación máxima que alcanzó es de 2.032 cm a un esfuerzo máximo de 403.67 kg, como se demuestra en la Tabla 8.

ENSAY	ENSAYO N°1		ENSAYO N°2		ENSAYO N°3		′O N°4
SIN REFOR	ZAMIENTO	SOLO GE	SOLO GEOTEXTIL CON GEOTE		CON GEOTEXTIL Y GEOMALLA		OMALLA
Penetración	Carga	Penetración	Carga	Penetración	Carga	Penetración	Carga
cm	kg	cm	kg	cm	kg	cm	kg
0	0.00	0	0.00	0	0.00	0	0.00
0.064	38.74	0.064	24.46	0.064	19.37	0.064	28.54
0.127	47.91	0.127	42.81	0.127	42.81	0.127	47.91
0.191	62.18	0.191	53.01	0.191	53.01	0.191	67.28
0.254	72.38	0.254	67.28	0.254	67.28	0.254	86.65
0.381	106.01	0.381	100.92	0.381	106.01	0.381	129.46
0.508	129.46	0.508	129.46	0.508	144.75	0.508	173.29
0.635	159.02	0.635	163.10	0.635	182.47	0.635	226.30
0.762	178.39	0.762	187.56	0.762	221.20	0.762	249.75
1.016	221.20	1.016	245.67	1.016	293.58	1.016	293.58
1.270	226.30	1.270	283.38	1.270	332.31	1.270	346.59
1.524	235.47	1.524	307.85	1.524	341.49	1.524	384.30
		1.778	336.39	1.778	346.59	1.778	417.94
		2.032	355.76	2.032	352.70	2.032	403.67

Tabla 8. Lecturas de ensayo a compresión simple bajo una carga monotónica

Los comportamientos de las curvas carga/deformación se desarrollaron en un régimen elástico para el caso de las muestras de solo geotextil y solo geomalla; es decir, se observa proporcionalidad entre la carga aplicada y el desplazamiento resultante. Mientras que en el caso de las muestras sin reforzamiento y con geotextil y geomalla, el comportamiento de la curva carga/deformación se desarrolló en un régimen elasto-plástico perfecto, logrando una mayor resistencia la muestra de geotextil y geomalla (ver Figura 19).

La mayor capacidad de carga alcanzada dentro de los ensayos realizados, fue en el escenario solo geomalla, con un incremento en la resistencia (esfuerzo normal actuante) de 63.21% con respecto al escenario sin reforzamiento, de 45.02% utilizando simultáneamente la combinación de un geotextil y una geomalla y de 30.74% reforzado solo con geotextil.

Para el escenario sin reforzamiento no se llegaron a mayores esfuerzos. La carga máxima alcanzada antes de entrar en el régimen plástico fue de 221.20 kg, que resulta

ser la más baja con respecto a las cargas máximas alcanzadas en el resto de ensayos. Su comportamiento plástico se mantuvo constante con relación a la carga máxima aplicada, por lo tanto, no se registraron más lecturas.

Para el escenario en donde solo se utiliza el geotextil como material de reforzamiento, se observa que la curva carga/deformación únicamente presenta un comportamiento elástico que se divide en dos etapas. La primera con un módulo de rigidez de 345 kg/cm² hasta alcanzar una carga de 245.67 kg y la segunda etapa con una rigidez de 154.57 Kg/cm² hasta la última carga registrada que es de 355.76 kg. El desempeño de esta estructura permitía incrementar la carga considerablemente sin alterar el comportamiento elástico del material.

Para el escenario de reforzamiento con geotextil y geomalla, se desarrolló inicialmente una etapa elástica hasta alcanzar una carga de 332.3 kg. A partir de este punto se observó un comportamiento plástico, en donde al aplicar una carga menor, las deformaciones eran mayores.

La tendencia de la curva carga/deformación habría mantenido el mismo comportamiento, hasta que en algún momento podría haber fallado, a cierta carga desconocida. Sin embargo, no se llegó a la falla de la muestra.

En el escenario con geomalla se obtuvo el mayor valor promedio de rigidez con 467 kg/cm² comparado con los valores alcanzados en los otros ensayos; no obstante cuando se alcanzó la carga máxima de 417.94 kg, se produjo su falla inmediata a pesar de haber alcanzado la mayor resistencia con respecto al resto de ensayos, por lo tanto fue la única muestra que llegó a fallar.

La gráfica carga/penetración de los ensayos realizados sobre las estructuras de pavimento, se describe en la Figura 19.

Figura 19. Curvas carga/penetración de las estructuras de pavimento ensayadas bajo una carga monotónica.

4.2 OBTENCIÓN DE PARÁMETROS DE LOS MATERIALES, ANTES DE LA MODELACIÓN.

Previo a realizar cualquier análisis en una herramienta computarizada, se debe obtener los parámetros físicos y mecánicos de los elementos que formarán parte de las muestras de pavimento, de tal forma que se pueda replicar el comportamiento real de los mismos.

Consecuentemente, se empleará el software Plaxis 8.6, que es un programa de elementos finitos utilizado principalmente para aplicaciones geotécnicas y que cuenta con una base de datos que incluye varios modelos matemáticos capaces de evaluar el comportamiento de cualquier material. Concretamente para esta situación, se analizarán los especímenes mediante los criterios de la teoría Morh-Coulomb, modelo matemático muy utilizado en el campo de la geotecnia y que expone claramente el modo de falla por corte de cualquier tipo de suelo sin particularizar sus propiedades mecánicas.

4.2.1 Parámetros del material de subrasante

La composición del material de la subrasante, según los métodos de clasificación de suelos SUCS y AASHTO a través de un ensayo granulométrico, determinó que sus características corresponden a una arcilla limosa de alta plasticidad. Se puede observar a detalle los resultados de los ensayos en la sección Anexos, resultados ensayos de laboratorio, 1. Ensayos subrasante.

A partir de la clasificación del suelo, se procedió con la determinación de su primer parámetro que corresponde al **peso específico saturado**, como se indica a continuación:

$$\gamma_{sat} = \frac{Gs+e}{1+e} \gamma_w \text{ (Braja Das, 2001)}$$
(46)

donde:

 $\gamma_{sat} =$ peso específico saturado del suelo

 G_s = gravedad específica

e = relación de vacíos del suelo

 $\gamma_w = \text{peso específico del agua}$

Para ello, se debe determinar el resto de parámetros que forman parte de la ecuación (46), como son: la gravedad específica y la relación de vacíos del suelo. Se las obtiene de las siguientes expresiones:

$$G_s = \frac{\gamma_d(1+e)}{\gamma_w} \tag{47}$$

donde:

 γ_d = peso específico seco del suelo

La relación de vacíos del suelo, que se define como la razón del volumen de vacíos sobre el volumen de sólidos (Das, 2001, p.18), que se detalla en la siguiente expresión:

$$e = \frac{v_v}{v_s}$$
(48)
 $v_v = Va + Vw$
(49)
donde:
 $V_a =$ Volumen de aire

 V_w = Volumen de agua

Por lo tanto el volumen de agua se la obtiene de la siguiente manera:

Se calcula el peso de suelo seco a partir de los valores proyectados en el ensayo proctor modificado, para el peso específico seco máximo (γ_d) de 1640 kg/m^3 que se obtuvo en el laboratorio. Este valor se lo puede observar en la sección Anexos, resultados ensayos de laboratorio, 1. Ensayos subrasante.

$$\%\omega = \frac{Wsuelo h \acute{u}medo - Wsuelo seco}{Wsuelo seco}$$
(50)

$$Wsuelo\ seco = \frac{Wsuelo\ h\acute{u}medo}{(\%\omega+1)}$$
(51)

donde:

Wsuelo húmedo = 4367gr

 $\%\omega$ = porcentaje de humedad óptima = 22.2%

Reemplazando los valores en la ecuación (51), se obtiene el siguiente resultado para el peso de suelo seco:

 $Wsuelo\ seco = 3574\ gr$

Para obtener el peso de agua, se resta el peso de suelo húmedo del peso de suelo seco de la siguiente manera:

$$Ww = Wsuelo h umedo - Wsuelo seco$$
⁽⁵²⁾

donde:

Ww = 793 gr

por lo tanto el volumen de agua se obtiene de la siguiente expresión:

 $V_w = \frac{w_w}{\gamma_w}$ Ww = peso de agua $\gamma_w =$ peso específico del agua $= 1 gr/cm^3$ reemplazando valores, se determina que el volumen de agua es: $V_w = 793 \ cm^3$

Posteriormente para obtener el volumen de vacíos, se reemplaza el volumen de agua en la ecuación (49) y se asume como cero el valor del volumen de aire, ya que el suelo se encuentra saturado. El resultado obtenido es:

 $V_v = 793 \ cm^3$

Ahora se calcula el volumen de suelo de la siguiente expresión:

Vs = Vmolde - Vv (54) donde: $V_s =$ Volumen de suelo $V_{molde} =$ Volumen de molde para el ensayo de proctor modificado. $V_v =$ Volumen de vacíos

El volumen del molde según el ensayo efectuado en laboratorio es de 2179 cm^3 que en definitiva se reemplaza en la ecuación (54) y se establece el siguiente volumen de suelo: $Vs = 1386 \ cm^3$

Ahora con los valores calculados del volumen de vacíos y el volumen del suelo, estos se reemplazan en la ecuación (48) para obtener el valor de la relación de vacíos que será el siguiente:

e = 0.572

consecuentemente con el valor resultante de la relación de vacíos, se procede a calcular la gravedad específica reemplazando los valores en la ecuación (47):

 $G_{s} = 2.6$

Finalmente, se calcula el valor de peso específico saturado como se expresa en la ecuación (46):

 $\gamma_{sat} = 2018 \ kg/m^3 = \ 19.78 \ kN/m^3$

El segundo parámetro en ser establecido fue el **peso específico no saturado**, o sobre el nivel freático. En este caso, se asumió el valor del peso específico seco máximo (γ_d) de 1640 kg/m^3 que se determinó en laboratorio, de tal forma que se empleará este valor para la simulación:

 $\gamma_{unsat} = 1640 \ kg/m^3 = 16.08 \ kN/m^3$

Para determinar el parámetro **permeabilidad** de este tipo de suelo de subrasante, se asumió el valor de $k = 0.000001 \ cm/s$ o $0.0000006 \ m/min$ como se indica en la Tabla 9, que corresponde a un suelo arcilloso.

Tipo de suelo	k (cm/s)
Grava limpia	100-1
Arena gruesa	1.0 - 0.01
Arena fina	0.01 -0.001
Arcilla limosa	0.001 -0.00001
Arcilla	0.000001

Tabla 9. Valores típicos de permeabilidad para suelos saturados.Fuente: Fundamentos de Ingeniería geotécnica, Braja M. Das

El valor del coeficiente de permeabilidad k, es asumido tanto para la dirección horizontal y vertical.

Paralelamente se obtuvo el <u>Módulo de Young</u> y el <u>Coeficiente de Poisson</u> a través de la Tabla 10:

	Rango de valores típicos	Coeficiente de	Estimación de <i>E_s</i> a partir	de N
Tipo de Suelo	Módulo de Young, <i>E_s</i> (MPa)	Poisson, v (adimensional)	Tipo de suelo	Es (MPa)
Arcilla: Blanda sensible Medianamente rígida	2,4 - 15 15 - 50	0,4 - 0,5 (no drenada)	Limos, limos arenosos, mezclas levemente cohesivas	0,4 N ₁
Muy rígida	50 - 100		Arenas limpias finas a medias y arenas levemente limosas	0,7 N ₁
			Arenas gruesas y arenas con poca grava	1,0 N ₁
			Grava arenosa y gravas	1,1 N _t
Loes	15 - 60	0,1 - 0,3	Grava arenosa y gravas	1,1 N ₁
Limo	2 - 20	0,3 - 0,35		
			Estimación de E_s a partir de S_u	
Arena fina:				
Suelta	7,5 - 10	0.05		
Densa	10 - 20	0,25	Arcilla blanda sensible	400 \$ - 1000 \$
Densa	20-25		Arcilla medianamente rígida a rígida	$1500 S_{\mu} - 2400 S_{\mu}$
Arena: Suelta	10 - 25	0.20 - 0.35	Arcilla muy rígida	$3000 S_u - 4000 S_u$
Medianamente densa	25 - 50	0,20 - 0,55		
Densa	50 - 75	0,30 - 0,40		
			Estimación de E _s a partir	$de q_c$
Grava:				
Suelta	25 - 75	0,2 - 0,35	Suelos arenosos	4 a.
Medianamente densa	75 - 100		Sucios archosos	- 4c
Densa	100 - 200	0,3 - 0,4		

Tabla 10. Constantes elásticas de diferentes suelos.Fuente: U.S.Department of the Navy (1982) y Bowles (1988)

Por lo tanto se asumen los siguientes valores:

$$E_S = 2.4 Mpa = 2400 kN/m^2$$

 $v = 0.45$

El siguiente parámetro en ser obtenido fue la <u>cohesión</u>. Para ello, se utilizó la ecuación (31) en donde se calcula la cohesión como una función del CBR de la subrasante, cuyo valor se encuentra detallado en la sección Anexos, resultados ensayos de laboratorio, 1. Ensayos subrasante.

 $C_u(kPa) = 30 (1.21) = 36.3 kPa$

Para obtener el <u>ángulo de fricción</u>, se partió de la clasificación del material de subrasante que corresponde a una arcilla orgánica de alta plasticidad (MH-OH). De esta manera, se revisó en la Tabla 11 que el ángulo de fricción a asumir es cero.

					Resistencia	cortante
		Contenido natural de	Límite	Índice de	Cohesión	Ángulo de fricción
Ambiente	Textura del suelo	agua (%)	líquido	plasticidad	(kN/m²)	(grados)
Bordos naturales	Arcilla (CL)	25-35	35-45	15-25	17-57	0
	Limo (ML)	15-35	NP35	NP-5	9-33	10-35
Banco de arena	Limo (ML) y arena limosa (SM)	25-45	30-55	10-25	0-41	25-35
Canal abandonado	Arcilla (CL, CH)	30-95	30-100	10-65	14-57	0
Pantano	Arcilla (CH)	25-70	40-115	25-100	19-120	0
Ciénega	Arcilla orgánica (OH)	100-265	135-300	100-165	-	-
* Según Kolb y Shoc	kley (1959)				<u>adi - '</u> illinilli	
^b Redondeado						
° NP = no plástico						

Tabla 11. Propiedades de depósitos.Fuente: Principios de Ingeniería de Cimentaciones, Braja Das (2001)

Bolton (citado en Plaxis Version 8 material models manual, s.f.,p.3-8) en el año de 1986, señaló que el <u>ángulo de dilatancia</u> para estratos altamente consolidados, como es el caso de los suelos arcillosos, tienden a mostrar una pequeña dilatancia (ψ ≈0). La dilatancia en las arenas depende tanto de su densidad como del ángulo de fricción, pero su magnitud está en el orden de ψ ≈ ϕ -30°. Para valores del ángulo de fricción menores a 30°, el ángulo de dilatancia es cercano a cero. Para las condiciones que muestra el material de la subrasante del presente estudio, el ángulo de dilatancia en asumido como cero.

El último parámetro en ser determinado es el <u>coeficiente de presión lateral de tierras</u>, que de acuerdo a la siguiente ecuación, se calculó que: $k_a = 1$

$$K_a = tan^2 (45 - \frac{\phi}{2})$$
 (Braja Das, 2001) (55)

Finalmente, el comportamiento asumido para este suelo es de tipo no drenado, debido a que una arcilla necesita de un largo período de tiempo (días), para filtrar el agua contenida en su estructura. Sumado a esto, la carga que se aplicó, se la realizó de manera instantánea y tuvo una duración de 12 a 16 minutos. Además se consideró que la arcilla estaba saturada en un 100% (C_u y $\varphi = 0$).

En resumen, se presentan los parámetros de la subrasante en la Tabla 12.

DESCRIPCIÓN PARÁMETRO	SÍMBOLO	VALOR	UNIDAD
Modelo utilizado para evaluar el Material	Modelo	Mohr-Coulomb	
Tipo de comportamiento del material	Tipo	UnDrained	
Peso específico del suelo sobre el nivel freático	Yunsat	16.088	kN/m ³
Peso específico del suelo bajo el nivel freático	Υsat	19.780	kN/m ³
Permeabilidad en dirección horizontal	k_{x}	6.00E-07	m/min
Permeabilidad en dirección vertical	k _y	6.00E-07	m/min
Módulo de Young	E _{ref}	2400	kN/m²
Coeficiente de Poisson	v	v 0.45	
Cohesión	C _{ref}	36.3	kN/m²
Ángulo de fricción	φ	0	٥
Ángulo de dilatancia	ψ	0	٥
Coeficiente de presión lateral de tierras	Ka	1.00	

Tabla 12. Resumen de parámetros de la subrasante

4.2.2 Parámetros de la Capa Base

La composición del material de la capa base, según los métodos de clasificación de suelos SUCS y AASHTO a través de un ensayo granulométrico, determinó que sus características corresponden a una grava con partículas finas entre arcillas y limos (GC-GM). Se puede observar a detalle los resultados de los ensayos en la sección Anexos, resultados ensayos de laboratorio, 2. Ensayos base

El proceso para la determinación de los parámetros del material granular de la capa base, es el mismo que para el suelo de la subrasante. Primeramente se determina el **peso específico saturado**, como se indica a continuación:

Se calcula el peso de suelo seco a partir de los valores proyectados, en el ensayo de proctor modificado para el peso específico seco máximo (γ_d) de 2061 kg/m^3 que se obtuvo en el laboratorio, según se puede visualizar en la sección Anexos, resultados ensayos de laboratorio, 2. Ensayos base.

Obtenemos el valor del peso húmedo del suelo y el porcentaje de humedad, como se detalla a continuación:

Wsuelo húmedo = 4926 gr % ω = porcentaje de humedad = 9.71% reemplazando estos valores en la ecuación (51), se calcula el peso de suelo seco: Wsuelo seco = 4490 gr

Para el volumen de agua, se adopta la cantidad incrementada de agua para alcanzar el peso específico seco máximo, como se indica en la sección Anexos, resultados ensayos de laboratorio, 2. Ensayos base.

 $V_w = 300 \ cm^3$

Para el volumen de vacíos, se reemplaza el volumen de agua en la ecuación (49) y se acepta como cero el valor del volumen de aire, ya que la muestra de material granular se encuentra saturada. El resultado obtenido es el siguiente:

 $V_v = 300 \ cm^3$

Ahora se obtiene el volumen de suelo, reemplazando en la ecuación (54) los valores del volumen del molde (para este ensayo es de $2179 \, cm^3$) y el volumen de vacíos calculado en el paso anterior. El resultado se lo presenta a continuación: $Vs = 1879 \, cm^3$

Los valores calculados del volumen de vacíos y el volumen del suelo, se los reemplaza en la ecuación (48). El valor de la relación de vacíos será el siguiente:

e = 0.16

Consecuentemente con el valor resultante de la relación de vacíos, se procede a calcular la gravedad específica reemplazando los valores en la ecuación (47):

 $G_{s} = 2.4$

Finalmente, calculamos el valor de peso específico saturado como se expresa en la ecuación (46):

 $\gamma_{sat} = 2207 \ kg/m^3 = \ 21.65 \ kN/m^3$

El segundo parámetro en ser establecido fue el <u>peso específico no saturado</u>, o sobre el nivel freático. En este caso, el valor asumido fue del peso específico seco máximo (γ_d) de 2061 kg/m^3 que se obtuvo en el laboratorio, ya que el ensayo fue desarrollado con la humedad óptima que le corresponde a este peso específico, de tal forma que para la simulación será adoptado este valor:

 $\gamma_{unsat} = 2061 \, kg/m^3 = 20.218 \, kN/m^3$

El siguiente parámetro en ser obtenido fue la **permeabilidad** del suelo. Para el caso del suelo de la capa base se asumió el valor de k = 1 cm/s o 0.6 m/min como se indica en la Tabla 9 para un suelo con grava y arena.

El valor del coeficiente de permeabilidad k, es asumido tanto para la dirección horizontal y vertical.

Paralelamente se obtuvo el <u>Módulo de Young</u> y el <u>Coeficiente de Poisson</u> a través de la Tabla 10.

Por lo tanto se asumen los siguientes valores para una grava densa:

 $E_S = 150 Mpa = 150000 kN/m^2$

v = 0.35

Para la <u>cohesión</u> se asume un valor de cero, tomando en cuenta que el material de la capa base no es cohesivo. Por tal razón, se adopta este valor en función de la Tabla 13.

	Cohesion (kPa)
gravel	
sandy gravel with few fines	—
sandy gravel with silty or clayey fines	1.0
mixture of gravel and sand with fines	3.0
uniform sand — fine	-
uniform sand — coarse	
well-graded sand	
low-plasticity silt	2.0
medium- to high-plasticity silt	3.0
low-plasticity clay	6.0
medium-plasticity clay	8.0
high-plasticity clay	10.0
organic silt or clay	7.0

 Tabla 13. Propiedades de resistencia de diferentes tipos de suelos.

 Fuente: Ortiz (1986)

Para la obtención del <u>ángulo de fricción</u>, se partió de la clasificación del material granular que corresponde a una grava con arenas limosas (GM-GC) y que se detalla en la sección Anexos, resultados ensayos de laboratorio, 2. Ensayos base. Para el efecto, se revisó la Tabla 14 y se asumió un ángulo de fricción igual 40°, para una grava con algo de arena.

Tipo de suelo	ø (grados)
Arena: granos redondeados	
Suelta	27-30
Media	30-35
Densa	35-38
Arena: granos angulares	
Suelta	30-35
Media	35-40
Densa	40-45
Grava con algo de arena	34-48
Limos	26-35

Tabla 14. Ángulos de fricción para arenas y limosFuente: Fundamentos de Ingeniería geotécnica, Braja M. Das

El ángulo de dilatancia se lo calcula a partir de la siguiente expresión:

 $\psi = \phi - 30$ (*Plaxis Version 8 material models manual*) (55) reemplazando el ángulo de fricción cuyo valor es igual a 40°, resulta que el ángulo de dilatancia es de 10°.

El último parámetro alcanzado es el <u>coeficiente de presión lateral de tierras</u>, que de acuerdo a la Tabla 15, se asumió un valor de $k_a = 0.22$

Ángulo de fricción	
ø del suelo (grados)	$K_a = \tan^2 (45 - \phi/2)$
20	0.490
21	0.472
22	0.455
23	0.438
24	0.422
25	0.406
26	0.395
27	0.376
28	0.361
29	0.347
30	0.333
31	0.320
32	0.307
33	0.295
34	0.283
35	0.271
36	0.260
37	0.249
38	0.238
39	0.228
40	0.217
41	0.208
42	0.198
43	0.189
44	0.180
45	0.172

Tabla 15. Variación del coeficiente de presión lateral de tierras

 Fuente: Principios de Ingeniería de Cimentaciones, Braja Das (2001)

Finalmente, el comportamiento asumido para este suelo es de tipo drenado, debido a que al aplicarse una carga instantánea, el agua contenida en su estructura filtra rápidamente a través de ésta.

En resumen, se presentan los parámetros de la capa base en la Tabla 16.

DESCRIPCIÓN PARÁMETRO	SÍMBOLO	VALOR	UNIDAD
Modelo utilizado para evaluar el Material	Modelo	Mohr-Coulomb	
Tipo de comportamiento del material	Тіро	Drained	
Peso específico del suelo sobre el nivel freático	Yunsat	20.218	kN/m ³
Peso específico del suelo bajo el nivel freático	Υsat	21.650	kN/m ³
Permeabilidad en dirección horizontal	k_x	0.6	m/min
Permeabilidad en dirección vertical	k _y	0.6	m/min
Módulo de Young	E _{ref}	150000	kN/m²
Coeficiente de Poisson	v	0.35	
Cohesión	C _{ref}	0	kN/m²
Ángulo de fricción	φ	40	٥
Ángulo de dilatancia	ψ	10	0
Coeficiente de presión lateral de tierras	K _a	0.22	

Tabla 16. Resumen de parámetros de la capa de base

En lo que concierne a los parámetros del geotextil NT-1800 y la geomalla biaxial BX-1200 que serán empleados en las simulaciones, sus parámetros más importantes se resumen en la sección 3.1., Tablas 3 y 4. No obstante, el único parámetro que solicita el software Plaxis 8.6 es la resistencia a la tensión que en este caso son: 9.6 kN/m y 128.72 kN/m respectivamente.

4.3 MODELACIÓN DE LOS ENSAYOS.

Para corroborar los resultados obtenidos en el laboratorio, se procedió con la simulación de cada uno de los ensayos realizados sobre las muestras de pavimento. Se representó el comportamiento del suelo, su interacción con las estructuras de reforzamiento y el tipo de falla producida. Para el efecto, se utilizó el software Plaxis 8.6 que es un programa de elementos finitos utilizado principalmente para aplicaciones geotécnicas y en donde se

puede evaluar el comportamiento de un suelo en función del modelo diseñado por el usuario. La precisión y la exactitud en los resultados que se obtengan del modelo evaluado, dependerán fundamentalmente de la confiabilidad en los parámetros geomecánicos del suelo, las condiciones de frontera, las cargas aplicadas sobre el modelo y de la experticia del usuario.

