UNIVERSIDAD DE CUENCA
FACULTAD DE CIENCIAS MÉDICAS
ESCUELA DE MEDICINA

COMPARACIÓN DE LA VALIDEZ DE LA ESCALA DE ALARCÓN PITTALUGA Y HADLOCK IV EN LA ESTIMACIÓN DEL PESO NEONATAL, HOSPITAL “VICENTE CORRAL MOSCOSO”, 2014

TÍTULO PREVIA A LA OBTENCIÓN DEL TÍTULO DE ESPECIALISTA EN GINECOLOGÍA Y OBSTETRICIA

Autor:
Md. Jorge Darwin Plaza Ronquillo

Director:
Dr. Juan Dorian Tenorio Narváez

Asesor:
Dr. Carlos Eduardo Arévalo Peláez

Cuenca – Ecuador
2016
RESUMEN

Introducción: el crecimiento fetal es una condición importante de la obstetricia. Evaluar el peso fetal y sus alteraciones nos ayuda a tomar conductas resolutivas en favor del futuro neonato; por ello, con el apoyo del ultrasonido como gold estándar y la aplicación de diferentes curvas de crecimiento locales constituyen un pilar idóneo en la perinatología.

Objetivo: comparar la validez de la escala de Alarcón Pittaluga y Hadlock IV para la estimación del Peso Neonatal en parturientas atendidas en el Hospital “Vicente Corral Moscoso”.

Métodos y técnicas: se realizó un estudio analítico comparativo de diagnóstico con 524 pacientes de Ginecología y Obstetricia del Hospital Vicente Corral Moscoso. Se les realizó biometrías según técnicas propuestas por Alarcón Pittaluga y Hadlock IV para estimación de peso fetal por ultrasonido comparándolos con el peso al nacer. Se realizó análisis estadísticos descriptivos, diferencia de medias, índice de correlación de Pearson, curva ROC, sensibilidad y especificidad.

Resultados: la media de edad fue de 27 años, con edad gestacional de 38 semanas y paridad de 3 gestaciones. El peso por Alarcón Pittaluga tuvo una media de 2880 g, Hadlock IV de 3126 g y el peso al nacer de 3020 g. La diferencia de medias fue significativa, la sensibilidad y especificidad para Alarcón Pittaluga fueron de 66,67% y 59,27% comparado con el 66,37% y 81,51% de Hadlock IV.

Conclusiones: la escala de Hadlock tiene una mejor especificidad, mientras que ambas escalas presentaron similar sensibilidad; pero Hadlock presenta mayor seguridad en el diagnóstico.

Palabras claves: ESCALA DE ALARCON Y PITTALUGA, ESCALA DE HADLOCK, ESTIMACION DEL PESO FETAL Y NEONATAL.
ABSTRACT

Introduction: fetal growth is an important condition of obstetrics. Evaluate fetal weight and their alterations helps us take resolute behavior for the future newborn; therefore, with the support of ultrasound as Gold Standard and the application of different local growth curves are an ideal pillar in perinatology.

Objective: to compare the validity of the scale between Alarcón Pittaluga and Hadlock IV for estimating the Neonatal weight in pregnant women attended at "Vicente Corral Moscoso" Hospital.

Methods and techniques: a comparative analytical study of diagnostics was made in 524 pregnant in the Department of Gynecology and Obstetrics Hospital Vicente Corral Moscoso. They were made underwent biometry test according to the proposed techniques by Alarcón Pittaluga and Hadlock IV to estimate fetal weight by ultrasound compared with birth weight. Descriptive statistical analysis, mean difference, Pearson correlation index, ROC (Receiver Operating Characteristic) curve, sensitivity and specificity was performed.

Results: pregnant mean age of the study population was 27 years, 38 weeks and parity 3 gestations. Alarcón Pittaluga weight was 2880 g, Hadlock was of 3126 g and newborn weight was of 3020 g. The mean difference was significant. Alarcón Pittaluga formula was sensitivity and specificity were 66.37% and 59.27% respectively compared to 66.37% and 81.51% of Hadlock.

Conclusions: The Hadlock scale has better specificity, while both scales showed similar sensitivity, however Hadlock has greater diagnostic confidence. With this, our hypothesis is untested.