Para analizar el comportamiento del suelo, el programa cuenta con una base de datos de los modelos de evaluación para diferentes tipos de suelos. En este caso se utilizará la teoría de Morh-Coulomb que es un modelo matemático que se aplica en el campo de la geotecnia que expone claramente el modo de falla por corte de un suelo y se aplica a cualquier tipo de material sin particularizar sus propiedades mecánicas.

Para iniciar con la simulación, el programa requiere que se ingresen los primeros datos de entrada como es el caso de las opciones generales tales como: el título del proyecto, el modelo de análisis, el número de nodos y la aceleración de la gravedad, según como se representa en la Figura 20.

Project		General optic	ons
Filename 9	Sin reforzamiento.PLX	Model	Axisymmetry -
Directory (C: \Users \a \Documents \ANDRES \MAE! Sin reforzamiento	Elements	15-Node
Comments		Acceleration Gravity angle x-acceleratio y-acceleratio Earth gravity	e: -90 ° 1.0 G m: 0.000 ♀ G m: 0.000 ♀ G r: 9.800 ♀ m/s ²

Figura 20. Opciones generales para la simulación del ensayo sin reforzamiento Fuente: Software Plaxis 8.6

Se evaluará mediante un modelo axisimétrico, es decir, que todos los semiplanos que contiene un eje de simetría común, tendrán las mismas características de: parámetros del suelo, condiciones de frontera, cargas aplicadas sobre el modelo, según se indica en la Figura 21.

Figura 21. Diagrama de un modelo axisimétrico Fuente: Manual de referencia Plaxis Versión 8

Los elementos que discretizan la estructura completa del suelo, estarán conformadas por 15 nodos que evalúan las tensiones normales y tangenciales que el programa selecciona por defecto. Cada elemento tiene una forma triangular y todos en conjunto generan una malla sobre la estructura completa del suelo. Se conectan a partir de sus aristas.

Figura 22. Posición de los nodos dentro de un elemento del suelo Fuente: Manual de referencia Plaxis Versión 8

El valor de la gravedad adoptado será de 9.80 m/s², que el programa lo asigna por defecto.

A continuación, en la pestaña dimensiones, se asignan las unidades con las que se va a trabajar, las características geométricas del modelo y el tamaño de la grilla según se puede observar en la Figura 23. Se debe aclarar que las dimensiones serán únicamente del semiplano de la muestra de suelo, debido a que se trata de un modelo axisimétrico como se indicó en un párrafo anterior.

Length m	Left: 0.000 + m
Force kN V	Right : 0.075 🖨 m
Time min 💌	Bottom : 0.000 🖨 m
,	Top: 0.380 🚖 m
	Grid
Stress kN/m ²	Spacing : 0.010 🔿 m
Weights kN/m ³	Number of snap intervals: 1
Set as default	

Figura 23. Opciones generales, pestaña dimensiones Fuente: Software Plaxis 8.6

Ahora se procede con la asignación de las características de los suelos. Para ello, se elige la opción propiedades del material. Se crea un nuevo tipo de suelo y se despliega una cuadro de diálogo en donde se habilita la pestaña general, que pide ingresar el nombre o identificación del suelo, el modelo para analizar el comportamiento del material, el tipo de comportamiento del material, el peso específico sobre y bajo el nivel freático y su permeabilidad, como se indica en la Figura 24.

	Mohr-Coulom	b - Base		
General Parameter	s Interfaces			
Material set		General	properties	
Identification:	βase	γ _{unsat}	20.218	kN/m ³
Material model:	Mohr-Coulomb	γ _{sat}	21.650	kN/m ³
Material type:	Drained 💌			
		k _x : k _y :	0.600	m/min m/min
	T Soitteet	Nevt		Ivanced
	L Sourest	Mext		
C ;	aura 21 Propiedados	aonorala		<u>`</u>

Fuente: Software Plaxis 8.6

Consecuentemente se abre la pestaña parámetros en donde se requiere ingresar el módulo de rigidez del suelo, el coeficiente de Poisson, la cohesión efectiva, el ángulo de fricción efectiva y el ángulo de dilatancia. Los parámetros restantes se generan por defecto o en función a los valores antes ingresados, como se demuestra en la Figura 25.

Mohr-Cou	Ilomb - Base
General Parameters Interfaces	Strength
Stiffness	c _{ref} : 1.000E-04 kN/m ²
E _{ref} : 1.500E+05 kN/m ²	ϕ (phi): 40.000 °
v (nu): 0.350	w (nsi): 10.000 °
Alternatives	Velocities
G _{ref} : 5.556E+04 kN/m ²	$V_{g}:$ 164.100 \clubsuit m/s
E _{oed} : 2.407E+05 kN/m ²	$V_{p}:$ 341.600 \clubsuit m/s
SoilTest	<u>A</u> dvanced <u>N</u> ext <u>Q</u> K <u>C</u> ancel

Figura 25. Parámetros del suelo. Fuente: Software Plaxis 8.6

En la pestaña interfaces, se define un valor para el factor de reducción de esfuerzos que afecta directamente a la zona de contacto de los dos materiales, sean los casos: subrasante-material granular, subrasante-geosintético y material granular-geosintético.

Mohr-Coulomb - Base
General Parameters Interfaces
Strength C Rigid C Manual Rinter: 0.500
Real interface thickness δ-inter :
SoilTest <u>D</u> ext <u>D</u> K <u>C</u> ancel
Figura 26 Interfaces del suelo

Fuente: Software Plaxis 8.6

El material geosintético no puede propiamente tomar en cuenta el mecanismo de anclaje del agregado sobre su contextura, para que se pueda proveer un incremento en la rigidez local del pavimento. De modo que para la modelación, se debe capturar los esfuerzos a través del ángulo de fricción efectiva en la interface, el cual será más bajo que la máxima fricción entre partículas en un medio homogéneo. El rol de esta interacción agregado-geosintético es determinado a través del factor de reducción de esfuerzos R_{inter} (Indraratna & Nimbalkar, 2013), que está en función de las propiedades físicas del material (como por ejemplo el ángulo de fricción y cohesión para un suelo) y se lo definió a través de la siguiente tabla:

INTERFACE	FACTOR DE REDUCCIÓN DE ESFUERZOS R _{inter}
Material granular-suelo subrasante	1/2
Geotextil-material granular	1/2
Geotextil-suelo subrasante	1/2
Geomalla-material granular	2/3
Geomalla-suelo subrasante	2/3

 Tabla 17. Factor de reducción de esfuerzos para distintas interfaces

 Fuente: Stress-strain degradation response of railway ballast stabilized with geosynthetics. (Indraratna & Nimbalkar, 2013)

Para definir las características mecánicas del pistón, el programa únicamente requiere de dos parámetros de importancia como son: la rigidez axial y la rigidez a flexión. No obstante, la rigidez a flexión se obtiene a partir del espesor del pistón y de la rigidez axial, tal como se presenta en la siguiente ecuación:

$$d_{eq} = \sqrt{12 \frac{EI}{EA}}$$
 (Plaxis Version 8, Reference Manual) (56)

donde: $d_{eq} =$ espesor del pistón. EI = rigidez a flexión EA = rigidez axial

La representación de los datos ingresados, correspondientes a las propiedades físicas y mecánicas del pistón, se detallan en la Figura 27.

	Plate pro	operties		2
Material set		Properties		
Identification:	Pistón	EA:	2.100E+08 kN/m	
Material type:	Elastic	EI :	1.750E+05 kNm ² /m	
		d :	0.100 m	
Comments		w :	0.000 kN/m/m	
		v :	0.000	
		M _p :	1.000E+15 kNm/m	
		N _p :	1.000E+15 kN/m	
1		Rayleigh o	ι: 0.000	
		Rayleigh β	. 0.000	
			6	
			<u>O</u> K <u>C</u> ance	1

Figura 27. Parámetros del pistón Fuente: Software Plaxis 8.6

Con relación a las condiciones de carga, se estableció un desplazamiento prescripto sobre la superficie de la muestra, es decir, se asignó el valor del asentamiento que la muestra alcanzó durante el ensayo, de tal manera que el programa establezca la carga aplicada que le correspondería a este desplazamiento. Los parámetros ingresados se los detalla en la Figura 28.

	Prescribed displacem	ent (static)
Free Directions	Geometry point 4 X-Value : 0.000	Geometry point 6 X-Value : 0.000
		Perpendicular

Figura 28. Desplazamiento prescripto Fuente: Software Plaxis 8.6

Posteriormente, antes de ejecutar el programa, se definirán las condiciones de contorno o frontera que se asignará a la geometría del modelo. Aquí se indican los grados de libertad o restricción de los movimientos horizontales o verticales en los nodos externos de la muestra. Para este estudio, las condiciones de frontera son:

- Restricción en el eje x y libertad de movimiento en el eje y para el lado izquierdo y derecho de la muestra.
- El movimiento en la parte inferior se restringe tanto para el eje x como para el eje y (ver Figura 29).

No se tomará en cuenta la presencia del nivel freático pues no se está analizando la influencia de la presión de poros.

De este modo, el semiplano de la muestra de pavimento a ser analizada se la representa en la Figura 29.

Figura 29. Semiplano de la muestra de pavimento Fuente: Software Plaxis 8.6

El paso final antes de la modelación, corresponde a la etapa de cálculo. En la pestaña general, se puntualiza el número de fases y el tipo de cálculo que se efectuará. Se estableció una solo fase de cálculo en un régimen de análisis plástico (ver Figura 30).

@		Plaxis 8.5	Calculations - Sin refe	orzamiento drenado.PLX			- □	×
File Edit View	Calculate	Help						
	🖻 🔒	A	=> Output					
General Paramete	rs <u>M</u> ultipliers P	review						
Phase				Calculation type		1		
Number / ID.	1	Fase 1		Plastic analysis	-			
Start from ph	ase: 0 - Init	ial phase	•	1	dvanced			
Log info				Comments				
			^					
1			~					
					Parameters			
				Pext Next	🗸 Ins	ert	🐺 Dele	te
Identification	Phase no.	Start from	Calculation	Loading input	Time	Water	First	
Initial phase	0	N/A	N/A	N/A	0.00	0	0	
Fase 1	1	0	Plastic analysis (UM)	Staged construction	12.0	1		

Figura 30. Etapa de cálculo, datos generales Fuente: Software Plaxis 8.6

En la pestaña parámetros se especifica el número pasos que realizará el programa para el proceso de cálculo, el tiempo y la forma de aplicación de la carga (ver Figura 31).

ile Edit View Edit View Image: Second	Calculate	Help	-> Calculate					
General Parameters	Multipliers P		-> Calculate					
General Parameters	Multipliers P	review						
Control parame		i eview [
Additional Step	s: 430	¢	Reset displacements Ignore undrained be Delete intermediate	to zero haviour steps				
C Standard s	dure etting ting	Define	Loading input © Staged construction © Total multipliers © Incremental multiplie Time interval : Estimated end time :	rs <u>Ad</u> 12.0000 ♦ min 12.0000 ♦ min <u>G</u>	vanced Jefine W Flow			
				Next	📕 🖳 Ins	ert	💐 Dele	te
Identification	Phase no.	Start from	Calculation	Loading input	Time	Water	First	
Initial phase	0	N/A	N/A	N/A	0.00	0	0	
➡ Fase 1	1	0	Plastic analysis (UM)	Staged construction	12.0	1		

Figura 31. Etapa de cálculo, parámetros Fuente: Software Plaxis 8.6

Para finalizar, se ejecuta la etapa de cálculo (ver Figura 32) que lleva a cabo el programa Plaxis 8.6. Los resultados de la modelación se presentan en la siguiente sección de este capítulo.

	Plaxis 8.5 - U	pdated Mesh An	alysis - A	xi-Symmetry				
roject: Sin re	Sin reforzamiento drenado							
hase: Fase	Fase 1							
Total multipliers a	at the end of previou	us loading step		Calculation progres	s			
Σ-Mdisp:	1.000	PMax	0.503	IUI				
Σ-MloadA:	1.000	Σ-Marea:	1.000					
Σ-MloadB:	1.000	Force-X:	0.000					
Σ-Mweight:	1.000	Force-Y:	-0.001					
Σ-Maccel:	0.000	Stiffness:	0.241					
Σ-Msf:	1.000	Time:	0.002					
Σ-Mstage:	1.250E-04	Dyn. time:	0.000	Time Nod	e A 🔻			
Iteration process	of current step							
Current step:	2	Max. step:	430	Element	1100			
Iteration:	41	Max. iterations:	60	Decomposition:	100 %			
Global error: 1.998E-04		Tolerance:	0.010	Calc. time:	11s			
Plastic points in c	urrent step							
Plastic stress po	ints: 1229	Inaccurate:	114	Tolerated:	126			
Plastic interface	points: 0	Inaccurate:	0	Tolerated:	3			
Tension points:	0	Cap/Hard points:	0	Apex points:	0			
					Cancel			

Figura 32. Etapa de cálculo Fuente: Software Plaxis 8.6

4.4 RESULTADOS DE LA MODELACIÓN.

Para la interpretación de los resultados, se analizaron los nodos de los elementos discretizados que se encuentran entre los puntos A-B a 24 cm desde el fondo de la muestra (interacción base-subrasante) y C-D en la superficie a 28 cm desde el fondo. Se evaluaron los puntos de tensión y las deformaciones que se produjeron entre los mencionados puntos y que se encuentran representados en la Figura 33.

Figura 33. Nodos a analizar de la muestra Fuente: Software Plaxis 8.6

4.4.1 DEFORMACIONES

Los resultados de deformaciones que proporciona el programa Plaxis 8.6, se los puede visualizar a través de gráficas ilustrativas, tal es el caso de: una malla deformada a la izquierda y de matices a la derecha, según se indica en la Figura 34. Además se puede generar los resultados numéricos de deformación en cada uno de los elementos del modelo discretizado. De esta manera, se pudo graficar el perfil deformado versus el no deformado de cada uno de los escenarios, a alturas de 24 y 28 cm desde la base del

modelo. Las tablas de valores numéricos se las anexa al final del estudio. (Anexos, resultados simulaciones)

Como punto de partida, se recopilaron los resultados para el escenario <u>sin</u> <u>reforzamiento</u>. Se puede observar el asentamiento sobre la estructura del pavimento como se indica en la Figura 34.

Figura 34. Muestra deformada (sin reforzamiento) Fuente: Software Plaxis 8.6

Como se puede ver, las mayores deformaciones se dan en la capa de material granular que se encuentra directamente bajo el pistón. El desplazamiento máximo alcanzado es de 2.13 E-4 m y está diferenciado por el color rojo como se indica en la Figura 34.

En la Figura 35, se expone el perfil no deformado de la muestra ensayada de color azul y deformado de color naranja, a una altura de 0.28 m desde la base del molde. Se puede observar que el asentamiento prescrito toma la forma del pistón hasta un valor en el eje x de 0.0267 m. Desde este punto hasta la cara externa del molde, es decir, a 0.075 m, la

deformación aproximada se traslada unos 5 E-5 m sobre el perfil original de la muestra (no deformado).

Figura 35. Perfil de deformación (sin reforzamiento H=28 cm) Fuente: Software Plaxis 8.6

En la interface capa granular-subrasante, a 0.24 m desde la base del molde, la deformación alcanzada es de 2.02 E-4 m que se identifica con el color naranja según la Figura 34. Desde la base del molde hasta los 0.168 m, la deformación es cero.

En la Figura 36, se puede observar que el asentamiento toma la forma de una parábola desde el eje de la muestra hasta los 0.0469 m, en donde se intersecta con el perfil no deformado. A partir de este punto hasta la cara externa del molde, la deformación aproximada se traslada 4 E-5 m sobre el perfil original de la interface.

Figura 36. Perfil de deformación (sin reforzamiento H=28 cm) Fuente: Software Plaxis 8.6

Para el escenario <u>con geotextil</u> se puede visualizar que las deformaciones disminuyen en la interface capa granular-geotextil-subrasante, con relación al escenario anterior (ver Figura 37):

Figura 37. Muestra deformada (con geotextil) Fuente: Software Plaxis 8.6

Al igual que para el caso sin reforzamiento, las mayores deformaciones se concentran en la capa de material granular que se encuentra directamente bajo el pistón. El desplazamiento máximo alcanzado es de 2.38 E-4 m, diferenciado por el color rojo en la Figura 37.

En la Figura 38, también el asentamiento prescrito toma la forma del pistón hasta alcanzar un valor en el eje x de 0.0274 m. Desde este punto hasta la cara externa del molde, la deformación aproximada se traslada 9.5 E-5 m sobre el perfil original de la muestra (no deformado).

Figura 38. Perfil de deformación (con geotextil H=28 cm) Fuente: Software Plaxis 8.6

En la interface capa granular-geotextil-subrasante, la deformación alcanzada es de 1.19 E-4 m que se identifica con el color verde claro según la Figura 37. Desde la base del molde hasta los 0.188 m, la deformación es cero.

En la Figura 39, al igual que para el caso sin reforzamiento, el asentamiento toma la forma de una parábola desde el eje de la muestra hasta los 0.04001 m en donde se intersecta con el perfil no deformado. A partir de este punto hasta la cara externa del molde, la deformación aproximada se traslada 1.6 E-5 m sobre el perfil original de la interface.

Figura 39. Perfil de deformación (con geotextil H=24 cm) Fuente: Software Plaxis 8.6

De igual manera que para el caso anterior, en el escenario <u>con geotextil y geomalla</u> las deformaciones se reducen en la interface base granular-geomalla-geotextil-subrasante, según lo indica la Figura 40:

Figura 40. Muestra deformada (con geotextil y geomalla) Fuente: Software Plaxis 8.6

El desplazamiento máximo alcanzado es de 2.36 E-4 m, que se encuentra directamente bajo el pistón y se lo diferencia por el color rojo tal como indica la Figura 40.

En la Figura 41, el asentamiento prescrito toma la forma del pistón hasta alcanzar un valor en el eje x de 0.0262 m. Desde este punto hasta la cara externa del molde, la deformación aproximada se traslada 9.6 E-5 m sobre el perfil original de la muestra (no deformado).

Figura 41. Perfil de deformación (con geotextil y geomalla H=28 cm) Fuente: Software Plaxis 8.6

En la interface capa granular-geomalla-geotextil-subrasante, la deformación alcanzada es de 1.46 E-4 m que se identifica con el color verde claro según la Figura 40. Desde la base del molde hasta los 0.175 m, la deformación es cero.

En la Figura 42, el asentamiento se asemeja a la forma de una parábola desde el eje de la muestra hasta los 0.04125 m en donde se intersecta con el perfil no deformado. A partir de este punto hasta la cara externa del molde, la deformación aproximada se traslada 2.4 E-5 m sobre el perfil original de la interface.

Figura 42. Perfil de deformación (con geotextil y geomalla H=24 cm) Fuente: Software Plaxis 8.6

Para el escenario <u>con geomalla</u> las deformaciones aumentaron con relación al escenario 2 y 3 en la interface base granular-geomalla-subrasante, según lo indica la Figura 43:

Figura 43. Muestra deformada (con geomalla) Fuente: Software Plaxis 8.6

El desplazamiento máximo alcanzado es de 2.33 E-4 m, que se encuentra ubicado bajo el pistón y se lo diferencia por el color rojo tal como indica la Figura 43.

En la Figura 44, el asentamiento toma la forma del pistón hasta alcanzar un valor en el eje x de 0.0274 m. Desde este punto hasta la cara externa del molde, la deformación aproximada se traslada 6.4 E-5 m sobre el perfil original de la muestra (no deformado).

Figura 44. Perfil de deformación (con geomalla H=28 cm) Fuente: Software Plaxis 8.6

Para la interface de materiales, la deformación alcanzada es de 2 E-4 m que se identifica con el color naranja según la Figura 43. Desde la base del molde hasta los 0.164 m, la deformación es cero.

En la Figura 45, el asentamiento se asemeja a la forma de una parábola desde el eje de la muestra hasta los 0.0425 m en donde se intersecta con el perfil no deformado. A partir de este punto hasta la cara externa del molde, la deformación aproximada se traslada 3.7 E-5 m sobre el perfil original de la interface.

Figura 45. Perfil de deformación (con geomalla H=24 cm) Fuente: Software Plaxis 8.6

Finalmente, se presenta dos cuadros resumen de las deformaciones verticales alcanzadas en las simulaciones de las muestras ensayadas.

En la Tabla 18 se presenta la deformación máxima que se logró para cada uno de los escenarios; además se indica los puntos cartesianos en donde se ubican dichas deformaciones.

	DEFORMACIONES VERTICALES (EJE DE LA MUESTRA)								
	Descripción	Simbología	Con geotextil	Con geotextil y geomalla	Con geomalla				
3 m	Deformación máxima	$\varepsilon_{m \acute{a} x}\left(m ight)$	0.000213	0.000238	0.000236	0.000233			
H=0.28	Distancia horizontal	<i>x</i> (<i>m</i>)	0	0	0	0			
	Distancia vertical	<i>y</i> (<i>m</i>)	0.279787	0.279762	0.279764	0.279767			
4m	Deformación máxima	$\varepsilon_{m lpha x}\left(m ight)$	0.000202	0.000119	0.000146	0.000199			
H=0.2	Distancia horizontal	x(m)	0	0	0	0			
	Distancia vertical	<i>y</i> (<i>m</i>)	0.239798	0.239881	0.239854	0.239801			

Tabla 18. Deformaciones verticales

Por otro lado, en la Tabla 19 se indican lo puntos cartesianos donde se da la intersección del perfil deformado y no deformado de la interface entre la capa base, la subrasante y los materiales geosintéticos. De igual manera se presentan los puntos de intersección en la superficie de la muestra de pavimento.

	INTERSECCIÓN CURVA DEFORMADA / NO DEFORMADA							
	Descripción Simbología Sin reforzamiento Con geotextil Con geotextil y geomalla							
28 m	Distancia horizontal	<i>x</i> (<i>m</i>)	0.02673	0.02747	0.02622	0.02744		
H=0.	Distancia vertical	<i>y</i> (<i>m</i>)	0.28	0.28	0.28	0.28		
24 m	Distancia horizontal	<i>x</i> (<i>m</i>)	0.04690	0.04001	0.04126	0.04251		
H=0.	Distancia vertical	<i>y</i> (<i>m</i>)	0.24	0.24	0.24	0.24		

Tabla 19. Punto de intersección curva deformada/no deformada

4.4.2 ESFUERZOS EFECTIVOS

Los resultados para los esfuerzos efectivos se los puede visualizar a través de las gráficas de matices, según se indica en la figura 46. Además se puede generar los resultados numéricos de los esfuerzos horizontales y verticales de cada uno de los elementos del modelo discretizado. De esta manera, se graficaron los esfuerzos en la capa base y en la subrasante a una altura de 24 cm desde la base del molde. Las tablas de valores numéricos se las anexa al final del estudio. (Anexos, resultados simulaciones)

Como punto de partida, se recopilaron los resultados para el escenario <u>sin</u> <u>reforzamiento</u>. En la Figura 46, se puede observar los esfuerzos desarrollados sobre la estructura de pavimento.

Figura 46. Graficas de esfuerzos efectivos horizontales y verticales (sin reforzamiento) Fuente: Software Plaxis 8.6

Se puede observar que los esfuerzos verticales son mayores a los horizontales y prácticamente el estrato de material granular absorbe todos los esfuerzos transmitidos por la carga axial. Es importante puntualizar que para este análisis, se evaluarán

únicamente los esfuerzos en la interface capa granular-subrasante pues es el punto de transición de ambos materiales y donde se desarrollan tensiones especiales por las propiedades particulares que tienen cada uno de los suelos.

En la Figura 47, se observa que los esfuerzos sobre la subrasante. Las tensiones horizontales son relativamente bajas y no presentan mayor influencia en la capacidad de soporte de la subrasante. Sin embargo, los esfuerzos verticales tienen un mayor efecto sobre la subrasante triplicando el valor de las horizontales y ponen a prueba la capacidad de resistencia de ésta. Los resultados numéricos se pueden ver en la Tabla 20.

Figura 47. Esfuerzos efectivos en la subrasante (sin reforzamiento) Fuente: Software Plaxis 8.6

Comparando las figuras 47 y 48, se observa que los esfuerzos horizontales y verticales sobre la capa granular, son mayores a los que se desarrollan sobre subrasante.

Además, en la Figura 48, tanto las tensiones horizontales máximas como las verticales máximas tienen valores similares. Por tal razón, los esfuerzos horizontales como los verticales absorben la mitad de la carga axial respectivamente. Este efecto se debe al ángulo de fricción entre partículas. Los resultados numéricos se pueden ver en la Tabla 20.

Figura 48. Esfuerzos efectivos en la capa base (sin reforzamiento) Fuente: Software Plaxis 8.6

Para el escenario <u>con geotextil</u>, se puede observar los esfuerzos efectivos horizontales y verticales desarrollados sobre la muestra de pavimento, según se puede ver en la Figura 49.

Figura 49. Graficas de esfuerzos efectivos horizontales y verticales (con geotextil) Fuente: Software Plaxis 8.6

Al contrario que para el escenario sin reforzamiento, para este caso los esfuerzos horizontales son mayores a los verticales y se concentran en la interface capa granulargeotextil. Los esfuerzos verticales en la capa base (bajo el pistón) se redujeron

significativamente a relación del caso sin reforzamiento. Lo mismo ocurre en la subrasante, donde los esfuerzos son mínimos y se redujeron con relación al caso anterior. Se podría decir que numéricamente son cercanos a cero.

En la Figura 50, se observa que los esfuerzos verticales sobre la subrasante son mayores a las horizontales, no obstante los valores numéricos de los esfuerzos son más bajos a comparación de los obtenidos para el caso sin reforzamiento (Tabla 20), es decir que se redujeron las tensiones sobre la subrasante con la presencia del geotextil.

Figura 50. Esfuerzos efectivos en la subrasante (con geotextil) Fuente: Software Plaxis 8.6

En la Figura 51, se observa que los esfuerzos horizontales sobre la capa base son mayores a los verticales. Como se mencionó anteriormente, en la interface capa granular-geotextil se concentran la mayor cantidad de esfuerzos provocados por la carga axial y esto se debe a la presencia del geotextil.

Figura 51. Esfuerzos efectivos en la capa base (con geotextil) Fuente: Software Plaxis 8.6

Para el escenario <u>con geotextil y geomalla</u> se puede observar los esfuerzos efectivos horizontales y verticales desarrollados sobre la muestra de pavimento, según la Figura 52:

Figura 52. Graficas de esfuerzos efectivos horizontales y verticales (con geotextil y geomalla) Fuente: Software Plaxis 8.6

Al igual que para el escenario con geotextil, los esfuerzos horizontales son mayores a los verticales y se concentran en la interface capa granular-geomalla-geotextil. Los esfuerzos verticales en la capa base se redujeron significativamente, sin embargo se

desarrolló una pequeña zona de concentración de esfuerzos bajo el pistón y que se pueden observar en la Figura 52, lado derecho. En la subrasante, los esfuerzos horizontales y verticales son mínimos.

En la Figura 53, se observa que los esfuerzos verticales sobre la subrasante son mayores a las horizontales, no obstante los valores numéricos de los esfuerzos son más bajos a comparación de los obtenidos para el caso sin reforzamiento (Tabla 20), es decir que se redujeron las tensiones sobre la subrasante con la aplicación simultánea de la geomalla y el geotextil.

Figura 53. Esfuerzos efectivos en la subrasante (con geotextil y geomalla) Fuente: Software Plaxis 8.6

En la Figura 54, se observa que los esfuerzos horizontales sobre la capa base son mayores a los verticales. En la interface capa granular-geomalla-geotextil se concentran la mayor cantidad de esfuerzos provocados por la carga axial y esto se debe a la presencia de los mencionados geocompuestos.

Figura 54. Esfuerzos efectivos en la capa base (con geotextil y geomalla) Fuente: Software Plaxis 8.6

Para el escenario <u>con geomalla</u> se puede observar los esfuerzos efectivos horizontales y verticales desarrollados sobre la muestra de pavimento, según los diagramas de matices de la Figura 55:

Figura 55. Graficas de esfuerzos efectivos horizontales y verticales (con geomalla) Fuente: Software Plaxis 8.6

Al igual que para los dos escenarios anteriores, los esfuerzos horizontales son mayores a los verticales y se concentran en la interface capa granular-geomalla. Los esfuerzos verticales en la capa base se redujeron significativamente, sin embargo se desarrolló una

pequeña zona de concentración de esfuerzos bajo el pistón y que se pueden observar en la Figura 55, lado derecho. En la subrasante, los esfuerzos horizontales y verticales son mínimos.

En la Figura 56, se observa que los esfuerzos verticales sobre la subrasante son mayores a las horizontales, no obstante los valores numéricos son más bajos a los obtenidos para el caso sin reforzamiento (Tabla 20), es decir que se redujeron las tensiones sobre la subrasante con la aplicación de la geomalla.

Figura 56. Esfuerzos efectivos en la subrasante (con geomalla) Fuente: Software Plaxis 8.6

En la Figura 57, se observa que los esfuerzos horizontales sobre la capa base son mayores a los verticales. En la interface capa granular-geomalla se concentran la mayor cantidad de esfuerzos provocados por la carga axial, a una distancia de 0.015 m desde el eje de la muestra y esto se debe a la presencia de la geomalla.

Figura 57. Esfuerzos efectivos en la capa base (con geomalla) Fuente: Software Plaxis 8.6

Finalmente, se presenta una tabla resumen (ver Tabla 20), de los esfuerzos efectivos horizontales y verticales máximos de la capa base y de la subrasante para las interfaces en los diferentes escenarios:

	ESFUERZOS EFECTIVOS MÁXIMOS (H=0.24 m)								
	Descripción	Simbología	Sin reforzamiento	Con geotextil	Con geotextil y geomalla	Con geomalla			
BASE	Esfuerzo efectivo horizontal	$\sigma_{x-x} \max{(kN/m^2)}$	-25.4792	-66.8817	-67.9852	-62.2077			
CAPA	Esfuerzo efectivo vertical	$\sigma_{y-y} \max{(kN/m^2)}$	-24.3521	-18.5598	-19.7624	-27.9387			
SANTE	Esfuerzo efectivo horizontal	$\sigma_{x-x} \max{(kN/m^2)}$	-5.3544	-3.0863	-1.8398	-2.3221			
SUBRA	Esfuerzo efectivo vertical	$\sigma_{y-y} \max{(kN/m^2)}$	-14.5245	-6.7872	-4.0296	-6.1429			

Tabla 20. Esfuerzos efectivos máximos

4.4.3 COEFICIENTE DE REFORZAMIENTO

Teóricamente se ha definido la existencia de un efecto de membrana, que sería generado por la deformación de la base, cuando ésta se encuentra bajo la acción de la carga axial aplicada y hace que los compuestos geosintéticos en los diferentes escenarios se estiren lo cual da como resultado una componente vertical producto de esta tensión (Leiva Padilla & Loría Salazar, 2012, p.2).

Se lo conoce como relación del coeficiente de capa (LCR-Layer coefficient ratio), de los geosintéticos, el cual cuantifica la contribución estructural de este material al pavimento a través de métodos experimentales (Geosistemas PAVCO, 2012).

En este análisis, se parte de los esfuerzos máximos alcanzados en la interface capa base-subrasante de las simulaciones realizadas en Plaxis 8.6. El propósito es cuantificar el aumento en el valor de CBR cuando la subrasante se refuerza con un elemento geosintético. Además que, el CBR se lo obtiene de un análisis de esfuerzos, de tal manera que el factor de reforzamiento estaría correctamente utilizado para incrementar el valor de CBR de la subrasante.

$$CBR (\%) = \frac{carga unitaria del ensayo}{carga unitaria patrón} * 100$$
(Universidad Católica de Valparaíso, s.f.) (57)

El factor de reforzamiento se lo determina restando el valor del esfuerzo normal sobre la subrasante con un material reforzado (geotextil, geotextil y geomalla, geomalla) del esfuerzo normal sobre la subrasante sin reforzamiento y esto dividido para el mismo valor de esfuerzo normal sobre la subrasante sin reforzamiento. A este cociente se le suma la unidad para dar a entender que existe un aumento en la capacidad de soporte.

$$FR = \frac{\sigma_{y-y} \max \sin reforzamiento - \sigma_{y-y} \max \operatorname{con} reforzamiento}{\sigma_{y-y} \max \sin reforzamiento} + 1$$
(58)

Los valores alcanzados se los resume en la siguiente tabla:

ESCENARIO	σyy max subrasante (kN/m2)	Factor de reforzamiento	
Sin reforzamiento	-14.52456	1	
Con geotextil	-6.7871769	1.54	
Con geotextil y geomalla	-4.0295695	1.73	
Con geomalla	-6.1428746	1.58	

Tabla 21. Factores de reforzamiento

CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES

Ensayos de laboratorio:

- En el escenario con geomalla, la estructura alcanzó la mayor rigidez con respecto al resto de escenarios y cuyo valor está dado por el Módulo de Young. No obstante, al llegar a la carga máxima, se produjo la falla inmediata. Se considera que esto fue producto de que la geomalla cuenta con aberturas continuas, lo que provocó que los materiales de la subrasante y de la base se llegaran a mezclar según se pudo apreciar en la muestra ensayada. El efecto de la geomalla no fue suficiente para separar ambos materiales, producto de esto llegó antes a la falla (ver Anexos, anexo fotográfico, 3. Ensayos a compresión simple sobre la estructura de pavimento).
- Haciendo una comparación de los diagramas carga/deformación en los escenarios: reforzado con geotextil y reforzado con geotextil y geomalla (ver Figura 19), se observa que no existe mayor diferencia entre ambas curvas y que llegan a tener un comportamiento similar, exceptuando que en la curva de reforzamiento con geotextil y geomalla se nota un pequeño régimen plástico. Se considera que colocar una geomalla yuxtapuesta a un geotextil, no aumenta significativamente la capacidad de soporte o reforzamiento en la estructura del pavimento, pues se debería evidenciar un mayor incremento en la rigidez. Se estima que la colocación de la geomalla sobre el geotextil representa un gasto innecesario para el proyecto en análisis.
- El uso de materiales geosintético en la interface capa base-subrasante, le da un comportamiento elástico a la estructura del pavimento, permitiendo un alto grado de deformación, pero recuperando su forma original (ver Figura 19). Es decir, no se producen deformaciones permanentes como es el caso del escenario sin reforzamiento (régimen plástico). Esto se traduce en el módulo resiliente de la

subrasante, considerando que el esfuerzo desviador, función de éste, se reduce en un gran margen por el uso de los geosintéticos.

El esfuerzo de confinamiento del geotextil no produjo un mayor efecto en la resistencia de la estructura del pavimento. Incluso puede representar un plano de falla si se trata de un material que tiene un ángulo de fricción bajo. Más bien, se visualizó un pequeño efecto de anclaje de las partículas granulares de la base, que indujeron a que actúen los esfuerzos de tensión del geotextil. Esto impidió su deslizamiento a través de la interface. Solo se pudo apreciar el efecto de confinamiento en el escenario con geomalla, donde los esfuerzos fueron mayores (ver Anexos, anexo fotográfico, 3. Ensayos a compresión simple sobre la estructura de pavimento).

Simulaciones:

- Diagnosticando los resultados de las deformaciones que proporciona el programa Plaxis 8.6. (ver Figura 34), se puede observar que el tipo de asentamiento resultante, se asemeja al alcanzado en los ensayos de laboratorio (ver Anexos, anexo fotográfico, 3. Ensayos a compresión simple sobre la estructura de pavimento). Es decir, el material de base se asentó únicamente en la zona donde se aplicó la carga a través del pistón.
- En las Tablas 18 y 19, se puede evidenciar que las deformaciones sobre la subrasante disminuyen significativamente en los tres escenarios que presentan un geocompuesto de reforzamiento a comparación del escenario sin reforzamiento.
- En la Tabla 20 se observa que los valores de los esfuerzos verticales sobre la subrasante, disminuyen para los tres escenarios que presentan un geocompuesto de reforzamiento. Mientras que los esfuerzos horizontales en la capa base,

aumentan en los escenarios antes mencionados. Esto se debe al efecto de refuerzo que genera el geocompuesto en la interface con la capa base, lo que ocasiona una disminución en los esfuerzos y deformaciones verticales sobre la subrasante.

 El criterio planteado por Giroud y Noray con relación a que el tipo de falla de una estructura de pavimento cambia de una falla local (sin reforzamiento) a una falla de tipo general (con reforzamiento), se confirmaría a través de las simulaciones efectuadas sobre las muestras de pavimento. Se considera que los esfuerzos en el escenario sin reforzamiento se concentran justo debajo del pistón, en el material granular (ver Figura 46). Mientras que para el caso de los escenarios reforzados, los esfuerzos se distribuyen a lo largo de la interface capa granulargeocompuesto-subrasante (ver Figura 49), evitando de esta manera una falla por capacidad portante (falla local) causada por el ahuellamiento efectivo que transmite el pistón a la subrasante.

Rediseño del paquete estructural:

Se realizó la evaluación de los espesores del proyecto en análisis (Vía Sigsig- Matanga-Gualaquiza) y se efectuó un rediseño mediante el método AASHTO para obtener los nuevos espesores que el material de mejoramiento tendría con la contribución que ofrecen los geosintéticos (Ver Anexos, anexo cálculos, 4. Diseño por el método AASHTO 93). A continuación se presentan los resultados:

	Espesor			ai*mi*Di	SNI/DROG)	Di		CNI;*	
CAPAS	(cm)	(plg)	WIOdulo E		SINI(PROG.)	Ajustados (pulg)	Ajustados (cm)	JINI.	
SUPERFICIE	10	3.94	370000	1.57	2.31	6	15	2.40	
BASE	15	5.91	28438	0.79	2.97	6	15	0.80	
MEJORAMIENTO	40	15.75	15586	1.81	4.31	10	25	1.15	
							SN	4.35	

Sin reforzamiento

Con geotextil

	Espe	esor	Módulo E	ai*mi*Di	SNI(DROC)	C	Di	CNI*
CAPAS	(cm)	(plg)	WIOGUIO E		SINI(PROG.)	Ajustados (pulg)	Ajustados (cm)	JINI
SUPERFICIE	10	3.94	370000	1.57	2.31	6	15	2.40
BASE	15	5.91	28438	0.79	2.97	6	15	0.80
MEJORAMIENTO	40	15.75	15586	1.81	3.65	4	10	0.46
							SN	3.66

Con geotextil y geomalla

	Espe	esor	Mádula E	ai*mi*Di		C	Di	CN:*	
CAPAS	(cm)	(plg)	IVIOQUIO E	armidi	SINI(PROG.)	Ajustados (pulg)	Ajustados (cm)	JIVI	
SUPERFICIE	10	3.94	370000	1.57	2.31	6	15	2.40	
BASE	15	5.91	28438	0.79	2.97	6	15	0.80	
MEJORAMIENTO	40	15.75	15586	1.81	3.49	3	8	0.35	
							SN	3.55	

Con geomalla

	Espe	esor	Mádulo E	ai*mi*Di	SNI/DPOG)	C	SNi*		
CAPAS	(cm)	(plg)	WIOdulo E		SINI(PROG.)	Ajustados (pulg)	Ajustados (cm)	5141	
SUPERFICIE	10	3.94	370000	1.57	2.31	6	15	2.40	
BASE	15	5.91	28438	0.79	2.97	6	15	0.80	
MEJORAMIENTO	40	15.75	15586	1.81	3.62	4	10	0.46	
							SN	3.66	

Tabla 22. Rediseño estructura de pavimento proyecto Sigsig-Gualaquiza

Como se puede observar, en los valores ajustados (fondo color amarillo), el espesor de la capa de mejoramiento se reduce en un 60% aproximadamente, lo que representa 15 cm menos de material mejoramiento para los tres escenarios reforzados, comparado con el escenario sin reforzamiento. Por lo tanto, disminuirán los costos de construcción de este proyecto, colocando un geotextil que suministraría el suficiente reforzamiento a la estructura de pavimento.

Recomendaciones:

 Hausmann (1987, p.206), menciona que la geomalla puede ser colocada dentro de la capa base con la finalidad de proporcionarle restricción al agregado. Esto mejora las características esfuerzo-deformación de la capa base y ayuda en la distribución de cargas sobre la superficie de la subrasante. Acogiéndose a este

criterio, efectivamente se obtendría un mejor desempeño de la geomalla si se la colocara en la capa base. Esto se debe a que este material, al contar con aberturas continuas, generaría un efecto de anclaje entre las partículas granulares del material y los eslabones de la malla, lo que aumentaría los esfuerzos laterales restringiendo los movimientos en la zona de contacto y por ende disminuirían las deformaciones.

- Se considera que emplear un geotextil en la interface material granularsubrasante, sería suficiente para brindar el reforzamiento esperado en la estructura de pavimento. Además, este elemento evita el ascenso de partículas finas de la subrasante hacia el material base. Así cumpliría la función de separación y/o reforzamiento.
- Se recomienda el método de cálculo propuesto por Giroud y Noray únicamente cuando se refuerza la estructura del pavimento con un geotextil. Además, esta metodología es aplicada exclusivamente para caminos de lastre sin asfalto.

Futuras Líneas de Investigación:

- El método de cálculo desarrollado por Giroud y Noray para determinar el espesor de la capa granular considerando el tráfico, presenta ciertas limitaciones. Una de ellas es, que no esclarece si el tráfico que se debe asumir es el proyectado para cierto horizonte de años o es un tráfico actual. Dentro de este estudio se analizó un tráfico actual.
- Realizar un análisis del posible incremento en la vida útil de la estructura del pavimento, considerando el uso de estos materiales. Es decir, un análisis de su comportamiento a largo plazo.

- Realizar un análisis de costos para determinar si es viable económicamente el uso combinado de un geotextil y una geomalla como estructura de reforzamiento para un determinado proyecto.
- La entidad pública competente, encargada de elaborar la normativa ecuatoriana de diseño vial, debería incluir un método de diseño que respalde y garantice el uso soberano de los geocompuestos para cualquier obra vial.

REFERENCIAS BIBLIOGRÁFICAS

- Consorcio Vial Oriental. (2012). Estudios de Factibilidad, Impacto Ambiental e Ingeniería Definitivos para la rectificación y/o mejoramiento de la Carretera SigSig-Gualaquiza, Tramo Matanga-Gualaquiza, en la Provincia de Morona Santiago. Quito.
- Geosistemas PAVCO. (2012). *Manual de Diseño con Geositéticos.* Mexichem, Departamento de Ingeniería. Bogotá D.C.: Norte Gráfico.
- Hausmann, M. (1987). *Geotextiles for Unpaved Roads-A Review of Design Procedures.* New South Wales Institute of Technology, Australia, School of Civil Engineering.
- Indraratna, B., & Nimbalkar, S. (2013). Stress-strain degradation response of railway ballast stabilized with geosynthetics. *Journal Of Geotechnical And Geoenvironmental Engineering*.
- Leiva Padilla, P., & Loría Salazar, L. G. (2012). Observaciones a la metodología de diseño tradicional de pavimentos reforzados con geosintéticos.
- M. Das, B. (2001). Fundamentos de Ingeniería Geotécnica. México D.F.: Thomson Learning.
- M. Das, B. (2001). *Principios de Ingeniería de Cimentaciones* (Cuarta Edición ed.). Sacramento, California, Estados Unidos: International Thomson Editores.
- Ministerio de Obras Públicas y Comunicaciones del Ecuador. (2002). Especificaciones Generales para la Construcción de Caminos y Puentes. Ministerio de Obras Públicas y Comunicaciones, Quito.
- Norma Técnica Ecuatoriana NTE INEN 2 101:98. (1998). *Neumáticos. Neumáticos para vehículos. Dimensiones, Cargas y Presiones. Requisitos.* Quito.

Plaxis Version 8. (n.d.). Reference Manual.

- Subaida, E., Chandrakaran, S., & Sankar, N. (2009). Laboratory performance of unpaved roads reinforced with woven coir geotextiles.
- Tingle, J., & Webster, S. (2002). *Review of Corps of Engineers Design of Geosynthetic Reinforced Unpaved Roads.* U.S. Army Engineer Research and Development Center, Vicksburg.

.

Tsai, W.-S. (1995). *Evaluation of Geotextiles as Separators in Roadways.* University of Washington. Washington D.C.: UMI.

Universidad Católica de Valparaíso. (s.f.). http://icc.ucv.cl/geotecnia/03_docencia/02_laboratorio/manual_laboratorio/cbr.pdf

ANEXOS

ANEXO FOTOGRÁFICO

1. TOMA DE MUESTRAS

2. ENSAYOS DEL SUELO DE SUBRASANTE

3. ENSAYOS A COMPRESIÓN SIMPLE SOBRE LA ESTRUCTURA DE PAVIMENTO

ANEXO RESULTADOS ENSAYOS DE LABORATORIO

1. ENSAYOS SUBRASANTE

LABORATORIO DE SUELOS Y MATERIALES FACULTAD DE INGENIERÍA laboratorio. suelos@ucuenca.edu.ec Teléfono: 405-1000 Ext:2354

PRO	ЕСТО:		"Evaluación	en el Nivel de	e Resistencia	de una Subra	asante. con el Uso	Combinado d	e una Geom.v ur	n Geot."	GRUPO:						
UBIC	ACIÓN:		Vía Tramo I	a Pradera-Gu	alaquiza km 6	32+115					#:		and the second second second	and the second secon	en la companya da companya	 Stockhold, and the states 	A Oberta and Arrada and Arrada
COLL	TTADOD	OB.	Via Traino L			2.115											
SULI		UR:						•••••••••••••••••••••••••••••••••••••••									
PERF	ORACION		km 62+115	carril izquierd	lo		a Autorian Autorian Autorian										
FECH	A:		viernes, 18 d	de septiembre	e de 2015		PROF:	1 m	A	:m							
			CDAN	UI OMETDI									I DUTE LIQUID	•			
		r	GRAN	I	PORCE	INTAIE		ł			Peso cap. + suelo	Peso cap. + suelo		1	Contenido de	1	1
	TAMIZ	Peso retenido	Peso retenido	Peso que pasa	Retenido	Pasante	ESPECIF. TECNICA		Capsula No	Peso de la capsula	húmedo	seco	Peso del agua	Peso del suelo seco	Humedad %	% Promedio	Número de golpes
No.	Pulgadas	parcial	acununauo	acumutato	acumulado	acumulado		[26	40.48	56.20	50.80	5.40	10.32	52.33%		35
	4								54	41.92	55.64	50.99	4.65	9.07	51.27%	52.56%	26
	3			<u> </u>					45	44.78	63.47	56.91	6.56	12.13	54.08%	L	19
	2 1/2							1	(70	50.05	55.00	T	LIMITE PLASTI	.0	20.000/	T	
	1 1/2							ŀ	1/2	50.25	55.33	54.07	1.26	3.82	32.98%	36 78%	
	1								189	50.56	56.97	55.14	1.83	4.58	39.96%	-	
	3/4	and the second second						1				CON	TENIDO DE HUN	1EDAD			
	1/2							1	130	40.24	55.06	51,17	3.89	10.93	35.59%	05 7001	
	3/8								117	38.99	55.43	51.09	4.34	12.10	35.87%	35./3%	
4	0.187	1.95	1.95	366.4	0.5%	99.5%											
8	0.0937																
10	0.0787	3.85	5.80	362.5	1.6%	98.4%					D	/	1 1 1 /	1 / 1			
40	0.0165	1.97	13.77	354.6	3.1%	96.3%	·				Dete	rminacion	del Limite	e Liquido			
100	0.0059	8.48	22.25	346.1	6.0%	94.0%			5.5%								
200	0.0029	6.67	28.92	339.4	7.9%	92.1%											
	ONDO	0.30	29.22	339.1	7.9%	92.1%			Q 54%				0				
MAT (ERIAL FINO AVADO)	339.11	368.33	0.0	100.0%	0.0%			EDA				872074279787878787				
Т	OTAL	368.33							≥ 53%				Contraction of the local division of the loc				
PESO S PESO S PESO S PESO S MATER ERROR	OTAL MATE ECO MATER ECO RETEN ESPUES DE IAL PASANT (PAT - PDT	RIAL CUARTEA IDO SOBRE T# L ENSAYO : E TAMIZ No. 2)/PAT *100 =	ADO : DO : 200 (LAVADO)):	500 368.38 29.27 368.33 92 0.17	gr gr gr gr % %			52% 52% 51%					۵		(C) New	
	CLASIFICA	CIÓN	Humeda	d Natural:	35.	73%	1		8 50% 10			NÚMERO	20 DE GOLPES		30	40	
	SUCS	MH-OH	Límite	Líquido:	52.5	56%	1					MEMO	PE NULLES				
A	ASHTO	A-7-6	Indice	Plástico	15.1	78%	1										
			Indice of	le Grupo	1	9											

7 ING. ANDRES BUSTAMANTE

Estudiante de la Maestria en Vialidad y Transportes

UNIVERSIDAD DE CUENCA

A petición de la parte interesada,

Nº 010147

CUARENTA CENTAVOS

CERTIFICO:

Que, el Ing. Andrés Sebastián Bustamante Noboa con cédula de identidad 010415200-4, realizó los siguientes ensayos en el Laboratorio de Suelos de la Facultad de Ingeniería:

- Un ensayo de clasificación de suelos que se llevó a cabo el día martes 29 de septiembre de 2015.
- Cuatro ensayos de resistencia a la compresión simple que se llevaron a cabo los días lunes 21 y martes 22 de diciembre de 2015.

Los ensayos antes mencionados son un componente importante para la elaboración de su tesis de Maestría en Ingeniería en Vialidad y Transportes, que lleva por título "Evaluación en el Nivel de Resistencia de una Subrasante, con el Uso Combinado de una Geomalla y un Geotextil".