Keywords: ALARCON PITTALUGA SCALE, HADLOCK SCALE, ESTIMATED FETAL AND BIRTH WEIGHT.
<table>
<thead>
<tr>
<th>ÍNDICE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMEN</td>
<td>2</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>RESPONSABILIDAD</td>
<td>6</td>
</tr>
<tr>
<td>DERECHO DE AUTOR</td>
<td>7</td>
</tr>
<tr>
<td>AGRADECIMIENTO</td>
<td>8</td>
</tr>
<tr>
<td>DEDICATORIA</td>
<td>9</td>
</tr>
<tr>
<td>CAPÍTULO I</td>
<td>10</td>
</tr>
<tr>
<td>1. Introducción</td>
<td></td>
</tr>
<tr>
<td>1.1. Planteamiento del problema</td>
<td>10</td>
</tr>
<tr>
<td>1.2. Pregunta de investigación</td>
<td>12</td>
</tr>
<tr>
<td>1.3. Justificación</td>
<td>12</td>
</tr>
<tr>
<td>CAPÍTULO II</td>
<td>13</td>
</tr>
<tr>
<td>2. Fundamento teórico</td>
<td></td>
</tr>
<tr>
<td>2.1. Factores del examen</td>
<td>14</td>
</tr>
<tr>
<td>2.2. Fórmula de peso fetal</td>
<td>14</td>
</tr>
<tr>
<td>2.3. Tablas de crecimiento fetal</td>
<td>18</td>
</tr>
<tr>
<td>2.4. Pequeños para edad gestacional y Restricción de crecimiento</td>
<td>20</td>
</tr>
<tr>
<td>intrauterino</td>
<td></td>
</tr>
<tr>
<td>2.5. Grandes para edad gestacional, macrosomías</td>
<td>23</td>
</tr>
<tr>
<td>CAPÍTULO III</td>
<td>25</td>
</tr>
<tr>
<td>3. Hipótesis</td>
<td></td>
</tr>
<tr>
<td>Objetivo General</td>
<td>25</td>
</tr>
<tr>
<td>Objetivos específicos</td>
<td>25</td>
</tr>
<tr>
<td>CAPÍTULO IV</td>
<td>26</td>
</tr>
<tr>
<td>4. Metodología</td>
<td></td>
</tr>
<tr>
<td>4.1. Diseño de la investigación</td>
<td>26</td>
</tr>
</tbody>
</table>
4.1.1. Tipo de estudio: ... 26
4.1.2. Población de estudio: .. 26
4.1.3. Tamaño de la muestra: ... 26
4.1.4. Unidad de análisis .. 26
4.1.5. Asignación de pacientes: ... 27
4.1.7. Criterios de exclusión ... 27
4.2. Recolección de la información .. 27
4.3. Procedimientos y técnicas .. 27
4.4. Plan de análisis de datos .. 28
4.5. Aspectos éticos .. 28
CAPÍTULO V .. 30
5. Resultados .. 30
CAPÍTULO VI .. 36
6. Discusión .. 36
CAPÍTULO VII ... 40
7. Conclusiones .. 40
8. Recomendaciones ... 41
9. Referencias bibliográficas .. 42
10. Anexos ... 47
RESPONSABILIDAD

Cuenca, 13 de Mayo de 2016

[Signature]

Md. Jorge Darwin Plaza Ronquillo.

CI # 0703887166
Yo, Md. Jorge Darwin Plaza Ronquillo, autor de la tesis: “Comparación de la validez de la escala de Alarcón Pittaluga y Hadlock IV en la estimación del peso neonatal, Hospital “Vicente Corral Moscoso, 2014”, reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser éste, requisito para la obtención de mi título de Especialista en Ginecología y Obstetricia. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autor.

Cuenca, 13 de Mayo de 2016

[Signature]

Md. Jorge Darwin Plaza Ronquillo.

CI # 0703887166
AGRADECIMIENTO

Agradezco a la Universidad “Estatal de Cuenca”, en especial a la Facultad de Ciencias Médicas, por darme la oportunidad de formarme como especialista y poderme abrir sus puertas para cumplir con un sueño.

A mis maestros que se convirtieron en amigos, por compartir sus conocimientos de la mejor manera.