Cuenca, 17 de junio de 2016

Atentamente,

Ing. Gerardo Arbito.

Jefe del Laboratorio de Suelos de la Facultad de Ingeniería Universidad de Cuenca

LABSCON Laboratorio de Suelos y Concretos Diseño Control de Calidad y Fiscalización

PROYECTO: MAESTRIA EN VIALIDAD Y TRANSPORTE

.

SOLICITA: ING. ANDRES BUSTAMANTE

MATERIAL: DE SITIO

ENSAYO: AASHTO T-180 (METODO D)

MUESTRA DEPOSITADA EN LABORATORIO

Ing. Pablo Esteban Vélez Dávila

FECHA: 17 DE DICIEMBRE DEL 2015

NORMA: ASTM D 1557 -02		PROCEDENCIA : VIA SIGSIG - CHIGUINDA - GUALAQUIZA								4
			RELA	CION	DENS	IDADI	ESHU	MEDA		
MUESTRA N°		1		2		3		4		5
AGUA INCREMENTADA (cc)		0	1(00	20	00	30	00	4(00
PESO MOLDE + SUELO HUMEDO (gr)	12.	877	13.	056	13.	277	13.	311	13.	222
PESO MOLDE SIN COLLAR (gr)	8.9	926	8.9	926	8.9	926	8.9	926	8.9	926
PESO SUELO HUMEDO (gr)	3.9	951	4.1	130	4.3	851	4.3	385	4.2	296
VOLUMEN DEL MOLDE (cm3)	2.1	179	2.1	179	2.1	79	2.1	179	2.1	79
DENSIDAD HUMEDA (kg/m3)	1.8	313	1.8	395	1.9	97	2.0	012	1.9	972
					HUME	DAD				
MUESTRAS PARA PROMEDIAR		1		2		3		4	ļ	5
NUMERO DE TARRO	100	224	85	74	42	244	202	49	97	3
PESO TARRO+MUESTRA HUMEDA (gr)	102,10	107,01	132,76	133,28	140,77	142,88	143,53	139,96	128,13	131,08
PESO TARRO + MUESTRA SECA (gr)	94,16	98,18	119,34	120,53	124,68	126,30	125,69	122,26	112,23	113,25
PESO DEL AGUA (gr)	7,94	8,83	13,42	12,75	16,09	16,58	17,84	17,70	15,90	17,83
PESO DEL TARRO (gr)	50,60	49,26	47,92	50,62	50,29	50,90	50,50	49,61	50,78	48,17
PESO SUELO SECO (gr)	43,56	48,92	71,42	69,91	74,39	75,40	75,19	72,65	61,45	65,08
HUMEDAD (%)	18,23	18,05	18,79	18,24	21,63	21,99	23,73	24,36	25,87	27,40
HUMEDAD PROMEDIO (%)	18,	14%	18,	51%	21,81%		24,04%		26,64%	
DENSIDAD SECA (kg/m3)	1.5	535	1.5	599	1.6	39	1.6	622	1.5	557

Manuel Davila 1-52 y Av. Remigio Crespo / Telefono 07 2 884-121 Telefax: 07 2 8 Cuenca - Ecuador / Email: labscon@outlook.com LABSCON Laboratorio de Suelos y Concretos Diseño Control de Calidad y Fiscalización

PROYECTO: MAESTRIA EN VIALIDAD Y TRANSPORTE

.

SOLICITA: ING. ANDRES BUSTAMANTE

FECHA: 17 DE DICIEMBRE DEL 2015

MATERIAL: DE SITIO

1

MUESTRA DEPOSITADA EN LABORATORIO

PROCEDENCIA: VIA SIGSIG - CHIGUINDA - GUALAQUIZA

E N S A Y O C.B.R. NORMA: ASTM D 1883-99 MUESTRA REMOLDEADA

MOLDE Nº		1		2		3
NUMERO DE CAPAS		5		5		5
NUMERO DE GOLPES POR CAPA	5	55		25	1	2
	ANTES DE SATURACION	DESPUES DE SATURACION	ANTES DE SATURACION	DESPUES DE SATURACION	ANTES DE SATURACION	DESPUES DE SATURACION
PESO MUESTRA+ MOLDE (g)	13.108	13.538	12.757	13.135	12.470	12.973
PESO DEL MOLDE (g)	8.528	8.528	8.457	8.457	8.556	8.556
PESO MUESTRA HUMEDA (g)	4.580	5.010	4.300	4.678	3.914	4.417
VOLUMEN DE LA MUESTRA (c.c)	2.292	2.512	2.274	2.468	2.274	2.452
PESO VOL. HUMEDO (kg/m^3)	1.998	1.994	1.891	1.896	1.721	1.801
PESO VOL. SECO (kg/m^3)	1.634	1.619	1.540	1.524	1.404	1.439

CONTENIDO DE AGUA (Antes de saturación)

TARRO Nº	22	60	13	77	228	17
P.TARRO + MUESTRA HUMEDA	132,15	131,15	155,29	133,95	131,11	133,78
P. TARRO + MUESTRA SECA	117,12	116,37	135,49	118,34	116,07	118,55
PESO DEL AGUA	15,03	14,78	19,80	15,61	15,04	15,23
PESO DEL TARRO	50,28	49,64	48,47	49,73	50,42	50,00
PESO MUESTRA SECA	66,84	66,73	87,02	68,61	65,65	68,55
CONTENIDO DE HUMEDAD	22,49	22,15	22,75	22,75	22,91	22,22
HUMEDAD PROMEDIO	22	,32	2	2,75	22	,56

CONTENIDO DE AGUA (Después de saturación)

TARRO Nº	73	201	11	91	75	19
P.TARRO + MUESTRA HUMEDA	110,36	115,14	119,21	116,60	87,58	86,52
P. TARRO + MUESTRA SECA	99,06	102,80	105,80	103,66	80,12	79,22
PESO DEL AGUA	11,30	12,34	13,41	12,94	7,46	7,30
PESO DEL TARRO	50,17	49,82	50,82	50,56	50,42	50,28
PESO MUESTRA SECA	48,89	52,98	54,98	53,10	29,70	28,94
CONTENIDO DE HUMEDAD	23,11	23,29	24,39	24,37	25,12	25,22
HUMEDAD PROMEDIO	23	,20	24	4,38	25	,17

Manuel Davila 1-52 y Av. Remigio Crespo / Telefono 07 2 884-121 Telefax: 07 2 814-070

oncreto Diseño Control de Calidad y Fiscalización PROYECTO: MAESTRIA EN VIALIDAD Y TRANSPORTE **MUESTRA DEPOSITADA EN LABORATORIO** SOLICITA: ING. ANDRES BUSTAMANTE ALTURA DEL MOLDE : 7 pulg. FECHA: 17 DE DICIEMBRE DEL 2015 AREA DEL PISTON : 20 cm^2 PROCEDENCIA: VIA SIGSIG - CHIGÜINDA - GUALAQUIZA MATERIAL: DE SITIO ENSAYO C.B.R. (DATOS DE ESPONJAMIENTO Y PENETRACION) NORMA: ASTM D 1883-99 **MOLDE N°** (55 GOLPES) SATURADO LECTURA **ESPONJAMIENTO** TIEMPO ALTURA PRESIONES PRESIONES VALORES SATURAC. DIAL MUESTRA PENETRAC CARGA PRESIONES CORREGI. STANDARD C.B.R 10⁻²mm. (dias) mm. mm kg/cm^2 kg/cm^2 kg/cm^2 % pulg. kg 0 128.00 0,00 0.00 0,000 0,08 2 0 430 132,30 4,30 3,39 0.025 17 0.85 1 2 635 138,65 6,35 5,00 0,049 25 1,23 8,20 3 146,85 6,46 0,074 34 820 1.69 156,27 9,42 7.42 0.099 42 2,08 70 4 942 3,0 168,57 5 1230 12,30 9,69 0,149 54 2,70 0,198 63 3,17 105 3,0 0,248 71 3,57 81 0,298 4,05 0,398 94 4,68 0,497 110 5,52 MOLDE Nº (25 GOLPES) SATURADO LECTURA ESPONJAMIENTO TIEMPO ALTURA PRESIONES PRESIONES VALORES SATURAC. DIAL MUESTRA PENETRAC CARGA PRESIONES CORREGI. STANDARD C.B.R 10⁻²mm. (dias) mm. mm pulg. kg/cm^2 kg/cm^2 kg/cm^2 % kg 0 0 127,00 0,00 0,00 0,000 2 0,08 560 132,60 5,60 4,41 0,025 6 0,31 1 2 756 140,16 7,56 5,95 0,050 9 0,46 3 1062 150,78 10,62 8,36 0,075 14 0,69 1076 161,54 10,76 8,47 0,100 18 70 4 0,92 1,3 5 1079 172,33 10,79 8,50 0,149 25 1,23 0,199 34 1,69 105 1,6 0,249 40 2,00 0.299 48 2.38 0,499 70 3,49 (12 GOLPES) SATURADO MOLDE Nº 3 TIEMPO LECTURA ALTURA ESPONJAMIENTO PRESIONES PRESIONES VALORES SATURAC. DIAL MUESTRA PENETRAC CARGA PRESIONES CORREGI. STANDARD C.B.R 10⁻²mm. (dias) mm. kg/cm^2 kg/cm^2 mm. % pulg. kg kg/cm^2 0,00 0.00 0,000 0 127,00 0,08 0 2 380 3,80 2,99 1 130,80 0,025 6 0,31 2 602 136,82 6,02 4,74 0,050 11 0,54 7,73 3 982 146,64 9,82 0,075 15 0,77 990 156,54 9,90 7.80 0,100 17 70 4 0.85 1,2 5 992 166,46 9,92 7,81 0,149 22 1,08 0,199 26 1,31 105 1,2 0,249 29 1,46 0,299 32 1,62 0,399 38 1.92 0,499 45 2,23

> Manuel Davila 1-52 y Av. Remigio Crespo / Telefono 07 2 884-121 Telefax: 07 2 814 Cuenca - Ecuador / Email: labscon@outlook.com

LABOCON Laboratorio de Suelos y Cencretos Ditento Control de Celided y Essentizacion Ing. Pablo Esfeban Vélez Dávila

Manuel Davila 1-52 y Av. Remigio Crespo / Telefono 07 2 884-121 Telefax: 07 2 814 Cuenca - Ecuador / Email: labscon@outlook.com

Diseño Control de Calidad y Fiscalización Ing. Pablo Esteban Vélez Dávila

2. ENSAYOS BASE

Laboratorio de Suelos y Concretos Diseño Control de Calidad y Fiscalización

MUESTRA DEPOSITADA EN EL LABORATORIO

MATERIAL: BASE

PROYECTO: MAESTRIA EN VIALIDAD Y TRANSPORTE

SOLICITADO POR: ING. ANDRES BUSTAMANTE

FECHA: 28 DE DICIEMBRE DEL 2015

PROCEDENCIA: VIPESA

HUMEDADES INEN 690

PESO DEL TARRO (gr)

TARRO #

%HUMEDAD

LIMITE PLASTICO INEN 692

TARRO #	30	71	29	2
PESO DEL TARRO + M. HUMED. (gr)	50,35	52,67	50,88	53,46
PESO DEL TARRO + MAT.SECA (gr)	49,98	52,27	50,45	53,02
PESO DEL TARRO (gr)	48,12	50,2	48,25	50,79
%HUMEDAD	19,89	19,32	19,55	19,73

LIMITE LIQUIDO INEN 691

Nº DE ENSAYOS	1 1	2	3	4	5
Nº DE GOLPES	32	30	26	16	13
TARRO Nº	40	25	93	249	74
PESO TARRO + M. HUMEDA (gr)	57,72	56,19	57,66	58,79	59,02
PESO TARRO + M. SECA (gr)	56,22	54,47	56,15	56,83	57,18
PESO TARRO (gr)	50,17	47,62	50,32	49,67	50,62
%HUMEDAD	24,79	25,11	25,90	27,37	28,05

LIMITE LIQUIDO	25,98%
LIMITE PLASTICO	19,62%
INDICE DE PLASTICIDAD	6,35%

GRANULOMETRIA INEN 696

PESO DEL TARRO + M. HUMED. (gr)

PESO DEL TARRO + MAT.SECA (gr)

TAMIZ Nº	PESOS RETENID PARCIALES (gr)	PESOS RETENID. ACUMULADOS (gr)	PORCENTAJES RETENIDOS	PORCENTAJES QUE PASAN
3"	0	0	0	100
2"	0	0	0	100
1 1/2"	86	86	0	100
1"	4.897	4.983	26	74
3/4"	3.282	8.265	44	56
3/8"	1.155	9.420	50	50
Nº4	391	9.811	52	48
PASA N°4	9.307	9.010	-	-
N°10	86,80	86,80	61	39
N°40	149,70	236,50	76	24
N°200	119,80	356,30	87	13
PASA N°20	0,60	127,77	-	-
TOTAL		484.07	-	-

GRANULOMETRIA

229

144,52

141,42

47,53

3,30

38

138,25

135,48

51.03

3,28

NATURAL

PESO HUMEDO ANTES DEL ENSAYO (gr) 19.126 PESO HUMEDO DESPUES DEL ENSAYO (gr) 19.118 % DE HUMEDAD 3,29% PESO SECO ANTES DEL ENSAYO (gr) 18.821 PESO HUMEDO ANTES DEL LAVADO (gr) 500,00 PESO SECO ANTES DEL LAVADO (gr) 484,07 PESO SECO DESPUES DEL LAVADO (gr) 356,90

CLASIFICACION POR EL SUCS CLASIFICACION POR LA AASHTO	GC-GM A-2-4	Wille My
6 DE GRAVA	52	LABSCON Laboratorio de Suelos y Concretos
6 DE ARENA	25	Diseño Control de Calidad y Fiscalización
6DE FINOS	13	ing. rubio Esteban Velez Davila

Manuel Davila 1-52 y Av. Remigio Crespo

Telefonos 07 2 884-121 Telefax: 07 2 814-070 Celu: 0992162164

PROYECTO: MAESTRIA EN VIALIDAD Y TRANSPORTE

MUESTRA DEPOSITADA EN EL LABORATORIO

SOLICITADO POR: ING. ANDRES BUSTAMANTE

FECHA: 28 DE DICIEMBRE DEL 2015

MATERIAL: BASE

PROCEDENCIA: VIPESA

ANALISIS GRANULOMETRICO

TAMIZ Nº	PESOS RETENIDOS PARCIALES	PESOS RETENIDOS ACUMULADOS	PORCENTAJES RETENIDOS	PORCENTAJES QUE PASAN	POR	CENT	AJES Ados
3"	0	0	0	100			
2"	0	0	0	100	100	-	100
1 1/2"	86	86	0	100	70	-	100
1"	4.897	4.983	26	74	55	-	85
3/4"	3.282	8.265	44	56	50	-	80
3/8"	1.155	9.420	50	50	35	-	60
Nº4	391	9.811	52	48	25	-	50
PASA N°4	9.307	9.010	-	-			
N°10	86,80	86,80	61	39	20	-	40
N°40	149,70	236,50	76	24	10	-	25
N°200	119,80	356,30	87	13	2	-	12
PASA N°200	0,60	127,77	-	-			
TOTAL	484,07	484,07	-	-			

PESO HUMEDO ANTES DEL ENSAYO PESO HUMEDO DESPUES DEL ENSAYO % DE HUMEDAD PESO SECO ANTES DEL ENSAYO PESO HUMEDO ANTES DEL LAVADO PESO SECO ANTES DEL LAVADO PESO SECO DESPUES DEL LAVADO

19.126
19.118
3,29%
18.821
500,00
484,07
356,90

VALORES INDICE	NORMA MOP	MATERIA		
L.L	25	-	25,98%	
I.P	6	-	6,35%	

NORMA GRANULOMETRICA BASE TIPO 1A

Manuel Davila 1-52 y Av. Remigio Crespo / Telefono 07 2 884-121 Telefax: 07 2 814-079 Celu: 0992162164 Cuenca - Ecuador / Email: labscon@outlook.com PROYECTO: MAESTRIA EN VIALIDAD Y TRANSPORTE

Diseño Control de Calidad y Fiscalización

ABS

SOLICITA: ING. ANDRES BUSTAMANTE

MATERIAL: BASE

ENSAYO: AASHTO T-180 (METODO D)

PROCEDENCIA: VIPESA

MUESTRA DEPOSITADA EN LABORATORIO

FECHA: 29 DE DICIEMBRE DEL 2015

NORMA: ASTM D 1557 -02

			RELA	CION	DENS	IDADE	ESHU	MEDA		
MUESTRA Nº	ľ	1		2	:	3	4		5	
AGUA INCREMENTADA (cm3)	1(00	20	00	30	00	400		500	
PESO MOLDE + SUELO HUMEDO (gr)	13.	320	13.	624	13.	849	13.	779	13.617	
PESO MOLDE SIN COLLAR (gr)	8.9	923	8.9	923	8.9	23	8.9	923	8.9	923
PESO SUELO HUMEDO (gr)	4.3	397	4.7	701	4.9	26	4.8	356	4.6	694
VOLUMEN DEL MOLDE (cm3)	2.1	79	2.1	179	2.1	79	2.1	179	2.1	79
DENSIDAD HUMEDA (kg/m3)	2.0)18	2.1	157	2.2	261	2.2	229	2.154	
HUMEDAD										
MUESTRAS PARA PROMEDIAR		1		2		3		4		5
NUMERO DE TARRO	236	38	240	229	209	69	32	215	67	211
PESO TARRO+MUESTRA HUMEDA (gr)	137,37	132,69	126,44	124,58	119,48	117,59	134,01	130,25	133,05	134,90
PESO TARRO + MUESTRA SECA (gr)	133,70	129,37	121,14	119,18	113,43	111,58	124,69	121,06	122,90	124,08
PESO DEL AGUA (gr)	3,67	3,32	5,30	5,40	6,05	6,01	9,32	9,19	10,15	10,82
PESO DEL TARRO (gr)	47,82	51,03	50,18	47,53	50,61	50,21	50,51	47,84	48,21	47,88
PESO SUELO SECO (gr)	85,88	78,34	70,96	71,65	62,82	61,37	74,18	73,22	74,69	76,20
HUMEDAD (%)	4,27	4,24	7,47	7,54	9,63	9,79	12,56	12,55	13,59	14,20
HUMEDAD PROMEDIO (%)	4,2	6%	7,5	0%	9,71%		12,56%		13,89%	
DENSIDAD SECA (kg/mc)	1.9	936	2.0	007	2.0)61	1.980		1.891	

Manuel Davila 1-52 y Av. Remigio Crespo / Telefono 07 2 884-121 Telefax: 07 2 814-0 Cuenca - Ecuador / Email: labscon@outlook.com

3. ENSAYO A COMPRESIÓN SIMPLE

LABORATORIO DE SUELOS Y MATERIALES FACULTAD DE INGENIERÍA laboratorio.suelos@ucuenca.edu.ec Teléfono: 405-1000 Ext:2354

Fundada en 1867 UNIVERSIDAD DE CUENCA

PROYECT	:0:	"Evaluación e	n el nivel de res	sistencia de u	na Subrasante,	con el Uso Cor	nbinado de una	i Geom y Geot	.n
UBICACIO	ÓN:	Vía Tramo La	Pradera-Gualad	quiza km 62+1	.15				
SOLICITA	DO POR:								
PERFORA	ACIÓN:	km 62+115 ca	arril izquierdo						
FECHA:		martes, 22 de	e diciembre de 2	2015		PROF:	<u>1</u> m	A:	m
			ENS	AYO A COMP	PRESION SIMP	LE			
Tiempo	Penetración	MUES	TRA #1	MUES	TRA #2	MUES	TRA #3	MUES	TRA #4
		Carga	Esfuerzo	Carga	Esfuerzo	Carga	Esfuerzo	Carga	Esfuerzo
min	(0.001)"	kN	kN/pulg ²	kN	kN/pulg ⁴	kN	kN/pulg ²	kN	kN/pulg*
0.0	0	0.00		0.00		0.00		0.00	
0.5	25	0.38		0.24		0.19		0.28	
1.0	50	0.47		0.42		0.42		0.47	
1.5	75	0.61		0.52		0.52		0.66	
2.0	100	0.71		0.66		0.66		0.85	
3.0	150	1.04		0.99		1.04		1.27	
4.0	200	1.27		1.27		1.42		1.70	
5.0	250	1.56		1.60		1.79		2.22	
6.0	300	1.75		1.84		2.17		2.45	
8.0	400	2.17		2.41		2.88		2.88	
10.0	500	2.22		2.78		3.26		3.40	
12.0	600	2.31		3.02		3.35		3.77	
14.0	700			3.30		3.40		4.10	
16.0	800			3.49		3.46		3.96	
									1
								<u> </u>	
	· · · · · · · · · · · · · · · · · · ·								

ING. ANDRÉS BUSTAMANTE Estudiante de la Maestría en Vialidad y Transportes

4. ESPECIFICACIONES TÉCNICAS GEOTEXTIL Y GEOMALLA

GEOTEXTILES NO TEJIDOS

ESPECIFICACIÓN INTERNACIONAL GEOTEXTIL PAVCO NT 1800

Es un Geotextil No Tejido de polipropileno, conformado por un sistema de fibras, punzonado por agujas. Este Geotextil se produce en una de las plantas de PAVCO S.A., bajo un Sistema de Gestión de Calidad de acuerdo con los requerimientos de la Norma de Calidad ISO 9001:2000. Es altamente resistente a la degradación biológica y química, que normalmente se encuentra en los suelos. Los valores de las propiedades que aparecen en esta especificación¹ son obtenidos en el Laboratorio de Control de Calidad de Geosistemas PAVCO S.A.

	PROPIEDADES	NORMA	UNIDAD	VALOR TIPICO ²
	Método Grab Resistencia a la Tensión Elongación	ASTM D 4632	N (Ib) %	530 (120) >50
	Método Tira Ancha Sentido Longitudinal Elongación	ASTM D 4595	kN/m 96	8.8 >50
EDADE	Sentido Transversal Elongación	ASTM D 4595	kN/m %	9.6 >50
2	Resistencia al Punzonamiento	ASTM D 4833	N (Ib)	310 (70)
•	Resistencia al Punzonamiento CBR	ASTM D 6241	kN	1.6
	Resistencia al Rasgado Trapezoidal	ASTM D 4533 N (lb)		260 (59)
	Método Bullen Burst Resistencia al Estallido	ASTM D 3786	Kpa (psi)	1587 (230)
i i	Tamaño de Abertura Aparente	ASTM D 4751	mm (No Tamiz)	0.180 (80)
3	Permeabilidad	ASTM D 4491	cm/s	40 x 10 ⁻²
2	Permitividad	ASTM D 4491	s ⁴	2.4
토	Tasa de flujo	ASTM D 4491	L/min/m ²	6860
	Espesor	ASTM D 5199	mm	1.7
12	Resistencia UV (% retenido @ 500 hr)	ASTM D 4355	96	>70
Ĭ.	Rolio Ancho	Medido	m	3.5 - 3.8 - 4.0
	Rollo Largo	Hedido	m	150
	Kollo Area	Calculado	m	525 - 570 - 600
	KORO ANCHO Maximo	Piedico	m	9.1

NOTAS

 Los valores de las propiedades de esta especificación son vigentes a partir de Octubre 08 y están sujetas a modificaciones sin previo aviso.
 Los valores publicados corresponden al sentido más desfavorable del Geotextil. Los Valores típicos corresponden al promedio de todos los datos históricos.

PAVCO se reserva el derecho de introducir las modificaciones de especificaciones que considere necesarias para garantizar la óptima calidad y funcionalidad de sus productos. La información aquí contenida se ofrece gratis y es, a nuestro leal saber y entender, cierta y exacta; no obstante, todas las recomendaciones y sugerencias están hechas sin garantía, puesto que las condiciones de usos están fuera de nuestro control.