A los Hospitales “Vicente Corral Moscoso” y “José Carrasco Arteaga”, por permitirme forjarme y pulirme en sus salas.

Agradezco de forma especial al Dr. Jorge Mejía, quien me apoyó en momentos difíciles de mi carrera; ya que, sin él, todo éste sueño no fuera posible.

Md. Jorge Plaza
DEDICATORIA

El presente trabajo va dedicado a la razón de mi vivir; mi hijo, José Andrés Plaza Cueva por saberme entender, dar fortaleza y tenerme paciencia en todo este camino de formación.

A mis padres; Walter Plaza y Gloria Ronquillo, por brindarme el apoyo económico, moral y espiritual cuando más lo necesite.

A mis hermanos Jessica Plaza, Anita Plaza, Leónidas Plaza, por todos los consejos, motivaciones y cariño q me brindaron.

A mis compañeros de aulas y de trabajo en especial a Andrés Delgado quien me hizo sentir como en casa.

A mis amigos, amigas, y demás personas que estuvieron durante todo este trayecto apoyándome en cualquier situación, especialmente Anabel Cajamarca, mi compañera de vida.

A todos los internos que fueron mis alumnos, recordándoles que la medicina es un arte humano de bondad y humildad, siempre motivándolos al crecer diario.

Md. Jorge Plaza R.
CAPÍTULO I

1. Introducción

El crecimiento y desarrollo fetal es una de las condiciones más destacadas y preocupantes de la obstetricia. Los exámenes por ultrasonido, proporcionan entre otros, información acerca del crecimiento fetal. Nos ayudan a determinar no solo la edad gestacional sino el peso aproximado en función de las medidas biométricas, así como también diagnosticar trastornos del crecimiento, por lo cual hoy en día es considerada el pilar diagnóstico fundamental (1). Gracias a ello en 1968 se inicia con el inglés Campbell la biometría fetal con la cual se empezó a realizar cálculos para estimar el peso fetal. Se inició con el cálculo de la circunferencia abdominal (CA), posteriormente se han ido incrementando los parámetros para alcanzar mayor precisión los que incluyen el diámetro biparietal (DBP), la longitud femoral (LF), la circunferencia cefálica (CC). Años más tarde en 1985, Hadlock y colaboradores crean un logaritmo matemático basándose en la CA y LF y más tarde incluyen al DBP y a la CC. Actualmente se emplean diferentes escalas según cada país, siendo la de Hadlock la de mayor uso, cuyo margen de error para la estimación del peso neonatal es del 15% (2).

1.1. Planteamiento del problema

El peso al nacer es un factor crucial en el desarrollo y crecimiento del neonato. Las alteraciones más frecuentes son la Restricción del Crecimiento Intrauterino (RCIU) cuya prevalencia es del 10% para la población en riesgo y del 5% para la población general (3). Su existencia se asocia con un mayor riesgo de morbimortalidad neonatal e infantil con su inevitable repercusión en el crecimiento postnatal, por lo que en 1975 Campbell crea una primera escala para la estimación del peso fetal basándose en la biometría fetal, tomando como parámetro único la circunferencia abdominal (4). A medida que los medios tecnológicos se han ido desarrollando, las herramientas de un buen diagnóstico también. Gracias a esto algunos investigadores como los estadounidenses Hadlock y colaboradores en 1985 crean una fórmula logarítmica tomando más
parámetros biométricos, alcanzando mayor precisión en el cálculo, convirtiéndose en el pilar de referencia hasta la actualidad. La población estudiada para la creación de la escala de Hadlock difiere fenotípicamente, geográficamente, etnológicamente y epidemiológicamente de la población mundial, por lo que se incrementa el margen de error. Por ésta razón la OMS recomienda a cada país la creación de escalas de acuerdo a su población. En Colombia, los Estados de Barranquilla y Cartagena de Indias compararon su escala local con la escala Hadlock en la que se observó un patrón de crecimiento fetal diferente (5). En Perú se utiliza la Escala de Lubchenco, la misma que ha dado un subregistro de recién nacidos que representaron mayor morbimortalidad por lo que su Ministerio de Salud Pública creó su escala, resultando en una disminución la morbimortalidad (6,7). En Chile se han creado varias escalas, que luego del estudio pertinente de cada una de ellas, llegaron a la conclusión de que la integración de los datos de Alarcón y Pittaluga les permitió usar curvas representativas de la población chilena, con una mejor sensibilidad y especificidad (8,9). En el Ecuador no se ha creado ninguna escala, ni existe alguna guía clínica donde recomienden el uso de alguna para la estimación del peso al nacer. Sin embargo, en la ciudad de Cuenca, en el Hospital Vicente Corral Moscoso se utiliza la escala de Hadlock IV como prueba diagnóstica. En este servicio no se han comparado datos del peso por estimación ecográfica con el peso neonatal real. Aunque no se data estos resultados, es claro de que el margen de error de ésta escala aumenta por el tipo de población que difiere a la estudiada. En cuanto a la escala de Alarcón y Pittaluga, aunque no se use en este servicio, es más semejante la población estudiada, por tal razón nos preguntamos:
1.2. **Pregunta de investigación**

¿La Escala de Alarcón Pittaluga valora adecuadamente el peso fetal y lo correlaciona significativamente con el peso al nacer en comparación con la Escala de Hadlock IV en las parturientas atendidas en el Hospital Vicente Corral Moscoso?

1.3. **Justificación**

Durante la revisión bibliográfica realizada en las bases de datos médicas: Cochrane, PubMed, Scielo, Scirus y Lilacs no se encontraron registro de estudios realizados en el Ecuador acerca del uso de escalas de estimación del peso neonatal, pero sí existen estudios en otros países sudamericanos como Perú, Colombia, Brasil, Chile. Aún sin estudios previos en nuestro país, en la ciudad de Cuenca en el Hospital Vicente Corral Moscoso se usa la escala de Hadlock IV, ya que es una ayuda para diagnosticar ciertas alteraciones neonatales tales como macrosomía fetal y la RCIU. Sin embargo, el margen de error de ésta escala aumenta por la diferencia poblacional que existe entre el Ecuador y Estados Unidos, en donde se creó esta curva. En ésta investigación empleamos las curvas de Alarcón y Pittaluga, ya que se asemeja a nuestra población, para comprobar su validez en la estimación del peso neonatal. Basados en este estudio, esperamos emplear como normativa del servicio de Obstetricia la utilización de éstas curvas que definiría de forma más sensible y específica patologías fetales, disminuyendo así la tasa de morbi-mortalidad perinatal y actuaremos de manera eficiente en la solución de los problemas de salud pública que afectan a instituciones locales.
CAPÍTULO II

2. Fundamento teórico

La evaluación del crecimiento fetal es de gran importancia en la obstetricia actual, permite predecir con anticipación complicaciones relacionadas con el bajo peso al nacer y con los productos macrosómicos. Una vez establecidos los diagnósticos nos permite mejorar el pronóstico perinatal (10).

El proceso de crecimiento embrio-fetal constituye una de las características más importantes para evaluar la vitalidad y bienestar del mismo, implica un proceso de síntesis de moléculas cada vez más complejas los cuales producen en última instancia la organogénesis con la consecuente maduración de los mismos (11).

La velocidad de crecimiento es dada por un potencial intrínseco de base genética, el cual puede ser modificado por los factores hormonales fetales y factores ambientales que lo limitan o favorecen. El requisito principal para que se de éste proceso es la existencia de una circulación materno-fetal adecuada, la cual puede verse alterada por estados patológicos que afecten a la madre, placenta o feto (12).

El peso fetal depende de factores como el nivel socio-económico, la raza, la altura, el sexo fetal, paridad, estado nutricional materno, patologías maternas como el síndrome hipertensivo gestacional, diabetes gestacional, consumo de cigarrillo, con lo cual las curvas de percentiles no pueden ser superponibles (13).

Existen muchas maneras de predecir el peso fetal, sin embargo, ninguna de ellas es exacta. Ulises Félix redacta en su tesis dos de los métodos por palpación llamado regla de Jhonson y regla de Salas en la que la correlación con el peso real del neonato tiene una diferencia entre 400 y 500 gramos (14). Así mismo en México se utilizó el método de Johnson y Tosgach (15) con un margen de error de 126 gramos (16), mientras que Medina y Vega en 2014 en un hospital público de Bogotá concluyeron que éste constituye un método confiable, no invasivo y de fácil aplicación en embarazos a término, no en edades gestacionales menores (17).
El estándar de oro para valorar el adecuado crecimiento fetal, es el peso neonatal, pero no es posible realizarlo intraútero. Por ello, con la llegada del examen ecográfico constituye la técnica más utilizada y aceptada con lo que se identifica patrones de crecimiento anormal como la RCIU y macrosomías (18).