Oficina Principal: Autopista Sur No. 71 – 75 Bogotá D.C., Colombia. Tels: (57–1) 702 5100 Fax: (57–1) 702 5013 Servicio al Cliente Bogotá: (57–1) 7025100 Ext. 3301- 3302 - 3303 -3305 Todo el País: 01 800 09 12286 é 01 800 09 P7A2V8C206 Medallin: (57–4) 352 1717/2122 Call: (57–2) 442 3442/44 Barrangulla: (57–6) 375 8100 Planta Parú: Av Separadora Industrial 2557, Ata Lina - Parú

E-mail: earvicle_geostemas@pevco.com.co - www.pevco.com.co

ACE Geosynthetics QC Laboratory Geosynthetics Test Report

Product name : Glassfiber Geogrid Coated with Bitumen Item No. : GA100-II Material : Glassfiber Width : 3.9M Roll No. : -Lot No. : PIVALTEC-091118-SA-02 Note : -

Invoice No. : PIVALTEC-091118-SA-02

Date of Report : 2009/12/10 L/C No. : -Container No. : -P.O. No. : -

Test	Unit	Test Method	P/O Specification	Mean
MD Tensile Strength	kN/m	ASTM D6637	≥100	121.54
MD Elongation	%	ASTM D6637	≤4	2.09
CD Tensile Strength	kN/m	ASTM D6637	≥100	128.72
CD Elongation	%	ASTM D6637	≦4	2.13
Mesh size	mm		18*18±10%	19.03*16.62
				100

ANEXO CÁLCULOS

1. FACTOR CAMIÓN PARA PAVIMENTOS FLEXIBLES

	DATOS	
SN impuesto=	3.00	
po=	4.00	
pt=	2.50	
ΔPSI=	1.5	
n=	20	años
	18	kips
Eje Estándar=	18000	lb
	8.2	Ton

$\log\left(\frac{4.2-p_t}{p_t}\right) = 0.4+$	$\left(0.081(L_x + L_{2x})^{3.23}\right)$
4.2-1.5	$(SN+1)^{5.19}L_{2x}^{-3.23}$

 $\frac{\boldsymbol{W}_{x}}{\boldsymbol{W}_{13}} = \left[\frac{\boldsymbol{L}_{13} + \boldsymbol{L}_{21}}{\boldsymbol{L}_{x} + \boldsymbol{L}_{2x}}\right]^{4.39} \left[\frac{10^{\frac{2}{\beta_{x}}}}{10^{\frac{2}{\beta_{x}}}}\right] \left[\boldsymbol{L}_{2x}\right]^{4.33}$

Tipo Ve	hiculo	Ejes de Carga (ton)	Ejes de Carga (kips)	G	L2	βx	β18	Wx/W18	Factor Equivalencia	FACTOR CAMIÓN
	Liviano	1	2.20kips S	-0.2009	1	0.4026	1.2207	2334.2226	0.0004	0.0000
	LIVIAITO	1	2.20kips S	-0.2009	1	0.4026	1.2207	2334.2226	0.0004	t 0.0009
2 D8	פטכ	7	15.43kips S	-0.2009	1	0.9134	1.2207	1.7648	0.5666	2 7040
7 11	ZDB	11	24.25kips S	-0.2009	1	2.4565	1.2207	0.3099	3.2274	5.7940
ДС ЗА	2 ^	7	15.43kips S	-0.2009	1	0.9134	1.2207	1.7648	0.5666	2 5 9 2 2
7 20	AC	20	44.09kips T	-0.2009	2	1.9310	1.2207	0.3315	3.0167	5.5655
252		7	15.43kips S	-0.2009	1	0.9134	1.2207	1.7648	0.5666	
	2S2	11	24.25kips S	-0.2009	1	2.4565	1.2207	0.3099	3.2274	6.8107
7 11 20		20	44.09kips T	-0.2009	2	1.9310	1.2207	0.3315	3.0167	

• Datos de entrada:

p (presión de inflado)		0.8	Мра			
D (diámetro pla	aca)=	30	cm			
	Mód. Elasticidad (Mpa)			Mód. de Poisson		
CAPA BASE	E1		500	v1	0.35	
SUBRASANTE	E2		40	ν2	0.40	

Para el módulo de elasticidad y poisson, los valores son supuestos.

• Paso 1: condiciones de carga

Alize-Lcpc - Defining t	- 🗆 🗙			
Reference load : single wheel Y(m)	Characteristics ✓ radius (m) =	0.1480		
R (m)	✓ pressure (MPa) =	0.8000		
X (m)	weight (MN) =	0.05505		
 option 1 : French standard dual-wheel option 2 : Not standard dual-wheel option 3 : single wheel option 3 : No reference load 	Computation points points (x=0 y=0 z=interfaces) other points, to be defined OK Cancel			

• Paso 2: definición de la estructura de pavimento

	Alize-Lcpc - Structure definition (File/new) – 🗆 🗙								
File	e Comput	ation A	llowable va	lues	Libraries	Customiz	e Window ?		
	title								
	Basis structu	thick.	modulus (MPa)	Nu	material type		- Modify the structure nbr of layers: 14		
		0.08	500	0.35	other		Add 1 layer		
	bonded	0.05	500	0.35	other		Remove 1 layer		
	bonded	0.05	500	0.35	other		A the second state		
	bonded	0.05	500	0.35	other		nbr of variants: 1		
	bonded	0.05	500	0.35	other		See/manage variants		
	bonded	0.05	40	0.40	other				
	bonded	0.05	40	0.40	other		Remove all the variants		
	bonded	0.05	40	0.40	other		- Levels of computation		
	bonded	0.05	40	0.40	other		Modify the levels		
	bonded	0.05	40	0.40	other				
	bonded	0.05	40	0.40	other		- Help		
	bonded	0.05	40	0.40	other		Interface type		
	bonded	0.05	40	0.40	other				
	Donaca	infinite	40	0.40	other		Mini-maxi thicknesses		
							Fast computation (ref. load)		
							Quit Alize		

• Paso 3: resultados después de correr el programa

C:\\Tesis de geotextil y geomallas\Calculos\alize.dat								variant no 1: Duration 00:01s
thick. (m)	modulus (MPa)	Poisson coefficient	Zcalcul (m)	EpsT (µdef)	SigmaT (MPa)	EpsZ (µdef)	SigmaZ (MPa)	Results shown on screen -
0.080 500.0	500.0	0.0 0.350	0.000	750.9	1.008	188.3	0.800	C Table 2 C Table 4
	bonded		0.080	-55.8	0.321	901.3	0.675	Table 3 Table 4
0.050		0.0 0.350	0.080	-55.8	0.321	901.3	0.675	🔿 Table 5 🔿 🔿 Table 6
0.000	bonded		0.130	-238.3	0.078	860.6	0.485	C Table 7 C Table 8
0.050	500.0	0.350	0.130	-238.3	0.078	860.6	0.485	
0.000	bonded	0.000	0.180	-336.6	-0.099	732.2	0.297	
0.050	500.0	0.350	0.180	-336.6	-0.099	732.2	0.297	
0.000	bonded		0.230	-469.8	-0.279	696.9	0.153	
0.050	50 500 0	0.350	0.230	-469.8	-0.279	696.9	0.153	
	bonded	d	0.280	-739.4	-0.524	900.8	0.084	
0.050	40.0	40.0 0.400	0.280	-739.4	0.007	1965.0	0.084	Deflection =140.4 mm/100
	bonded		0.330	-621.4	0.005	1646.2	0.070	wheel center
0.050	40.0	0.400	0.330	-621.4	0.005	1646.2	0.070	
	bonded		0.380	-533.1	0.004	1407.4	0.060	Rdc = 79.5 m
0.050	40.0	0.400	0.380	-533.1	0.004	1407.4	0.060	
	bonded		0.430	-465.2	0.003	1223.2	0.052	
0.050	40.0	0.400	0.430	-465.2	0.003	1223.2	0.052	
	bonded		0.480	-411.4	0.003	1077.2	0.045	
0.050	0.050 40.0	40.0 0.400	0.480	-411.4	0.003	1077.2	0.045	
bonded	bonded		0.530	-367.7	0.002	958.6	0.040	
0.050 40.0 bonded 0.050 40.0 bonded	40.0	0.0 0.400 ded 0.0 0.400	0.530	-367.7	0.002	958.6	0.040	
	bonded		0.580	-331.4	0.002	860.4	0.036	
	40.0		0.580	-331.4	0.002	860.4	0.036	
		0.630	-300.8	0.001	777.8	0.032		
0.050	40.0	0.400	0.630	-300.8	0.001	777.8	0.032	Print Save

• Tabla de valores alcanzados:

	ΔZ	ΔZ Profundidad		Def	
	(m)	(m)	(Mpa)	(m)	
	0	0	0.8	0.1404	
ASE	0.08	0.08	0.675	0.9013	
BZ	0.05	0.13	0.485	0.8606	
A	0.05	0.18	0.297	0.7322	
N N	0.05	0.23	0.153	0.6969	
	0.05	0.29	0.084	0.9008	
	0.05	0.28	0.064	1.965	
	0.05	0.33	0.07	1.6462	
Ë	0.05	0.38	0.06	1.4074	
AN	0.05	0.43	0.052	1.2232	
AS	0.05	0.48	0.045	1.0772	
3R	0.05	0.53	0.04	0.9586	
Ŋ	0.05	0.58	0.036	0.8604	
	0.05	0.63	0.032	0.7778	
	0.05	0.68	0.029	0.7022	

Gráficos:

• Determinación de altura de la subrasante: $h_{sub} = 1.73 - 0.28 = 1.45m$
3. Cálcu	lo del tráns	ito proy	<u>ectado</u>					
			TPDA DEL	AÑO 2001 AL	2014			
	TPDA	Motos	Livianos	Buses, busetas, buses medianos y	camiones 2 ejes liviano	camiones 2 ejes grande	camiones grandes, 3 ejes, eje posterior	TOTAL
N°	AÑO	A1	A2	В	2DB	3A	2S2	
0	2011		128	37	27	22	2	216
1	2012		134	38	27.9	22.7	2	224.6
2	2013		140	38	28.9	23.5	2	232.4
3	2014		146	39	29.8	24.3	2	241.1
4	2015		153	40	30.8	25.1	2	250.9
5	2016		159	40	31.8	25.9	2	258.7
6	2017		165	41	32.8	26.7	2	267.5
7	2018		171	41	33.8	27.5	3	276.3
8	2019		178	42	34.8	28.4	3	286.2
9	2020		185	43	35.9	29.2	3	296.1
10	2021		191	43	36.9	30	3	303.9
11	2022		198	44	37.9	30.9	3	313.8
12	2023		205	44	39	31.7	3	322.7
13	2024		212	45	40	32.6	3	332.6
14	2025		219	46	41.1	33.5	3	342.6
15	2026		226	46	42.2	34.4	3	351.6
16	2027		232	47	43.3	35.3	3	360.6
1/	2028		239	4/	44.5	36.2	3	369.7
18	2029		247	48	45.6	37.2	3	380.8
19	2030		254	48	46.8	38.2	3	390
20	2031		262	49	48.1	39.2	4	402.3
21	2032		270	50	49.3	40.2	4	413.5
Motos (A1) Livianos, agru Buses, agrupa Camiones, ag	pados en automóvil, ados en busetas o bu rupados en camione	camioneta y ve uses mediano es de 2 ejes (C	ehículos utilitar s y buses gran 1), de 3 ejes ((ios 4x4 (A2) des (B) C2), y camiones	s grandes y trái	ilers de 4, 5 y 6	ejes (C3)	
Obtenemos	la tasa de crecimie	nto del parqu	le automoto	r (r):				
		ri						
	Livianos (A2)=	3.54%						
	Buses (B)=	1.37%						
Cam	iones 2 ejes (C1)=	2.87%						
Cam	iones 3 ejes (C2)=	2.87%						
С. у Т.	. 4,5 y 6 ejes (C3)=	3.14%						
	Total vehículos=	3.08%						
<u>Estimamos e</u>	l tráfico futuro en	los proximos	20 años:					
<u>Para la clasif</u>	icación por tipo de	vehículo, asi	umimos un ve	ehículo mode	lo según las r	ormas ecuato	orianas de via	lidad y lo_
acoplamos a	los datos del prob	<u>lema</u>						
ÂÂ	ŇO 2014							
Tipo								
Vehiculo	Frecuencias							
	A2			% Livianos=	60.24%			
Liviano	140		% Buses	y camiones=	39.76%			
	В							
3A	38							
	C1							

	28	9								
200	20.	5								
ЗA	23.	5								
	C3									
253	2									
235	2									
TPDA (inicial)	232	.4								
<u>A continua</u>	ción, se real	iza la cl	asificación fur	ncio	nal de las	vías deacuer	do	al TPDA		
TDDA (inici	-1) -222 4									
IPDA (INICI	al) =232.4									
			Tabla 2A.202- 0	1 Cla	sificación fun	cional de las vías	s en	base al TPDA		
		Clas	sificaciòn Fu	nci	onal de la	as Vias en b	าวจ	e al TPD	Δ .	
		Cia	sincación i u	ner		Tuàfian Du		dia Diaria An	••d	
			Descrinción		Clasificaciòi	TRICO PRO	ollai	ño de horizont		
			Description		Funcional	Limite Inferio	ar ai or	Limite Supe	rior	
					AP2	80000		120000		
			Autopista		AP1	50000	+	80000		
		A			AV2	26000		50000		
		Autovia	o Carretera Multic	arril	AV1	8000		26000		
					C1	1000		8000		
		Car	retera de 2 carriles		C2	500		1000		
					C3	0	Τ	500		
		* TDDA	ráfico Dromodia Dias	A1						
		** TPDA II	=TPDA correspondient	Anuai e al año	o horizonte o de o	liseño				
		ч.								
Por lo tante	o se la clasif	icaría co	omo una Carre	tera	de 2 carri	les (0 <tpda< td=""><td><23</td><td>32)</td><td></td><td></td></tpda<>	<23	32)		
So dotormi	na ol factor	do dist	ribución nor d	iroc	ción (ED)					
<u>Se determin</u>		ue uisti		neu						
Considerar	nos que nue	estra car	retera tiene 1	car	ril en amb	as direccione	es			
	Número d	e	% de vehícu	llos						
	carriles		nesados en	el						
	on amba	-	carril de dis	año		Eactor asumi	do			
	direccion			cno			u0			
	directione	25				FD=	50	0.00%		
	2		50							
	4		45							
	· ·		10							
	6 o mas		40							
<u>Se determi</u>	na el factor	de disti	ribución por ca	arril	(FL)					
Considerar	nos que nue	estra car	rretera tiene 1	car	ril en amb	as direccion	es			
	Número d	e 🤊	6 de ESAL e	n el						
Cá	arriles en c	ada	carril de dise	eño						
	direcció	n				Factor asumi	do			
	4		100			FL=	10	0.00%		
	1		100							
	2		80 - 100							
	3		60 - 80							
			50 00							
	4		50 - 75							
							-			
<u>Se determi</u>	na el factor	<u>camión</u>	global (FCg)							
$FC\sigma =$	Σ Ci * Fi /	ΣCi								
Tipo	EC									
Vehiculo		•								
Διι	tomóviles									
Liviana	<u></u>		-							
Liviano	0									
	Buses									
Buses	3.58	33								
	2DR									
200		1					-			
ZDR	3./5	14								

3A	3.583										
	C3										
2S2	6.811										
FCg	3.719										
<u> </u>											
Calculamos e	el factor de Provec	ción (FP)									
		(1+r)	$(i)^{n} - 1$								
	FP	$=\frac{1}{\ln(1)}$,								
		m(I	+11)								
FP=	27.49										
Obtenemos (el número de eies	equivalentes	s del número	total d	e vehí	culos					
		equitaente	der Hamero				_ /				
		F 005	$(1+r)^{n}-1$	1 _		TPD=	Tránsito p	romedi	o diari	oinici	al
N = I	PD×A%×F _D >	$\times F_{L} \times 365$	$\left(\frac{1}{1}+r\right)$	-×F(jg	A= Po	rcentaje e	estimad	o de ve	ehículo	DS
						come	rciales (ca	miones	y buse	es)	
						F _ F		i otvi bu o	ان م م ا		
%Λ-	30 76%					$F_{D} = F$	actor de d	Istribuc	lon air	eccior	181
/0A-	50%					$F_L = F_L$	actor de d	istribuci	ión de	carril	
FI -	100%					r - to		o crocim	nianta	doltr	ncito
Eprov-	27.49					f = lds	a anual u	ecrecin	nento	uertra	IIISILO
Dias/año-	265					n = pe	eriodo de o	diseño			
	2 710					ECa-	Factor car	nián da			
FCg-	3.713 222					FCg =	Factor car	nion de	Id Vid		
IPDA (IIIIC.)-	252										
IN-	1724159										
Corrocción d	o tráncito provoct	ada									
conecciona		<u>auo</u>	_		Nivele	s de confiabili carre	dad sugeridos æras (AASHTC	s para difer D)	entes		
x	$1 1 0 \sigma$	Zr	7		Clasi	ficación	Nivel de	confiabilida mondodo	ıd		
	$V = 10^{\circ}$	$ \times / $					Urbana	Rur	al		
	-				Aut	opistas	85 - 99.9	80 - 9	99.9		
	fieldide de la 1000/				interpr	oviciales y otras					
Para una con					Arterias	principales	80 - 99	75 -	95		
Zr=	0.841621234				Colectora	is de transito	80 - 95 50 - 80	75 - 50	95 80		
W18(N)=	1724159				Garrete	as locales	30-80	30 -	50		
N'=	1899583										

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4. DISENU PUK EL ME	TODO AASH	ITO 93												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Da	tos de entrada:								KOTOTA AND	1.157774 - 10	1.11			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										D,'≥.SN.		970			
$ \frac{ }{ } \frac{ }{ }}{ $	T.	de diseño 20 años:	1899583	1						а,					
$ \begin{array}{ c c c c c } \hline \hline$	M	R (subrasante) nsi:	1500*CBR	1						•					
$\frac{1}{2} \frac{1}{2} \frac{1}$		pcif:	2.5	İ		1 1	♦ ⊢		·····	SN,	SN,				
$\frac{1}{2000000000} = \frac{1}{10000000000000000000000000000000000$			- 4	1		† T	SN, 7.	Surface Cou	urse 🕇 D	D ₁ - · · · ·					
$ \frac{1}{2} 1$			4							D SN	SN."	10.01		-	
$\frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ $		<u> </u>	1.5	4		SN ₂	1	 Base Cou 	irse o), an	1				
$ \frac{1}{10000000000000000000000000000000000$		50=	0.45		SN.				· · · · · ·		-1				
Exercise Exercise Description Description <thdescription< th=""> <thdescription< th=""> <thd< td=""><td></td><td>Probabilidad=</td><td>90.00%</td><td></td><td></td><td>1 100</td><td></td><td>o o Subbase</td><td>Course 6.4 D</td><td>- SN .TON</td><td>- ON</td><td></td><td></td><td></td><td></td></thd<></thdescription<></thdescription<>		Probabilidad=	90.00%			1 100		o o Subbase	Course 6.4 D	- SN .TON	- ON				
$ \frac{\operatorname{server}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{\operatorname{server}_{ h }} = \frac{\operatorname{correct}_{ h }}{serv$	<u>Escenario</u> <u>F. reforzam.</u>	Zr=	-1.28155157		-	L P		0000	000 dt	3 514, 1514	2 50142				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sin reforz. FR1= 1	CBR1=	- 4%					Roadbed	Course 1						
Cond: a list Colspan="10"	Con geotex. FR2= 1.54	CBR2=	6.16%							D, 250;	(SN, +SN2)	100			
$\frac{\log \log (18 + 1.5)}{\log \log (18 + 1.5)} = \frac{\log \log (18 + 1.5)}{\log (18 + 1.5)} = \frac{\log (18 + 1.5)}{\log $	Con gt. y gm. FR3= 1.73	CBR3:	6.92%								a,m,				
System Size <	Con geom. FR4= 1.58	CBR4:	6.32%		C	N - a	Diaw	$D \perp a$	m D						
Number of the position	* Nota: Los datos de entrada fueron tor	nados los Estudios d	e Factibilidad,		J J	v - u		$u_2 D_2 + u$	31113123						
Participant is by Constraints by Constand by Constraints by Constraints by Constraints by Constraints	Impacto Ambiental e Ingeniería Definiti	ivos para la rectificar	ión y/o												
Baladamine da Marsen Burler. Davis Long Long <thlong< th=""> Long Long</thlong<>	mejoramiento de la Carretera SigSig-Gu	alaquiza, Tramo Mat	anga-												
PARA CRR DS UNA EFFOREAMENTO Image Image <t< td=""><td>Gualaquiza, en la Provincia de Morona 9</td><td>Santiago, Ouito, Con</td><td>sorcio Vial</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Gualaquiza, en la Provincia de Morona 9	Santiago, Ouito, Con	sorcio Vial												
Conversion Conver															
$ \begin{array}{ c c c c } \hline large solution (m) & large soluti$	PARA CBR 4% (SIN REFORZAMIENTO	<u>"</u>													
CAPAS (cm) (pig) m <t< td=""><td>Espesor</td><td>mi</td><td>ai</td><td>Módulo F</td><td>ai*mi*Di</td><td>SNI(PROG)</td><td>D</td><td>*</td><td>Di</td><td>i</td><td>SNi*</td><td></td><td></td><td></td><td></td></t<>	Espesor	mi	ai	Módulo F	ai*mi*Di	SNI(PROG)	D	*	Di	i	SNi*				
Superinf 10 334 04 30000 1.57 2.31 5.78 14.62 15 5.10 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.41 CUMME MEGRAMENTO 40 15.75 1 0.115 10566 1.81 4.31 9.62 2.443 100 7 1.15 10.00 > 9.62 CUMPLE MEGRAMENTO 40 1.575 1 0.115 0506 1.81 4.31 9.62 2.443 10 7 1.15 10.00 > 9.62 CUMPLE MEGRAMENTO 40 1.577 1.01 0.02 4.31 9.62 2.443 10.00 7 1.01 1.02 1.0	CAPAS (cm)	(plg)					Calculados (pulg)	Calculados (cm)	Ajustados (pulg)	Ajustados (cm)	0.41				
AASE 15 5.92 1 0.134 28481 0.79 2.27 4.25 10.00 6 10 0.00 1.0.00 > 9.27 CUMPLE MORINAMENTO 0 15.75 1 0.115 15586 1.81 4.31 9.62 2.443 30 20 1.5 1.00 > 9.62 CUMPLE SN* 6.37 6.31 0.115 1586 1.81 4.31 9.62 2.443 30 20 1.5 1.00 > 9.62 CUMPLE SN* 6.37 6.37 6.37 6.37 6.37 1.00 > 0.0	SUPERFICIE 10	3.94	0.4	370000	1.57	2.31	5.78	14.67	6	15	2.40	2.40	>	2.31	CUMPLE
MELORAMENTO 40 15.75 1 0.115 1996 181 4.31 9.02 24.43 10 7.7 1.15 9.00 > 9.62 CLARKE SN= 4.31 SN= 4.31 SN= 4.31 SN= 4.31 SN= 4.35 SN= 4.35	BASE 15	5.91 1	0.134	28438	0.79	2.97	4.25	10.80	6	15	0.80	3.20	>	2.97	CUMPLE
SN= 4.31 SN 4.35 SN 4.35 SN 4.35 SN	MEJORAMIENTO 40	15.75 1	0.115	15586	1.81	4.31	9.62	24.43	10	25	1.15	10.00	>	9.62	CUMPLE
$\frac{ }{ $	1			6032		4,31				SN	4,35			1	
SH* 4.31 Image: Stress of the										514					
Jint And And <td>SN-</td> <td>4.21</td> <td>1</td> <td></td> <td>-</td> <td></td>	SN-	4.21	1											-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	514-	4.51													
Expression Diff									∆ PSI						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6.2	.//23/661	I					log	0 42 - 15						_
$\frac{\log (W18) = 6.278658274 - 0.0014}{\log (W18) = 6.278658274 - 0.0014} = 100 + 10$		Dif				log	$W_{10,18} = Z_p * S_+ 9.36* log$	10(SN+1) - 0.20 +	L *** - 1.5 J	100. M 8.07					
c c c c c c c c c	log (W18)= 6.2	.78658274 -0.001	1					10	1094						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								0.4	(SN+1) 5.19						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$															
PARA CBR 5.16 % (CON GEOTXTIL) mi ai Módulo E ai*m*Di Ni(PROG.) Di* Di SNi* CAPAS (m) (p)g mi ai Módulo E ai*m*Di Ni(PROG.) Calculados (puig) Ajustados (puig															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PARA CBR 6.16 % (CON GEOTEXTIL)														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
CAPAS (cm) (n) ai Módulo E ai*m*0i SN(PROG.) Calculados (pulg) Ajustados (pulg)	Espesor						D	*	Di						
$\frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000} + \frac{1}{100000} + \frac{1}{1000000} + \frac{1}{10000000} + \frac{1}{10000000} + \frac{1}{10000000000000000000000000000000000$	CAPAS (cm)	(nlg) mi	ai	Módulo E	ai*mi*Di	SNi(PROG.)	Calculados (pulg)	Calculados (cm)	Aiustados (nulg)	Aiustados (cm)	SNi*				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(Pig)	0.4	270000	4.57	2.24	calculatos (puig)		Ajustados (puig)	Ajustauos (citi)	2.40	2.40	<u> </u>	2.24	CLIMADUE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DAGE 10	3.94	0.4	370000	1.57	2.31	5.78	14.67	6	15	2.40	2.40	>	2.51	CUIVIPLE
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BASE 15	5.91 1	0.134	28438	0.79	2.97	4.25	10.80	6	15	0.80	3.20	>	2.97	CUMPLE
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MEJORAMIENTO 40	15.75 1	0.115	15586	1.81	3.65	3.88	9.85	4	10	0.46	4.00	>	3.88	CUMPLE
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				92.4		3.65				SN	3.66				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SN=	3.65	1						_						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									∆ PSI]						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16	31968746	1					10g ₁₀	42-15						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.0	Dif	1			109,0	N = Zp*S_+ 9.36*log.	(SN+1) - 0.20 +	L*** - 1.5 j	00. M 8.07					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	log (\\/19)- 5	79659274 -4 646	7	1		-10	10 K 0 1091(,	1094	-910'R - 0.07					-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10g (vv 10/- 0.2		-					0.40	(SN+1)5.19						-
PARA CBR 6.92 % (CON GEOTEXTIL y GEOMALLA) Image: constraint of the second								-		-					-
PARA CBR 6.92 % (CON GEOTEXTILY GEOMALIA) Image: constraint of the second															_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PARA CBR 6.92 % (CON GEOTEXTIL Y	GEOMALLA)													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
CAPAS (cm) (pig) III ai Would C aiii bi SW(FKOC, Calculados (pulg) Calculados (pulg) Ajustados (pulg) Aj	Espesor		ai.	Módulo F	ai*mi*Di		D	i*	Di	i	SN:*				
SUPERFICIE 10 3.94 0.4 370000 1.57 2.31 5.78 14.67 6 15 2.40 2.40 > 2.31 CUMPLE BASE 15 5.91 1 0.134 28438 0.79 2.97 4.25 10.80 6 15 0.80 3.20 > 2.97 CUMPLE MEJORAMIENTO 40 15.75 1 0.115 15586 1.81 3.49 2.49 6.32 3 8 0.35 3.00 > 2.49 CUMPLE MEJORAMIENTO 40 15.75 1 0.115 15586 1.81 3.49 2.49 6.32 3 8 0.35 3.00 > 2.49 CUMPLE SN = 3.49 <t< td=""><td>CAPAS (cm)</td><td>(plg) mi</td><td>aı</td><td>IVIODUIO E</td><td>arminu</td><td>SIVI(PKUG.)</td><td>Calculados (pulg)</td><td>Calculados (cm)</td><td>Ajustados (pulg)</td><td>Ajustados (cm)</td><td>2141-</td><td></td><td></td><td></td><td></td></t<>	CAPAS (cm)	(plg) mi	aı	IVIODUIO E	arminu	SIVI(PKUG.)	Calculados (pulg)	Calculados (cm)	Ajustados (pulg)	Ajustados (cm)	2141-				
BASE 15 5.91 1 0.134 28438 0.79 2.97 4.25 10.80 6 15 0.80 3.20 > 2.97 CUMPLE MEJORAMIENTO 40 15.75 1 0.115 15586 1.81 3.49 2.49 6.32 3 8 0.35 3.00 > 2.49 CUMPLE MEJORAMIENTO 40 15.75 1 0.115 15586 1.81 3.49 2.49 6.32 3 8 0.35 3.00 > 2.49 CUMPLE SN = 3.49		3.94	0.4	370000	1.57	2,31	5.78	14.67	6	15	2,40	2.40	>	2.31	CUMPLF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SUPERFICIE 10	5 91 1	0 134	28/138	0.79	2 97	4 25	10.80	6	15	0.80	3 20	>	2.01	CUMPLE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SUPERFICIE 10 BASE 15		0.104	15506	1 01	2.37	2.40	6.22	2	0	0.30	3.20		2.57	
N 3.55 N 3.55 <td>SUPERFICIE 10 BASE 15 MELORAMIENTO 40</td> <td>15.75 1</td> <td>0 11E</td> <td>00001</td> <td>1.01</td> <td>3.49</td> <td>2.49</td> <td>0.32</td> <td>3</td> <td>0</td> <td>0.35</td> <td>5.00</td> <td></td> <td>2.49</td> <td>CUIVIPLE</td>	SUPERFICIE 10 BASE 15 MELORAMIENTO 40	15.75 1	0 11E	00001	1.01	3.49	2.49	0.32	3	0	0.35	5.00		2.49	CUIVIPLE
SN= 3.49 Image: Constraint of the state of the	SUPERFICIE 10 BASE 15 MEJORAMIENTO 40	15.75 1	0.115	402.0		2.10									
$\frac{ SN ^2}{ SN ^2} = \frac{ SN ^2}{ SN ^2} = S$	SUPERFICIE 10 BASE 15 MEJORAMIENTO 40	15.75 1	0.115	103.8		3.49				SN	3.00				_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SUPERFICIE 10 BASE 15 MEJORAMIENTO 40	15.75 1	0.115	103.8		3.49			-	SN	3.35				
$1.63582141 \longrightarrow \log_{10}^{W} = z_{R}^{*S_{0}} + 9.36^{*}\log_{10}(30+1) - 0.20 + \frac{1024}{1004} + 2.32^{*}\log_{10}^{W} - 8.07$	SUPERFICIE 10 BASE 15 MEJORAMIENTO 40 SN=	15.75 1 3.49	0.115	103.8		3.49			[↓ PSI]	SN	3.35				
Dif	SUPERFICIE 10 BASE 15 MEJORAMIENTO 40 SN= 10	15.75 1 3.49	0.115	103.8		3.49		log10	Δ P6I 4.2 - 1.5	SN	3.33				
	SUPERFICIE 10 BASE 15 MEJORAMIENTO 40 SN= 1 11 1	3.49 63582141	0.115	103.8		3.49	$W_{10} = Z_{0} * S_{+} 9.36 * 10a.$	log ₁₀	$\left[\frac{\Delta PSI}{4.2 - 1.5}\right]$	SN 	5.55				

																	Т
ARA CBR 6.32% (CON GEOMA	LLA)															
	Esp	esor						D	i*	D	i						
APAS	(cm)	(plg)	mi	а	Modulo E	ai*mi*Di	SNI(PROG.)	Calculados (pulg)	Calculados (cm)	Ajustados (pulg)	Ajustados (cm)	SNi*					
JPERFICIE	10	3.94		0.4	370000	1.57	2.31	5.78	14.67	6	15	2.40	2.40	>	2.31	CUMPLE	
ASE	15	5.91	1	0.134	28438	0.79	2.97	4.25	10.80	6	15	0.80	3.20	>	2.97	CUMPLE	
IEJORAMIENTO	40	15.75	1	0.115	15586	1.81	3.62	3.62	9.19	4	10	0.46	4.00	>	3.62	CUMPLE	
					94.8		3.62				SN	3.66					
																	Т
	SN=	3.62						İ									
									-	-							
		1.636850952								δ PSI							
			Dif						10910 4	.2 - 1.5							
	log (W18)=	6.278658274	-4.6418				10910 1	3 = 2 _R *S ₀ + 9.36*log ₁₀ (S	N+1) - 0.20 +	+ 2.32*10g	0 ^M _R - 8.07						-
	,								0.40 +	5 19							-
										(SN+1)							-
																	-
																	+
																	+
																	+
																	+
																	+

ANEXO RESULTADOS SIMULACIONES

1. ENSAYOS A COMPRESIÓN SIMPLE

2. DEFORMACIÓN SIN REFORZAMIENTO

L								
	NODO	PUNTO	X (m)	Y (m)	Ux (m)	Uy (m)	X' (m)	Y' (m)
Γ	1256	А	0	0.24	0	-0.000202	0.0000	0.2398
Γ	1257		0.001875	0.24	1.07E-06	-0.000202	0.0019	0.2398
Γ	1258		0.00375	0.24	2.749E-06	-0.000202	0.0038	0.2398
Γ	1259		0.005625	0.24	5.596E-06	-0.0002	0.0056	0.2398
Γ	1394		0.0075	0.24	9.957E-06	-0.000197	0.0075	0.2398
Γ	1298		0.009375	0.24	1.56E-05	-0.000193	0.0094	0.2398
Γ	1299		0.01125	0.24	2.198E-05	-0.000186	0.0113	0.2398
Γ	1300		0.013125	0.24	2.859E-05	-0.000177	0.0132	0.2398
Γ	1304		0.015	0.24	3.446E-05	-0.000166	0.0150	0.2398
Γ	1305		0.016875	0.24	3.931E-05	-0.000156	0.0169	0.2398
Γ	1306		0.01875	0.24	4.323E-05	-0.000145	0.0188	0.2399
Γ	1307		0.020625	0.24	4.55E-05	-0.000133	0.0207	0.2399
Γ	1442		0.0225	0.24	4.662E-05	-0.000121	0.0225	0.2399
Γ	1273		0.024375	0.24	4.7E-05	-0.000108	0.0244	0.2399
Γ	1274		0.02625	0.24	4.678E-05	-9.59E-05	0.0263	0.2399
Γ	1275		0.028125	0.24	4.622E-05	-8.4E-05	0.0282	0.2399
Γ	1272		0.03	0.24	4.531E-05	-7.2E-05	0.0300	0.2399
Γ	1266		0.031875	0.24	4.368E-05	-5.93E-05	0.0319	0.2399
Γ	1267		0.03375	0.24	4.122E-05	-4.7E-05	0.0338	0.2400
Γ	1268		0.035625	0.24	3.833E-05	-3.57E-05	0.0357	0.2400
Γ	1496		0.0375	0.24	3.554E-05	-2.61E-05	0.0375	0.2400
Γ	1350		0.039375	0.24	3.371E-05	-1.87E-05	0.0394	0.2400
Γ	1351		0.04125	0.24	3.201E-05	-1.22E-05	0.0413	0.2400
Γ	1352		0.043125	0.24	3.023E-05	-6.45E-06	0.0432	0.2400
Γ	1362		0.045	0.24	2.816E-05	-1.08E-06	0.0450	0.2400
Γ	1363		0.046875	0.24	2.582E-05	3.942E-06	0.0469	0.2400
Γ	1364		0.04875	0.24	2.331E-05	8.818E-06	0.0488	0.2400
Γ	1365		0.050625	0.24	2.072E-05	1.338E-05	0.0506	0.2400
ſ	1534		0.0525	0.24	1.817E-05	1.763E-05	0.0525	0.2400
Γ	1528		0.054375	0.24	1.572E-05	2.145E-05	0.0544	0.2400
Γ	1529		0.05625	0.24	1.341E-05	2.482E-05	0.0563	0.2400
Γ	1530		0.058125	0.24	1.135E-05	2.764E-05	0.0581	0.2400
ſ	1550		0.06	0.24	9.623E-06	2.987E-05	0.0600	0.2400
ſ	1554		0.061875	0.24	8.098E-06	3.168E-05	0.0619	0.2400
Γ	1555		0.06375	0.24	6.495E-06	3.334E-05	0.0638	0.2400
Γ	1556		0.065625	0.24	4.912E-06	3.486E-05	0.0656	0.2400
Γ	1840		0.0675	0.24	3.452E-06	3.62E-05	0.0675	0.2400
ſ	1825		0.069375	0.24	2.214E-06	3.73E-05	0.0694	0.2400
ſ	1826		0.07125	0.24	1.273E-06	3.808E-05	0.0713	0.2400
Γ	1827		0.073125	0.24	5.686E-07	3.857E-05	0.0731	0.2400
ľ	1824	В	0.075	0.24	0	3.875E-05	0.0750	0.2400

NODO	PUNTO	X (m)	Y (m)	Ux (m)	Uy (m)	X' (m)	Y' (m
29	с.	0	0,28	0	-0.000213	0.0000	0.279
23	č	0.0008929	0.28	0	-0.000213	0.0009	0.279
27		0.0017857	0.28	0	-0.000213	0.0018	0.279
26		0.0026786	0.28	0	-0.000213	0.0027	0.279
25		0.0035714	0.28	0	-0.000213	0.0036	0.279
24		0.0044643	0.28	0	-0.000213	0.0045	0.279
23		0.0053571	0.28	0	-0.000213	0.0054	0.279
22		0.00625	0.28	0	-0.000213	0.0063	0.279
21		0.00/1429	0.28	0	-0.000213	0.0071	0.279
20		0.0080357	0.28	0	-0.000213	0.0080	0.27
18		0.0098214	0.28	0	-0.000213	0.0098	0.27
17		0.0107143	0.28	0	-0.000213	0.0107	0.27
16		0.0116071	0.28	0	-0.000213	0.0116	0.27
15		0.0125	0.28	0	-0.000213	0.0125	0.27
14		0.0133929	0.28	0	-0.000213	0.0134	0.27
13		0.0142857	0.28	0	-0.000213	0.0143	0.27
12		0.0151786	0.28	0	-0.000213	0.0152	0.27
11		0.0160714	0.28	0	-0.000213	0.0161	0.27
10		0.0169643	0.28	0	-0.000213	0.0170	0.27
9		0.01/85/1	0.28	0	-0.000213	0.0179	0.27
6		0.0196429	0.28	0	-0.000213	0.0196	0.27
5		0.0205357	0.28	0	-0.000213	0.0205	0.27
8		0.0214286	0.28	0	-0.000213	0.0214	0.27
4		0.0223214	0.28	0	-0.000213	0.0223	0.27
3		0.0232143	0.28	0	-0.000213	0.0232	0.27
2		0.0241071	0.28	0	-0.000213	0.0241	0.27
1		0.025	0.28	0	-0.000213	0.0250	0.27
54		0.0258626	0.28	-2.59E-05	-1.39E-05	0.0258	0.28
53		0.026/252	0.28	2 5055 05	2.859E-05	0.0267	0.28
62		0.0273875	0.28	2.538E-05	5.904E-05	0.0276	0.28
68		0.0293822	0.28	2.3E-05	6.272E-05	0.0294	0.28
67		0.0303139	0.28	2.219E-05	6.291E-05	0.0303	0.28
66		0.0312456	0.28	1.756E-05	5.723E-05	0.0313	0.28
150		0.0321772	0.28	1.518E-05	5.424E-05	0.0322	0.28
156		0.0331835	0.28	1.344E-05	5.33E-05	0.0332	0.28
155		0.0341898	0.28	1.123E-05	5.159E-05	0.0342	0.28
154		0.0351961	0.28	9.81E-06	5.039E-05	0.0352	0.28
256		0.0362023	0.28	9.19/E-06	4.976E-05	0.0362	0.28
262		0.0372892	0.28	8.524E-06	4.919E-05	0.0373	0.28
260		0.0394629	0.28	7.083E-06	4.786E-05	0.0395	0.28
276		0.0405497	0.28	6.789E-06	4.753E-05	0.0406	0.28
282		0.0417235	0.28	6.241E-06	4.686E-05	0.0417	0.28
281		0.0428974	0.28	5.225E-06	4.56E-05	0.0429	0.28
280		0.0440712	0.28	4.115E-06	4.437E-05	0.0441	0.28
410		0.0452451	0.28	3.245E-06	4.355E-05	0.0452	0.28
413		0.0465129	0.28	3.083E-06	4.334E-05	0.0465	0.28
412		0.0477807	0.28	2.576E-06	4.269E-05	0.0478	0.28
411		0.0490486	0.28	1.979E-06	4.192E-05	0.0491	0.28
520		0.0516857	0.28	8.888F-07	4.073F-05	0.0505	0.28
531		0.0530551	0.28	5.339E-07	4.038E-05	0.0531	0.28
530		0.0544244	0.28	3.612E-07	4.018E-05	0.0544	0.28
724		0.0557937	0.28	2.14E-07	3.998E-05	0.0558	0.28
727		0.0572727	0.28	1.303E-07	3.985E-05	0.0573	0.28
726		0.0587516	0.28	6.14E-08	3.975E-05	0.0588	0.28
725		0.0602306	0.28	1.047E-08	3.967E-05	0.0602	0.28
798		0.0617096	0.28	-2.2E-08	3.962E-05	0.0617	0.28
804		0.0633069	0.28	-3.82E-08	3.959E-05	0.0633	0.28
803		0.0649043	0.28	-4.2/E-08	3.95/E-05	0.0649	0.28
1052		0.0665016	0.28	-4.14E-08	3.9561-05	0.0665	0.28
1058		0.0698243	0.28	-3.52E-08	3.957F-05	0.0698	0.28
1053		0.0715495	0.28	-6E-09	3.957E-05	0.0715	0.28
1055		0.0732748	0.28	-8.79E-10	3.957E-05	0.0733	0.28
		1			2.0575.05		

SUBRASANTE (H= 0.24m)											
NODO	PUNTO	X (m)	Y (m)	σxx (kN/m²)	σ _{yy} (kN/m²)						
338	А	0.0004732	0.2395412	-0.973687	-5.655509						
344		0.0023276	0.2396135	-0.710769	-5.948813						
343		0.0047738	0.2396135	-0.305972	-8.05632						
337		0.0065537	0.2395412	-0.133951	-10.36029						
843		0.0083984	0.2397847	-0.051169	-12.44697						
850		0.0101858	0.2398186	-0.023341	-13.58956						
849		0.0126319	0.2398186	-0.449588	-14.52456						
842		0.0144789	0.2397847	-1.086212	-13.62604						
1035		0.0154252	0.2397847	-1.296193	-13.19263						
1042		0.0172872	0.2398186	-1.833825	-12.47385						
1041		0.0197334	0.2398186	-3.515209	-10.66047						
1034		0.0215057	0.2397847	-3.205979	-8.900939						
999		0.0234631	0.239661	-3.864011	-7.721115						
1006		0.0252403	0.2397144	-3.955465	-6.645517						
1005		0.0276864	0.2397144	-4.017379	-5.715288						
998		0.0295436	0.239661	-4.318873	-5.245652						
939		0.0304899	0.239661	-4.731481	-4.920519						
946		0.0323417	0.2397144	-5.354389	-3.815412						
945		0.0347879	0.2397144	-5.346747	-2.407726						
938		0.0365704	0.239661	-4.764844	-1.677533						
927		0.0384972	0.2395863	-3.613304	-1.530267						
934		0.0402691	0.2396515	-3.426889	-1.590766						
933		0.0427152	0.2396515	-3.573327	-1.498397						
926		0.0445777	0.2395863	-3.837299	-1.255275						
1023		0.045524	0.2395863	-3.894205	-1.094462						
1030		0.0473705	0.2396515	-4.064606	-0.891258						
1029		0.0498166	0.2396515	-4.056131	-0.550738						
1022		0.0516045	0.2395863	-3.889641	-0.372658						
975		0.0534256	0.2397147	-3.764466	-0.220101						
982		0.0552088	0.2397596	-3.580047	-0.109464						
981		0.0576549	0.2397596	-3.122653	-0.035898						
974		0.0595061	0.2397147	-2.680713	-0.027101						
1047		0.0604524	0.2397147	-2.494073	-0.017378						
1054		0.0623102	0.2397596	-2.572643	-0.026555						
1053		0.0647563	0.2397596	-2.518813	-0.004878						
1046		0.0665329	0.2397147	-2.362057	-0.008164						
325		0.0684463	0.2395412	-2.141551	-0.025451						
336		0.0702262	0.2396135	-1.791915	-0.04544						
335		0.0726724	0.2396135	-1.542128	-0.209695						
327	В	0.0745268	0.2395412	-1.480175	-0.244334						

3. ESFUERZOS SIN REFORZAMIENTO

		BASE (H= 0.24m)										
	NODO	PUNTO	X (m)	Y (m)	σxx (kN/m²)	σ _{yy} (kN/m						
	12183	А	0.0004732	0.2404348	-4.339683	-19.19299						
	12191		0.0023276	0.2403663	-4.823985	-21.79765						
	12192		0.0047738	0.2403663	-5.024784	-21.78841						
	12181		0.0065537	0.2404348	-5.243642	-22.90592						
	12542		0.0084416	0.2403148	-5.362474	-24.35206						
	12549		0.0102222	0.2402652	-4.875659	-22.41459						
	12550		0.0126683	0.2402652	-5.005843	-21.46826						
	12543		0.0145221	0.2403148	-5.91704	-18.29772						
	12602		0.0154684	0.2403148	-7.531647	-21.83042						
	12609		0.0173236	0.2402652	-4.604788	-17.0612						
Ì	12610		0.0197697	0.2402652	-15.7966	-16.99071						
ĺ	12603		0.0215489	0.2403148	-25.4792	-10.96679						
ĺ	12590		0.0234555	0.2404483	-19.4449	-13.75054						
Ì	12597		0.025234	0.2403776	-14.44703	-10.79706						
Ì	12598		0.0276801	0.2403776	-11.05074	-10.9834						
Ì	12591		0.029536	0.2404483	-8.967033	-9.437505						
ĺ	12518		0.0304824	0.2404483	-9.092597	-9.471995						
ĺ	12525		0.0323354	0.2403776	-8.950126	-6.215801						
ĺ	12526		0.0347815	0.2403776	-9.740842	-4.60851						
Ì	12519		0.0365629	0.2404483	-7.482198	-2.361299						
Ì	12566		0.0383792	0.2403536	-8.490941	-2.878095						
Ì	12573		0.0401697	0.2402979	-8.39499	-2.839804						
Ì	12574		0.0426158	0.2402979	-7.115586	-2.799674						
ĺ	12567		0.0444597	0.2403536	-5.595185	-2.137778						
Ì	12577		0.0459756	0.2404655	-5.740792	-2.903352						
Ì	12583		0.0477508	0.2403921	-4.868479	-2.474286						
Ì	12584		0.050197	0.2403921	-4.416678	-1.903985						
Ì	12578		0.0520561	0.2404655	-4.228945	-1.734499						
İ	12446		0.0530024	0.2404655	-4.05037	-1.404385						
Ì	12453		0.0548523	0.2403921	-3.433633	-1.210022						
Ì	12454		0.0572984	0.2403921	-3.221755	-1.039879						
Ì	12447		0.0590829	0.2404655	-2.712926	-0.893472						
İ	12674		0.0605953	0.2403784	-3.953322	-1.150314						
İ	12681		0.0624305	0.2403187	-3.453106	-1.179978						
İ	12682		0.0648767	0.2403187	-3.130368	-0.973105						
ł	12675		0.0666758	0.2403784	-3.016652	-1.118489						
ł	12025		0.0684463	0.2404206	-2.887905	-0.736638						
Ì	12031		0.0702262	0.2403543	-3.063801	-0.723406						
ł	12032		0.0726724	0.2403543	-3.088592	-0.683818						
ł	12026	B	0.0745268	0.2404206	-3.148783	-0.684961						

4. DEFORMACIÓN CON GEOTEXTIL

	CON GEOTEXTIL (H= 0.24m)											
NODO	PUNTO	X (m)	Y (m)	Ux (m)	Uy (m)	X' (m)	Y' (m)					
860	А	0	0.24	0	-0.000119	0.0000	0.2399					
861		0.00125	0.24	2.487E-06	-0.000117	0.0013	0.2399					
862		0.0025	0.24	5.146E-06	-0.000117	0.0025	0.2399					
863		0.00375	0.24	8.034E-06	-0.000116	0.0038	0.2399					
892		0.005	0.24	1.113E-05	-0.000115	0.0050	0.2399					
893		0.00625	0.24	1.429E-05	-0.000114	0.0063	0.2399					
894		0.0075	0.24	1.726E-05	-0.000113	0.0075	0.2399					
895		0.00875	0.24	1.987E-05	-0.000112	0.0088	0.2399					
891		0.01	0.24	2.203E-05	-0.00011	0.0100	0.2399					
8/3		0.01125	0.24	2.3/9E-05	-0.000108	0.0113	0.2399					
074		0.0125	0.24	2.5212-05	-0.000103	0.0125	0.2399					
906		0.01373	0.24	2.024L-05	-9.65F-05	0.0150	0.2399					
907		0.01625	0.24	2.737E-05	-8.83E-05	0.0163	0.2399					
908		0.0175	0.24	2.657E-05	-7.87E-05	0.0175	0.2399					
909		0.01875	0.24	2.412E-05	-6.93E-05	0.0188	0.2399					
924		0.02	0.24	2.208E-05	-6.14E-05	0.0200	0.2399					
925		0.02125	0.24	2.095E-05	-5.5E-05	0.0213	0.2399					
926		0.0225	0.24	2.042E-05	-4.94E-05	0.0225	0.2400					
927		0.02375	0.24	1.996E-05	-4.4E-05	0.0238	0.2400					
955		0.025	0.24	1.982E-05	-3.97E-05	0.0250	0.2400					
956		0.02625	0.24	1.869E-05	-3.48E-05	0.0263	0.2400					
957		0.0275	0.24	1.764E-05	-3.03E-05	0.0275	0.2400					
958		0.02875	0.24	1.62E-05	-2.59E-05	0.0288	0.2400					
959		0.03	0.24	1.464E-05	-2.18E-05	0.0300	0.2400					
937		0.03125	0.24	1.343E-05	-1.79E-05	0.0313	0.2400					
938		0.0325	0.24	1.236E-05	-1.44E-05	0.0325	0.2400					
939		0.03375	0.24	1.12/E-05	-1.13E-05	0.0338	0.2400					
970		0.035	0.24	9.653E-06	-6 38F-06	0.0350	0.2400					
972		0.0375	0.24	8.908E-06	-4.27E-06	0.0375	0.2400					
973		0.03875	0.24	8.275E-06	-2.38E-06	0.0388	0.2400					
988		0.04	0.24	7.658E-06	-6.64E-07	0.0400	0.2400					
989		0.04125	0.24	7.061E-06	8.997E-07	0.0413	0.2400					
990		0.0425	0.24	6.55E-06	2.347E-06	0.0425	0.2400					
991		0.04375	0.24	5.936E-06	3.681E-06	0.0438	0.2400					
1002		0.045	0.24	5.186E-06	4.942E-06	0.0450	0.2400					
1003		0.04625	0.24	5.192E-06	6.093E-06	0.0463	0.2400					
1004		0.0475	0.24	5.128E-06	7.2E-06	0.0475	0.2400					
1005		0.04875	0.24	5.021E-06	8.194E-06	0.0488	0.2400					
1021		0.05	0.24	4.876E-06	9.095E-06	0.0500	0.2400					
1022		0.05125	0.24	4./61E-06	9.905E-06	0.0513	0.2400					
1023		0.0525	0.24	4.04E-06	1 13F-05	0.0525	0.2400					
1024		0.055	0.24	4.121E-06	1.182E-05	0.0550	0.2400					
813		0.05625	0.24	3.594E-06	1.237E-05	0.0563	0.2400					
814		0.0575	0.24	3.223E-06	1.291E-05	0.0575	0.2400					
815		0.05875	0.24	2.94E-06	1.346E-05	0.0588	0.2400					
1036		0.06	0.24	2.632E-06	1.397E-05	0.0600	0.2400					
1037		0.06125	0.24	2.241E-06	1.421E-05	0.0613	0.2400					
1038		0.0625	0.24	1.952E-06	1.516E-05	0.0625	0.2400					
1039		0.06375	0.24	1.646E-06	1.511E-05	0.0638	0.2400					
1055		0.065	0.24	1.335E-06	1.539E-05	0.0650	0.2400					
1056		0.06625	0.24	1.098E-06	1.559E-05	0.0663	0.2400					
1057		0.0675	0.24	9.109E-07	1.578E-05	0.0675	0.2400					
1058		0.008/5	0.24	0.000E-07	1.581E-U5	0.0700	0.2400					
1059		0.07	0.24	2.14E-07	1.5/8E-05	0.0700	0.2400					
630		0.07125	0.24	7.8255-09	1.305-05	0.0713	0.2400					
832		0.07375	0.24	-2.79F-08	1.572F-05	0.0737	0.2400					
839	В	0.075	0.24	0	1.574E-05	0.0750	0.2400					

	CON GEOTEXTIL (H= 0.28m)											
NODO	PUNTO	X (m)	Y (m)	Ux (m)	Uy (m)	X' (m)	Y' (m)					
15	с	0	0.28	0	-0.000238	0.0000	0.2798					
14		0.00125	0.28	0	-0.000238	0.0013	0.2798					
13		0.0025	0.28	0	-0.000238	0.0025	0.2798					
12		0.00375	0.28	0	-0.000238	0.0038	0.2798					
16		0.005	0.28	0	-0.000238	0.0050	0.2798					
3		0.00625	0.28	0	-0.000238	0.0063	0.2798					
2		0.0075	0.28	0	-0.000238	0.0075	0.2798					
1		0.00875	0.28	0	-0.000238	0.0088	0.2798					
7		0.01	0.28	0	-0.000238	0.0100	0.2798					
6		0.01125	0.28	0	-0.000238	0.0113	0.2798					
5		0.0125	0.28	0	-0.000238	0.0125	0.2798					
4		0.01375	0.28	0	-0.000238	0.0138	0.2798					
8		0.015	0.28	0	-0.000238	0.0150	0.2798					
11		0.01625	0.28	0	-0.000238	0.0163	0.2798					
10		0.0175	0.28	0	-0.000238	0.0175	0.2798					
9		0.01875	0.28	0	-0.000238	0.0188	0.2798					
17		0.02	0.28	0	-0.000238	0.0200	0.2798					
21		0.02125	0.28	0	-0.000238	0.0213	0.2798					
20		0.0225	0.28	0	-0.000238	0.0225	0.2798					
19		0.02375	0.28	0	-0.000238	0.0238	0.2798					
18		0.025	0.28	0	-0.000238	0.0250	0.2798					
125		0.0262296	0.28	2.262E-06	-1.85E-05	0.0262	0.2800					
124		0.0274592	0.28	1.457E-05	4.97E-05	0.0275	0.2800					
123		0.0286888	0.28	2.53E-05	8.505E-05	0.0287	0.2801					
148		0.0299185	0.28	4.403E-05	8.025E-05	0.0300	0.2801					
154		0.0312986	0.28	5.03E-05	9.367E-05	0.0313	0.2801					
153		0.0326788	0.28	4.857E-05	9.474E-05	0.0327	0.2801					
152		0.034059	0.28	4.554E-05	9.382E-05	0.0341	0.2801					
202		0.0354392	0.28	4.316E-05	9.483E-05	0.0355	0.2801					
198		0.0369884	0.28	4.451E-05	9.601E-05	0.0370	0.2801					
197		0.0385377	0.28	4.483E-05	9.688E-05	0.0386	0.2801					
196		0.0400869	0.28	4.42E-05	9.62E-05	0.0401	0.2801					
206		0.0416361	0.28	4.303E-05	9.433E-05	0.0417	0.2801					
212		0.043375	0.28	4.084E-05	9.181E-05	0.0434	0.2801					
211		0.045114	0.28	3.84E-05	8.909E-05	0.0452	0.2801					
210		0.0468529	0.28	3.638E-05	8.698E-05	0.0469	0.2801					
244		0.0485918	0.28	3.445E-05	8.513E-05	0.0486	0.2801					
247		0.0505437	0.28	3.239E-05	8.332E-05	0.0506	0.2801					
246		0.0524956	0.28	3.023E-05	8.153E-05	0.0525	0.2801					
245		0.0544475	0.28	2.801E-05	7.98E-05	0.0545	0.2801					
254		0.0563994	0.28	2.574E-05	7.816E-05	0.0564	0.2801					
260		0.0585903	0.28	2.311E-05	7.651E-05	0.0586	0.2801					
259		0.0607812	0.28	2.042E-05	7.506E-05	0.0608	0.2801					
258		0.0629722	0.28	1.767E-05	7.387E-05	0.0630	0.2801					
276		0.0651631	0.28	1.478E-05	7.295E-05	0.0652	0.2801					
280		0.0676223	0.28	1.135E-05	7.197E-05	0.0676	0.2801					
279		0.0700815	0.28	7.652E-06	7.088E-05	0.0701	0.2801					
278		0.0725408	0.28	3.855E-06	7.006E-05	0.0725	0.2801					
277	D	0.075	0.28	0	6.982E-05	0.0750	0.2801					

5. ESFUERZOS CON GEOTEXTIL

	SUBRASANTE (H= 0.24m)											
NODO	PUNTO	X (m)	Y (m)	σxx (kN/m²)	σ _{yy} (kN/m²)							
99	А	0.0003154	0.2396824	-0.016811	-6.390166							
106		0.0015518	0.2397324	-0.070814	-6.541867							
105		0.0031825	0.2397324	-0.037733	-6.456545							
98		0.0043691	0.2396824	-0.119889	-6.787177							
87		0.0054553	0.2397127	-0.186014	-6.358297							
94		0.0066696	0.2397579	-0.281649	-6.226201							
93		0.0083003	0.2397579	-0.488263	-6.133373							
86		0.009509	0.2397127	-0.825433	-6.105998							
75		0.0106367	0.2395907	-0.987644	-5.420178							
82		0.0118224	0.2396552	-1.019092	-5.564388							
81		0.0134531	0.2396552	-1.244524	-5.632783							
122		0.0140904	0.2395907	2 072122	-5.569051							
125		0.0155215	0.2395507	-2.072132	-5.031721							
129		0.0181874	0.2396552	-3.086343	-3.543797							
122		0.0193749	0.2395907	-3.048555	-2.131508							
63		0.0206099	0.2397024	-2.384279	-2.164255							
70		0.0217998	0.2397493	-2.176004	-2.335163							
69		0.0234306	0.2397493	-2.360951	-2.010232							
62		0.0246636	0.2397024	-1.869517	-1.666683							
111		0.0252945	0.2397024	-2.269031	-2.18717							
118		0.0265341	0.2397493	-2.373676	-1.696503							
117		0.0281649	0.2397493	-2.221364	-1.334953							
110		0.0293482	0.2397024	-2.160932	-1.090426							
51		0.0305427	0.2395987	-2.086372	-0.932542							
58		0.0317432	0.239662	-1.962269	-0.791644							
57		0.033374	0.239662	-1.800521	-0.647148							
171		0.0345964	0.2395987	-1.699517	-0.54/30/							
171		0.0352275	0.2395987	-1.072045	-0.5555562							
170		0.0381082	0.239662	-1.457776	-0.538232							
170		0.0392809	0.2395987	-1.412478	-0.559825							
39		0.0406318	0.2395131	-1.383632	-0.563104							
46		0.0418182	0.2395898	-1.345613	-0.570579							
45		0.043449	0.2395898	-1.293844	-0.593867							
38		0.0446854	0.2395131	-1.2547	-0.611635							
27		0.0453163	0.2395131	-1.213204	-0.630919							
34		0.0465525	0.2395898	-1.144294	-0.670398							
33		0.0481833	0.2395898	-1.120576	-0.664327							
26		0.04937	0.2395131	-1.121058	-0.655464							
15		0.0505913	0.239705	-1.086672	-0.669366							
22		0.051/842	0.239/515	-1.009999/	-0.00105							
21		0.0534149	0.239/515	-1.119002	-0.008074							
159		0.0552759	0 239705	-1 147542	-0 609539							
166		0.0565184	0.2397515	-1.145632	-0.59643							
165		0.0581492	0.2397515	-1.139342	-0.578044							
158		0.0593295	0.239705	-1.16655	-0.535481							
147		0.0604381	0.2395429	-1.106322	-0.621708							
154		0.0616551	0.239615	-1.106355	-0.604635							
153		0.0632859	0.239615	-1.134065	-0.531543							
146		0.0644918	0.2395429	-1.106607	-0.552035							
3		0.0655236	0.2396998	-1.078627	-0.569554							
10		0.0682579	0.239/4/1	-1.069546	-0.568383							
2		0.0695772	0 2396999	-1.000517	-0.589265							
125		0.0706309	0.2396824	-1.037358	-0.605539							
142		0.0718175	0.2397324	-0.999891	-0.642911							
141		0.0734482	0.2397324	-0.970846	-0.679578							
134	В	0.0746846	0.2396824	-0.971635	-0.672463							

BASE (H= 0.24m)							
NODO	PUNTO	X (m)	Y (m)	σ ×x (kN/m²)	σ yy (kN/m²)		
6818	Α	0.0003154	0.2403155	-59.78612	-13.14498		
6825		0.0015518	0.2402657	-60.66619	-13.2207		
6826		0.0031825	0.2402657	-61.83985	-13.55487		
6819		0.0043691	0.2403155	-62.95787	-14.31265		
6830		0.0056163	0.2403035	-66.8817	-14.71064		
6837		0.0068052	0.2402557	-64.96121	-14.53092		
6838		0.0084359	0.2402557	-57.38887	-12.65437		
6831		0.0096699	0.2403035	-44.67804	-13.89908		
6806		0.0103008	0.2403035	-49.18904	-18.55983		
6813		0.0115394	0.2402557	-49.38274	-11.81266		
6814		0.0131702	0.2402557	-39.84194	-18.54811		
6807		0.0143545	0.2403035	-30.70959	-10.75809		
6854		0.0155975	0.2403355	-28.38265	-14.26663		
6861		0.0167893	0.2402826	-23.98981	-11.50178		
6862		0.0184201	0.2402826	-19.21104	-6.467858		
6855		0.0196511	0.2403355	-17.23208	-5.144054		
6710		0.020282	0.2403355	-16.5817	-5.024204		
6717		0.0215236	0.2402826	-15.95091	-4.73197		
6718		0.0231543	0.2402826	-13.29118	-4.063615		
6711		0.0243357	0.2403355	-12.46331	-3.303503		
6842		0.0256636	0.24043	-12.17258	-3.618179		
6849		0.026845	0.2403622	-10.99844	-3.390829		
6850		0.0284758	0.2403622	-9.512265	-2.575421		
6843		0.0297172	0.24043	-7.989158	-1.756684		
6722		0.0303481	0.24043	-7.387213	-1.607974		
6729		0.0315793	0.2403622	-6.21625	-1.363639		
6730		0.03321	0.2403622	-4.292486	-0.961769		
6723		0.0344018	0.24043	-2.765428	-0.619443		
6902		0.0356412	0.2402746	-1.520395	-0.786248		
6909		0.0368262	0.2402313	-0.555002	-0.863218		
6910		0.0384569	0.2402313	-0.415755	-0.769416		
6903		0.0396949	0.2402746	-0.182771	-0.539919		
6734		0.0403258	0.2402746	-0.281203	-1.025177		
6741		0.0415604	0.2402313	-0.209374	-0.662757		
6742		0.0431912	0.2402313	-0.192891	-0.768715		
6735		0.0443794	0.2402746	-0.21559	-0.850303		
6758		0.0455818	0.2403638	-0.213834	-0.781228		
6765		0.0467761	0.2403065	-0.144838	-0.587259		
6766		0.0484069	0.2403065	-0.172365	-0.767303		
6759		0.0496354	0.2403638	-0.108068	-0.44628		
6770		0.0502663	0.2403638	-0.178432	-0.769761		
6777		0.0515104	0.2403065	-0.166949	-0.665812		
6778		0.0531411	0.2403065	-0.151037	-0.572025		
6771		0.05432	0.2403638	-0.177487	-0.663291		
6890		0.0555423	0.2403981	-0.17115	-0.73861		
6897		0.0567429	0.2403353	-0.181465	-0.819949		
6898		0.0583736	0.2403353	-0.178703	-0.784341		
6891		0.059596	0.2403981	-0.145541	-0.590961		
6926		0.0606885	0.2402498	-0.220622	-0.961551		
6933		0.061866	0.2402104	-0.141518	-0.6039		
6934		0.0634968	0.2402104	-0.10567	-0.480516		
6927		0.0647422	0.2402498	-0.121494	-0.479596		
6698		0.0653731	0.2402498	-0.158887	-0.569956		
6705		0.0666003	0.2402104	-0.11584	-0.445746		
6706		0.0682311	0.2402104	-0.140673	-0.548778		
6699		0.0694267	0.2402498	-0.128493	-0.527343		
6938		0.0706309	0.2403464	-0.145805	-0.633675		
6945		0.0718175	0.2402918	-0.149447	-0.632693		
6946		0.0734482	0.2402918	-0.168222	-0.752633		
6939	В	0.0746846	0.2403464	-0.160667	-0.739055		

6. DEFORMACIÓN CON GEOTEXTIL Y

GEOMALLA

CON GEOTEXTIL Y GEOMALLA (H= 0.24m)								
NODO	PUNTO	X (m)	Y (m)	Ux (m)	Uy (m)	X' (m)	Y' (m)	
860	Α	0	0.24	0	-0.000146	0.0000	0.2399	
861		0.00125	0.24	7.105E-07	-0.000146	0.0013	0.2399	
862		0.0025	0.24	1.424E-06	-0.000146	0.0025	0.2399	
863		0.00375	0.24	2.128E-06	-0.000145	0.0038	0.2399	
892		0.005	0.24	2.821E-06	-0.000145	0.0050	0.2399	
893		0.00625	0.24	3.498E-06	-0.000145	0.0063	0.2399	
894		0.0075	0.24	4.162E-06	-0.000145	0.0075	0.2399	
895		0.00875	0.24	4.809E-06	-0.000144	0.0088	0.2399	
891		0.01	0.24	5.437E-06	-0.000143	0.0100	0.2399	
873		0.01125	0.24	6.034E-06	-0.000143	0.0113	0.2399	
874		0.0125	0.24	6.576E-06	-0.000141	0.0125	0.2399	
875		0.01375	0.24	7.059E-06	-0.000139	0.0138	0.2399	
906		0.015	0.24	7.483E-06	-0.000136	0.0150	0.2399	
907		0.01625	0.24	7.83E-06	-0.000132	0.0163	0.2399	
908		0.0175	0.24	8.092E-06	-0.000126	0.0175	0.2399	
909		0.01875	0.24	8.269E-06	-0.000118	0.0188	0.2399	
924		0.02	0.24	8.303E-00	-0.000107	0.0200	0.2399	
925		0.02125	0.24	8.39/E-06	-9.61E-05	0.0213	0.2399	
926		0.0225	0.24	8.407E-06	-8.55E-05	0.0225	0.2399	
927		0.02375	0.24	8.39/E-06	-7.51E-05	0.0238	0.2399	
955		0.025	0.24	0.303E-00	-0.01E-05	0.0250	0.2399	
950		0.02025	0.24	8 36F-06	-3.74L-05	0.0203	0.2399	
957		0.0275	0.24	8 354F-06	-4.37L-03	0.0275	0.2400	
950		0.02075	0.24	8 353F-06	-3 6F-05	0.0200	0.2400	
937		0.03125	0.24	8 363E-00	-3.02F-05	0.0300	0.2400	
938		0.0325	0.24	8.369E-06	-2.49E-05	0.0325	0.2400	
939		0.03375	0.24	8.342E-06	-2.01E-05	0.0338	0.2400	
970		0.035	0.24	8.243E-06	-1.57E-05	0.0350	0.2400	
971		0.03625	0.24	8.164E-06	-1.17E-05	0.0363	0.2400	
972		0.0375	0.24	8.1E-06	-8.07E-06	0.0375	0.2400	
973		0.03875	0.24	7.971E-06	-4.89E-06	0.0388	0.2400	
988		0.04	0.24	7.913E-06	-2.06E-06	0.0400	0.2400	
989		0.04125	0.24	7.899E-06	5.02E-07	0.0413	0.2400	
990		0.0425	0.24	7.805E-06	2.852E-06	0.0425	0.2400	
991		0.04375	0.24	7.693E-06	5.044E-06	0.0438	0.2400	
1002		0.045	0.24	7.615E-06	7.016E-06	0.0450	0.2400	
1003		0.04625	0.24	7.436E-06	8.888E-06	0.0463	0.2400	
1004		0.0475	0.24	7.257E-06	1.054E-05	0.0475	0.2400	
1005		0.04875	0.24	7.063E-06	1.203E-05	0.0488	0.2400	
1021		0.05	0.24	6.847E-06	1.339E-05	0.0500	0.2400	
1022		0.05125	0.24	6.66E-06	1.462E-05	0.0513	0.2400	
1023		0.0525	0.24	6.355E-06	1.579E-05	0.0525	0.2400	
1024		0.05375	0.24	5.789E-06	1.689E-05	0.0538	0.2400	
1025		0.055	0.24	5.2E-06	1.79E-05	0.0550	0.2400	
813		0.05625	0.24	4.718E-06	1.885E-05	0.0563	0.2400	
814		0.0575	0.24	4.342E-06	1.967E-05	0.0575	0.2400	
815		0.05875	0.24	3.987E-06	2.038E-05	0.0588	0.2400	
1036		0.06	0.24	3.56E-06	2.102E-05	0.0600	0.2400	
1037		0.06125	0.24	3.078E-06	2.161E-05	0.0613	0.2400	
1038		0.0625	0.24	2.716E-06	2.212E-05	0.0625	0.2400	
1039		0.06375	0.24	2.353E-06	2.266E-05	0.0638	0.2400	
1055		0.065	0.24	1.874E-06	2.317E-05	0.0650	0.2400	
1056		0.06625	0.24	1.39E-06	2.357E-05	0.0663	0.2400	
1057		0.0675	0.24	8.22E-07	2.391E-05	0.0675	0.2400	
1058		0.06875	0.24	1.69E-07	2.421E-05	0.0688	0.2400	
1059		0.07	0.24	-3.22E-07	2.437E-05	0.0700	0.2400	
836		0.07125	0.24	-3.58E-07	2.442E-05	0.0712	0.2400	
837		0.0725	0.24	-2./8E-07	2.44E-05	0.0725	0.2400	
838		0.0/3/5	0.24	-1.45E-U7	2.430E-U5	0.0/3/	0.2400	
839	в	0.075	0.24	U	2.433E-05	0.0750	0.2400	

	CON GEOTEXTIL Y GEOMALLA (H= 0.28m)							
NODO	PUNTO	X (m)	Y (m)	Ux (m)	Uy (m)	X' (m)	Y' (m)	
15	С	0	0.28	0	-0.000236	0.0000	0.2798	
14		0.00125	0.28	0	-0.000236	0.0013	0.2798	
13		0.0025	0.28	0	-0.000236	0.0025	0.2798	
12		0.00375	0.28	0	-0.000236	0.0038	0.2798	
16		0.005	0.28	0	-0.000236	0.0050	0.2798	
3		0.00625	0.28	0	-0.000236	0.0063	0.2798	
2		0.0075	0.28	0	-0.000236	0.0075	0.2798	
1		0.00875	0.28	0	-0.000236	0.0088	0.2798	
7		0.01	0.28	0	-0.000236	0.0100	0.2798	
6		0.01125	0.28	0	-0.000236	0.0113	0.2798	
5		0.0125	0.28	0	-0.000236	0.0125	0.2798	
4		0.01375	0.28	0	-0.000236	0.0138	0.2798	
8		0.015	0.28	0	-0.000236	0.0150	0.2798	
11		0.01625	0.28	0	-0.000236	0.0163	0.2798	
10		0.0175	0.28	0	-0.000236	0.0175	0.2798	
9		0.01875	0.28	0	-0.000236	0.0188	0.2798	
17		0.02	0.28	0	-0.000236	0.0200	0.2798	
21		0.02125	0.28	0	-0.000236	0.0213	0.2798	
20		0.0225	0.28	0	-0.000236	0.0225	0.2798	
19		0.02375	0.28	0	-0.000236	0.0238	0.2798	
18		0.025	0.28	0	-0.000236	0.0250	0.2798	
125		0.0262296	0.28	-1.02E-05	1.472E-05	0.0262	0.2800	
124		0.0274592	0.28	7.882E-06	6.511E-05	0.0275	0.2801	
123		0.0286888	0.28	2.152E-05	9.388E-05	0.0287	0.2801	
148		0.0299185	0.28	4.018E-05	8.503E-05	0.0300	0.2801	
154		0.0312986	0.28	4.937E-05	9.482E-05	0.0313	0.2801	
153		0.0326788	0.28	4.979E-05	9.558E-05	0.0327	0.2801	
152		0.034059	0.28	4.798E-05	9.602E-05	0.0341	0.2801	
202		0.0354392	0.28	4.6E-05	9.579E-05	0.0355	0.2801	
198		0.0369884	0.28	4.621E-05	9.542E-05	0.0370	0.2801	
197		0.0385377	0.28	4.592E-05	9.494E-05	0.0386	0.2801	
196		0.0400869	0.28	4.431E-05	9.228E-05	0.0401	0.2801	
206		0.0416361	0.28	4.132E-05	8.793E-05	0.0417	0.2801	
212		0.043375	0.28	3.702E-05	8.279E-05	0.0434	0.2801	
211		0.045114	0.28	3.292E-05	7.862E-05	0.0451	0.2801	
210		0.0468529	0.28	3E-05	7.575E-05	0.0469	0.2801	
244		0.0485918	0.28	2.83E-05	7.392E-05	0.0486	0.2801	
247		0.0505437	0.28	2.641E-05	7.216E-05	0.0506	0.2801	
246		0.0524956	0.28	2.444E-05	7.046E-05	0.0525	0.2801	
245		0.0544475	0.28	2.243E-05	6.882E-05	0.0545	0.2801	
254		0.0563994	0.28	2.04E-05	6.725E-05	0.0564	0.2801	
260		0.0585903	0.28	1.809E-05	6.564E-05	0.0586	0.2801	
259		0.0607812	0.28	1.574E-05	6.42E-05	0.0608	0.2801	
258		0.0629722	0.28	1.333E-05	6.29E-05	0.0630	0.2801	
276		0.0651631	0.28	1.088E-05	6.174E-05	0.0652	0.2801	
280		0.0676223	0.28	8.157E-06	6.058E-05	0.0676	0.2801	
279		0.0700815	0.28	5.408E-06	5.973E-05	0.0701	0.2801	
278		0.0725408	0.28	2.684E-06	5.92E-05	0.0725	0.2801	
277	D	0.075	0.28	0	5.9E-05	0.0750	0.2801	

7. ESFUERZOS CON GEOTEXTIL Y GEOMALLA

SUBRASANTE (H= 0.24m)								
NODO	PUNTO	X (m)	Y (m)	σxx (kN/m²)	σ _{yy} (kN/m²)			
99	А	0.0003154	0.2396824	-1.168035	-3.401779			
106		0.0015518	0.2397324	-1.193971	-3.33232			
105		0.0031825	0.2397324	-1.184293	-3.388137			
98		0.0043691	0.2396824	-1.230748	-3.367874			
87		0.0054553	0.2397127	-1.280491	-3.344419			
94		0.0066696	0.2397579	-1.295102	-3.378036			
93		0.0083003	0.2397579	-1.353186	-3.409883			
86		0.009509	0.2397127	-1.440168	-3.396658			
/5		0.0106367	0.2395907	-1.3/43/4	-3.6149/1			
82		0.0118224	0.2396552	-1.421904	-3.0///38			
81		0.0134551	0.2390552	-1.525200	-3./1/202			
122		0.0140904	0.2395907	1 420266	-3.69/29			
123		0.0155215	0.2395557	-1.429200	-4.02337			
130		0.0103307	0.2396552	-1.514025	-4.01000			
123		0.01010749	0.2395907	-1 165305	-3 942998			
63		0.0105745	0.2397024	-1 839767	-2 589136			
70		0.0200000	0.2397493	-1 519621	-2.305130			
69		0.0234306	0.2397493	-1.48138	-1.882313			
62		0.0246636	0.2397024	-1.331801	-1.754892			
111		0.0252945	0.2397024	-1.233202	-1.762747			
118		0.0265341	0.2397493	-1.262051	-1.455397			
117		0.0281649	0.2397493	-1.063054	-1.45564			
110		0.0293482	0.2397024	-1.081336	-1.295713			
51		0.0305427	0.2395987	-1.139405	-1.136565			
58		0.0317432	0.239662	-1.034535	-1.134771			
57		0.033374	0.239662	-0.99659	-1.092212			
50		0.0345964	0.2395987	-1.020501	-1.023098			
171		0.0352273	0.2395987	-1.011856	-0.98894			
178		0.0364775	0.239662	-0.988448	-0.93521			
177		0.0381082	0.239662	-0.975972	-0.89989			
170		0.0392809	0.2395987	-0.996794	-0.869631			
39		0.0406318	0.2395131	-0.997009	-0.869057			
46		0.0418182	0.2395898	-0.979402	-0.867107			
45		0.043449	0.2395898	-1.006884	-0.820618			
38		0.0446854	0.2395131	-1.024586	-0.799208			
27		0.0453163	0.2395131	-1.033108	-0.783316			
34		0.0465525	0.2395898	-1.050439	-0.740837			
33		0.0481833	0.2395898	-1.068647	-0.715773			
26		0.04937	0.2395131	-1.098691	-0.690293			
15		0.0505913	0.239705	-1.087655	-0.688844			
22		0.0517842	0.2397515	-1.132806	-0.644084			
21		0.0534149	0.2397515	-1.187574	-0.581386			
14		0.054645	0.239705	-1.20511	-0.558655			
159		0.0552/59	0.239705	1 200064	-0.553514			
100		0.0565184	0.2397515	-1.200061	-0.52/959			
103		0.0501492	0.2397515	-1.197955	-0.525555			
1/7		0.0604381	0.239703	-1 214161	-0.520501			
147		0.0616551	0.2395425	-1.214101	-0.512034			
152		0.0632859	0.239615	-1.193191	-0.516524			
1/6		0.0644918	0.2395429	-1.210161	-0.486283			
7+0		0.0655236	0.2396998	-1.206401	-0.469215			
10		0.0667271	0.2397471	-1.202545	-0.46484			
9		0.0683578	0.2397471	-1.172203	-0.469697			
2		0.0695772	0.2396998	-1.120864	-0.499361			
135		0.0706309	0.2396824	-1.04698	-0.56969			
142		0.0718175	0.2397324	-0.980833	-0.632063			
141		0.0734482	0.2397324	-0.930027	-0.694146			
134	В	0.0746846	0.2396824	-0.925537	-0.706603			

	BASE (H= 0.24m)							
NODO	PUNTO	X (m)	Y (m)	σ xx (kN/m²)	σ γy (kN/m²)			
6818	А	0.0003154	0.2403155	-39.17509	-12.07317			
6825		0.0015518	0.2402657	-40.4728	-14.09309			
6826		0.0031825	0.2402657	-42.56514	-13.857			
6819		0.0043691	0.2403155	-43.87322	-13.78861			
6830		0.0056163	0.2403035	-48.02159	-13.399			
6837		0.0068052	0.2402557	-51.68279	-14.48376			
6838		0.0084359	0.2402557	-57.04318	-15.88682			
6831		0.0096699	0.2403035	-64.46409	-14.71024			
6806		0.0103008	0.2403035	-65.81589	-14.82126			
6813		0.0115394	0.2402557	-66.29116	-17.34704			
6814		0.0131702	0.2402557	-67.98521	-17.11995			
6807		0.0143545	0.2403035	-61.84836	-18.97829			
6854		0.0155975	0.2403355	-56.66703	-19.76237			
6861		0.0167893	0.2402826	-46.71389	-18.33896			
6862		0.0184201	0.2402826	-35.01081	-18.63735			
6855		0.0196511	0.2403355	-27.33659	-14.00141			
6710		0.020282	0.2403355	-25.24335	-14.83817			
6717		0.0215236	0.2402826	-22.67904	-9.423416			
6718		0.0231543	0.2402826	-20.13152	-8.544587			
6711		0.0243357	0.2403355	-18.39639	-5.510464			
6842		0.0256636	0.24043	-14.7615	-4.742253			
6849		0.026845	0.2403622	-13.54214	-4.72746			
6850		0.0284758	0.2403622	-10.56994	-3.583051			
6843		0.0297172	0.24043	-8.039539	-2.718806			
6722		0.0303481	0.24043	-7.547819	-2.629072			
6729		0.0315793	0.2403622	-7.645721	-2.020004			
6730		0.03321	0.2403622	-7.224706	-1.699375			
6723		0.0344018	0.24043	-5.405546	-1.229196			
6902		0.0356412	0.2402746	-5.011125	-1.154418			
6909		0.0368262	0.2402313	-3.17347	-0.877891			
6910		0.0384569	0.2402313	-1.085848	-0.764136			
6903		0.0396949	0.2402746	-0.801649	-0.817264			
6734		0.0403258	0.2402746	-0.682802	-0.643764			
6741		0.0415604	0.2402313	-0.515702	-0.764222			
6742		0.0431912	0.2402313	-0.410094	-0.699727			
6735		0.0443794	0.2402746	-0.35335	-0.637243			
6758		0.0455818	0.2403638	-0.375711	-0.364926			
6765		0.0467761	0.2403065	-0.490827	-0.606205			
6766		0.0484069	0.2403065	-0.303096	-0.605784			
6759		0.0496354	0.2403638	-0.304066	-0.580114			
6770		0.0502663	0.2403638	-0.356742	-0.595039			
6777		0.0515104	0.2403065	-0.373579	-0.641269			
6778		0.0531411	0.2403065	-0.296148	-0.6373			
6771		0.05432	0.2403638	-0.217708	-0.606313			
6890		0.0555423	0.2403981	-0.275497	-0.768964			
6897		0.0567429	0.2403353	-0.125167	-0.505648			
6898		0.0583736	0.2403353	-0.144865	-0.427239			
6891		0.059596	0.2403981	-0.219946	-0.831663			
6926		0.0606885	0.2402498	-0.159016	-0.53627			
6933		0.061866	0.2402104	-0.211188	-0.662218			
6934		0.0634968	0.2402104	-0.226368	-0.634669			
6927		0.0647422	0.2402498	-0.21885	-0.598796			
6698		0.0653731	0.2402498	-0.151827	-0.380217			
6705		0.0666003	0.2402104	-0.157957	-0.539116			
6706		0.0682311	0.2402104	-0.107288	-0.471609			
6699		0.0694267	0.2402498	-0.08577	-0.392375			
6938		0.0706309	0.2403464	-0.13101	-0.593501			
6945		0.0718175	0.2402918	-0.115269	-0.505951			
6946		0.0734482	0.2402918	-0.156019	-0.714527			
6939	В	0.0746846	0.2403464	-0.157592	-0.694421			

8. DEFORMACIÓN CON GEOMALLA

CON GEOMALLA (H= 0.24m)								
NODO	PUNTO	X (m)	Y (m)	Ux (m)	Uy (m)	X' (m)	Y' (m)	
860	А	0	0.24	0	-0.0002	0.0000	0.2398	
861		0.00125	0.24	9.237E-07	-0.000199	0.0013	0.2398	
862		0.0025	0.24	1.849E-06	-0.000199	0.0025	0.2398	
863		0.00375	0.24	2.782E-06	-0.000199	0.0038	0.2398	
892		0.005	0.24	3.724E-06	-0.000199	0.0050	0.2398	
893		0.00625	0.24	4.6/4E-06	-0.000198	0.0063	0.2398	
894 905		0.0075	0.24	5.034E-00	-0.000198	0.0075	0.2396	
893		0.00873	0.24	7 567E-06	-0.000197	0.0088	0.2398	
873		0.01125	0.24	8.505E-06	-0.000193	0.0113	0.2398	
874		0.0125	0.24	9.347E-06	-0.00019	0.0125	0.2398	
875		0.01375	0.24	1.008E-05	-0.000186	0.0138	0.2398	
906		0.015	0.24	1.072E-05	-0.000182	0.0150	0.2398	
907		0.01625	0.24	1.126E-05	-0.000178	0.0163	0.2398	
908		0.0175	0.24	1.169E-05	-0.000173	0.0175	0.2398	
909		0.01875	0.24	1.201E-05	-0.000165	0.0188	0.2398	
924		0.02	0.24	1.217E-05	-0.000153	0.0200	0.2398	
925		0.02125	0.24	1.222E-05	-0.000138	0.0213	0.2399	
926	-	0.0225	0.24	1.223E-05	-0.000123	0.0225	0.2399	
927		0.02375	0.24	1.22E-05	-0.00011	0.0238	0.2399	
955		0.025	0.24	1.218E-05	-9.81E-05	0.0250	0.2399	
956		0.02625	0.24	1.215E-05	-8.74E-05	0.0263	0.2399	
957		0.0275	0.24	1.213E-05	-7.8E-05	0.0275	0.2399	
956		0.02875	0.24	1.2112-05	-0.95E-05	0.0200	0.2399	
935		0.03	0.24	1.209L-05	-5.34F-05	0.0300	0.2399	
938		0.0325	0.24	1.207E-05	-4.61E-05	0.0325	0.2400	
939		0.03375	0.24	1.196E-05	-3.92E-05	0.0338	0.2400	
970		0.035	0.24	1.182E-05	-3.26E-05	0.0350	0.2400	
971		0.03625	0.24	1.156E-05	-2.62E-05	0.0363	0.2400	
972		0.0375	0.24	1.127E-05	-2.02E-05	0.0375	0.2400	
973		0.03875	0.24	1.087E-05	-1.45E-05	0.0388	0.2400	
988		0.04	0.24	1.047E-05	-9.36E-06	0.0400	0.2400	
989		0.04125	0.24	1.009E-05	-4.64E-06	0.0413	0.2400	
990		0.0425	0.24	9.82E-06	-2.71E-07	0.0425	0.2400	
991		0.04375	0.24	9.609E-06	3.754E-06	0.0438	0.2400	
1002		0.045	0.24	9.453E-06	7.292E-06	0.0450	0.2400	
1003		0.04625	0.24	9.195E-06	1.05E-05	0.0463	0.2400	
1004		0.0475	0.24	8.937E-06	1.342E-05	0.0475	0.2400	
1005		0.04675	0.24	8 278F-06	1.00-05	0.0466	0.2400	
1021		0.05125	0.24	7.896F-06	2.039E-05	0.0513	0.2400	
1022		0.0525	0.24	7.468E-06	2.235E-05	0.0525	0.2400	
1024		0.05375	0.24	6.926E-06	2.423E-05	0.0538	0.2400	
1025		0.055	0.24	6.291E-06	2.599E-05	0.0550	0.2400	
813		0.05625	0.24	5.732E-06	2.758E-05	0.0563	0.2400	
814		0.0575	0.24	5.225E-06	2.891E-05	0.0575	0.2400	
815		0.05875	0.24	4.743E-06	3.009E-05	0.0588	0.2400	
1036		0.06	0.24	4.32E-06	3.118E-05	0.0600	0.2400	
1037		0.06125	0.24	3.765E-06	3.225E-05	0.0613	0.2400	
1038		0.0625	0.24	3.244E-06	3.324E-05	0.0625	0.2400	
1039		0.003/5	0.24	2.045E-06	3.411E-05	0.0650	0.2400	
1055		0.005	0.24	1 395-06	3.40/0-05	0.0650	0.2400	
1050		0.0675	0.24	7.745E-07	3.608E-05	0.0675	0.2400	
1057		0.06875	0.24	1.458F-07	3.653F-05	0.0688	0.2400	
1059		0.07	0.24	-2.72E-07	3.687E-05	0.0700	0.2400	
836		0.07125	0.24	-2.7E-07	3.696E-05	0.0712	0.2400	
837		0.0725	0.24	-2E-07	3.699E-05	0.0725	0.2400	
838		0.07375	0.24	-1.03E-07	3.699E-05	0.0737	0.2400	
839	В	0.075	0.24	0	3.698E-05	0.0750	0.2400	

	CON GEOMALLA (H= 0.28m)							
NODO	PUNTO	X (m)	Y (m)	Ux (m)	Uy (m)	X' (m)	Y' (m)	
15	С	0	0.28	0	-0.000233	0.0000	0.2798	
14		0.00125	0.28	0	-0.000233	0.0013	0.2798	
13		0.0025	0.28	0	-0.000233	0.0025	0.2798	
12		0.00375	0.28	0	-0.000233	0.0038	0.2798	
16		0.005	0.28	0	-0.000233	0.0050	0.2798	
3		0.00625	0.28	0	-0.000233	0.0063	0.2798	
2		0.0075	0.28	0	-0.000233	0.0075	0.2798	
1		0.00875	0.28	0	-0.000233	0.0088	0.2798	
7		0.01	0.28	0	-0.000233	0.0100	0.2798	
6		0.01125	0.28	0	-0.000233	0.0113	0.2798	
5		0.0125	0.28	0	-0.000233	0.0125	0.2798	
4		0.01375	0.28	0	-0.000233	0.0138	0.2798	
8		0.015	0.28	0	-0.000233	0.0150	0.2798	
11		0.01625	0.28	0	-0.000233	0.0163	0.2798	
10		0.0175	0.28	0	-0.000233	0.0175	0.2798	
9		0.01875	0.28	0	-0.000233	0.0188	0.2798	
17		0.02	0.28	0	-0.000233	0.0200	0.2798	
21		0.02125	0.28	0	-0.000233	0.0213	0.2798	
20		0.0225	0.28	0	-0.000233	0.0225	0.2798	
19		0.02375	0.28	0	-0.000233	0.0238	0.2798	
18		0.025	0.28	0	-0.000233	0.0250	0.2798	
125		0.0262296	0.28	-2.88E-05	-1.93E-05	0.0262	0.2800	
124		0.0274592	0.28	-1.69E-05	2.153E-05	0.0274	0.2800	
123		0.0286888	0.28	-3.71E-06	4.83E-05	0.0287	0.2800	
148		0.0299185	0.28	8.62E-06	5.219E-05	0.0299	0.2801	
154		0.0312986	0.28	1.38E-05	6.136E-05	0.0313	0.2801	
153		0.0326788	0.28	1.461E-05	6.276E-05	0.0327	0.2801	
152		0.034059	0.28	1.45E-05	6.301E-05	0.0341	0.2801	
202		0.0354392	0.28	1.414E-05	6.402E-05	0.0355	0.2801	
198		0.0369884	0.28	1.503E-05	6.451E-05	0.0370	0.2801	
197		0.0385377	0.28	1.534E-05	6.498E-05	0.0386	0.2801	
196		0.0400869	0.28	1.52E-05	6.501E-05	0.0401	0.2801	
206		0.0416361	0.28	1.503E-05	6.456E-05	0.0417	0.2801	
212		0.043375	0.28	1.456E-05	6.389E-05	0.0434	0.2801	
211		0.045114	0.28	1.366E-05	6.286E-05	0.0451	0.2801	
210		0.0468529	0.28	1.263E-05	6.182E-05	0.0469	0.2801	
244		0.0485918	0.28	1.184E-05	6.103E-05	0.0486	0.2801	
247		0.0505437	0.28	1.107E-05	6.036E-05	0.0506	0.2801	
246		0.0524956	0.28	1.028E-05	5.971E-05	0.0525	0.2801	
245		0.0544475	0.28	9.461E-06	5.907E-05	0.0545	0.2801	
254		0.0563994	0.28	8.614E-06	5.846E-05	0.0564	0.2801	
260		0.0585903	0.28	7.623E-06	5.784E-05	0.0586	0.2801	
259		0.0607812	0.28	6.603E-06	5.728E-05	0.0608	0.2801	
258		0.0629722	0.28	5.571E-06	5.679E-05	0.0630	0.2801	
276		0.0651631	0.28	4.528E-06	5.638E-05	0.0652	0.2801	
280		0.0676223	0.28	3.374E-06	5.596E-05	0.0676	0.2801	
279		0.0700815	0.28	2.227E-06	5.567E-05	0.0701	0.2801	
278		0.0725408	0.28	1.104E-06	5.548E-05	0.0725	0.2801	
277	D	0.075	0.28	0	5.541E-05	0.0750	0.2801	

9. ESFUERZOS CON GEOMALLA

	SUBRASANTE (H= 0.24m)								
NODO	PUNTO	X (m)	Y (m)	σxx (kN/m²)	σ _{yy} (kN/m²				
99	А	0.0003154	0.2396824	-1.18036	-4.592401				
106		0.0015518	0.2397324	-1.208239	-4.505445				
105		0.0031825	0.2397324	-1.195969	-4.573102				
98		0.0043691	0.2396824	-1.229064	-4.572635				
87		0.0054553	0.2397127	-1.264405	-4.58921				
94		0.0066696	0.2397579	-1.261206	-4.672796				
93		0.0083003	0.2397579	-1.384896	-4.690689				
86		0.009509	0.2397127	-1.431718	-4.781259				
75		0.0106367	0.2395907	-1.2292	-5.139788				
82		0.0118224	0.2396552	-1.455996	-4.975139				
81		0.0134531	0.2396552	-1.625476	-4.72245				
74		0.0146904	0.2395907	-1.62192	-4.668811				
123		0.0153213	0.2395907	-1.637675	-4.707933				
130		0.0165567	0.2396552	-1.81495	-4.789943				
129		0.0181874	0.2396552	-1.631749	-5.381371				
122		0.0193749	0.2395907	-0.757226	-6.142875				
63		0.0206099	0.2397024	-2.322118	-3.611791				
70		0.0217998	0.2397493	-1.949739	-3.185721				
69		0.0234306	0.2397493	-1.783713	-2.447728				
62		0.0246636	0.2397024	-1.627689	-2.220612				
111		0.0252945	0.2397024	-1.547538	-2.165508				
118		0.0265341	0.2397493	-1.576831	-1.837908				
117		0.0281649	0.2397493	-1.330026	-1.929194				
110		0.0293482	0.2397024	-1.33338	-1.823064				
51		0.0305427	0.2395987	-1.36266	-1.691689				
58		0.0317432	0.239662	-1.30657	-1.60121				
57		0.033374	0.239662	-1.290035	-1.47972				
50		0.0345964	0.2395987	-1.319269	-1.37105				
171		0.0352273	0.2395987	-1.313513	-1.317698				
178		0.0364775	0.239662	-1.308266	-1.181646				
177		0.0381082	0.239662	-1.323792	-1.007371				
170		0.0392809	0.2395987	-1.376973	-0.86463				
39		0.0406318	0.2395131	-1.331505	-0.85007				
46		0.0418182	0.2395898	-1.271566	-0.822675				
45		0.043449	0.2395898	-1.269837	-0.720217				
38		0.0446854	0.2395131	-1.2682	-0.684674				
27		0.0453163	0.2395131	-1.255962	-0.693448				
34		0.0465525	0.2395898	-1.24113	-0.664599				
33		0.0481833	0.2395898	-1.276067	-0.599047				
26		0.04937	0.2395131	-1.318446	-0.559005				
15		0.0505913	0.239705	-1.280349	-0.579937				
22		0.0517842	0.2397515	-1.308039	-0.553772				
21		0.0534149	0.239/515	1 20150	-0.4//343				
14		0.054645	0.239705	1 305002	-0.434586				
159		0.0552759	0.239705	-1.385887	-0.413187				
100		0.0565184	0.2397515	-1.39/058	-0.37083				
165		0.0503205	0.239/515	1 270410	-0.395928				
158		0.0593295	0.239705	-1.370418	-0.413023				
147		0.0604381	0.2395429	-1.384862	-0.395181				
154		0.0616551	0.239615	1.401/66	-0.3519/6				
153		0.0032859	0.239615	1.405605	-0.320//9				
146		0.0044918	0.2395429	1 201200	-0.313//8				
3		0.0055236	0.2396998	-1.381369	-0.308903				
10		0.000/2/1	0.239/4/1	-1.354//	-0.320664				
9		0.00053578	0.239/4/1	-1.2/5319	-0.308328				
2		0.0095//2	0.2396998	-1.186249	-0.418121				
135		0.0700309	0.2390824	-1.074433	-0.522222/				
142		0.0724492	0.239/324	-0.98843	-0.009243				
141	D	0.0734482	0.239/324	-0.93210	-0.075508				
134	Ď	0.0746846	0.2390824	-0.929//8	-0.003012				

		BASE (H	= 0.24m)	·	
NODO	PUNTO	X (m)	Y (m)	σ ×× (kN/m²)	σ _{yy} (kN/m²)
6818	А	0.0003154	0.2403155	-11.91057	-17.97668
6825		0.0015518	0.2402657	-12.50595	-18.38343
6826		0.0031825	0.2402657	-13.6828	-18.56506
6819		0.0043691	0.2403155	-14.86285	-18.87853
6830		0.0056163	0.2403035	-15.83744	-18.32012
6837		0.0068052	0.2402557	-17.97361	-21.34655
6838		0.0084359	0.2402557	-18.20778	-19.8614
6831		0.0096699	0.2403035	-18.11314	-22.61521
6806		0.0103008	0.2403035	-18.58457	-22.52446
6813		0.0115394	0.2402557	-19.12955	-22.68495
6814		0.0131702	0.2402557	-38.41188	-22.73212
6807		0.0143545	0.2403035	-59.99883	-26.5448
6854		0.0155975	0.2403355	-56.95858	-24.38375
6861		0.0167893	0.2402826	-62.20773	-20.04665
6862		0.0184201	0.2402826	-46.67335	-27.93867
6855		0.0196511	0.2403355	-27.57482	-23.34268
6710		0.020282	0.2403355	-23.54801	-20.24421
6717		0.0215236	0.2402826	-17.89368	-12.81648
6718		0.0231543	0.2402826	-13.91265	-11.98311
6711		0.0243357	0.2403355	-8.789344	-7.050209
6842		0.0256636	0.24043	-8.735396	-6.806469
6849		0.026845	0.2403622	-8.97309	-7.1065
6850		0.0284758	0.2403622	-9.516808	-7.188113
6843		0.0297172	0.24043	-11.5548	-5.561172
6722		0.0303481	0.24043	-13.34843	-5.331115
6729		0.0315793	0.2403622	-15.48491	-4.479206
6730		0.03321	0 2403622	-16 78498	-4 177133
6723		0.0344018	0 24043	-14 5825	-3 299018
6902		0.0356412	0.2402746	-14 61761	-3 1506
6909		0.0368262	0 2402313	-12 07671	-2 643924
6910		0.0384569	0 2402313	-9 406652	-2 106826
6903		0.0396949	0 2402746	-7 440794	-1 643407
6734		0.0403258	0 2402746	-6 782186	-1 737805
6741		0.0415604	0 2402313	-5 210531	-1 181146
6742		0.0413004	0.2402313	-3 885674	-0.838086
6725		0.0431312	0.2402313	-3.885074	-0.030000
6759		0.0455818	0.2402740	-2 667812	-0.55/375
6765		0.0467761	0 2402065	-2 08323	-0 492077
6766		0.049/060	0.2402065	-1 320/61	-0.492077
6750		0.0496254	0 2403629	-1 211910	-0 486/72
6770		0.0490354	0.2403030	-1.020042	-0.400472
0770 רדרם		0.0502005	0.2403038	-0.421000	-0.337361
0///		0.0515104	0.2403005	-0.421039	-0.759141
0//8 1771ء		0.0551411	0.2403005	-0.2305/8	-0.054085
0//I		0.03432	0.2403038	-0.221/14	-0.5139/
089U		0.0555425	0.2403981	-0.1530/	-0.1021033
0097		0.050/429	0.2403353	-0.10294	-0.301932
6898		0.050500	0.2403353	-0.180250	-0.45951/
6891		0.059596	0.2403981	-0.211089	-0.001339
6926		0.0000885	0.2402498	-0.220/81	-0.54/601
6933		0.001800	0.2402104	-0.100/23	-0.526033
6934		0.0034968	0.2402104	-0.133554	-0.407686
6927		0.064/422	0.2402498	-0.09/393	-0.349538
6698		0.0653731	0.2402498	-0.115891	-0.399086
6705		0.0666003	0.2402104	-0.088388	-0.384684
6706		0.0682311	0.2402104	-0.079077	-0.336065
6699		0.0694267	0.2402498	-0.052058	-0.240336
6938		0.0706309	0.2403464	-0.072503	-0.349465
6945		0.0718175	0.2402918	-0.112792	-0.53859
6946		0.0734482	0.2402918	-0.096664	-0.464992
6939	В	0.0746846	0.2403464	-0.141475	-0.680655