La validez del ultrasonido en éste tipo de valoraciones depende básicamente de 3 factores: factores del examen ecográfico, fórmula utilizada y de la selección de curvas de referencia de pesos en relación a la edad gestacional utilizada (19).

2.1. Factores del examen

La calidad de la imagen que depende de la resolución del equipo, factores de la gestante que implican obesidad y presencia de cicatrices, unidad feto placentaria representada por posición fetal, cantidad de líquido amniótico, número de fetos (20). Los resultados son operador dependiente, por ello la experiencia es importante. La curva de aprendizaje debe ser por lo menos de 2 años con lo que se reduce la probabilidad de fallo (21), por ello es necesario someterse continuamente a auditoria para realizar las mediciones de acuerdo a estándares internacionales (22).

2.2. Fórmula de peso fetal

Usar el volumen fetal como base para estimar el peso ha sido corroborado usando la resonancia magnética pero las diferencias con la ecografía no son significativas por su mayor costo lo que no lo hace aplicable a la práctica rutinaria (13).

La ecografía utiliza un sin número de fórmulas basadas en la morfometría fetal para calcular la masa fetal (cabeza, abdomen, fémur). Éstas incluyen el Diámetro Biparietal (DBP), Diámetro Fronto-Occipital (DFO), Circunferencia Craneana (CC), Diámetro Abdominal Ántero-Posterior (DAAP), Diámetro Abdominal Transverso (DAT), Circunferencia Abdominal (CA) y Longitud Femoral (LF). La circunferencia abdominal es el mayor predictor aislado del peso fetal (13).

- **DBP**: predice la edad gestacional entre ± 7 días medido entre las 14 y 20 semanas de gestación. El corte debe ser transversal a nivel de la cabeza en la que se visualicen los tálamos en la línea media y el cavum del septum
pellucidum hacia frontal. Emplear un ángulo de insonación de 90° en la que exista simetría de ambos hemisferios, no se debe visualizar el cerebelo (18,20,23).

Ubicación de los calipers: se ubican en los ecos de la tabla externa parietal proximal a tabla interna de parietal distal (18,20,23).

- **CC:** la imagen se ubica tal y como se describió para el DBP.
 Ubicación de los calipers: si el equipo cuenta con capacidad de medir con elipse, los calipers se deben colocar en el borde externo de los ecos producidos por la calota (18,20,23). Otra alternativa es calcular la CC en base al DBP y al DFO, de la siguiente manera: el DBP se mide como se describió previamente y el DFO se obtiene ubicando los calipers entre los ecos externos del hueso frontal y occipital a nivel de la línea media (18,20,23).

- **CA:** se realiza un corte transversal del abdomen fetal (lo más redondo posible) en la que se visualicen la vena umbilical a nivel del seno portal, el estómago y la columna; no se deben visualizar los riñones, el corazón ni las costillas (18,20,23).
 Ubicación de los calipers: la CA se mide en el borde externo de la línea de la piel, de manera directa mediante una elipse o utilizando dos medidas perpendiculares entre sí en general el DAPA y el DTA (18,20,23). Para medir el **DAPA**, los calipers se colocarán en los bordes externos de la línea del abdomen, desde la pared posterior (piel que recubre la columna) hasta la pared abdominal anterior (18,20,23). Para medir el **DTA**, los calipers se ubicarán en los bordes externos de la línea de la piel en el punto más ancho del abdomen (18,20,23).

- **LF:** se debe visualizar claramente los extremos osificados de ambas metáfisis. Se mide el eje mayor de la diáfisis osificada. En general se utiliza un ángulo de insonación entre 45 y 90° (18,20,23).
 Ubicación de los calipers: cada caliper se colocará en los extremos osificados de la diáfisis, sin incluir la epífisis femoral distal en caso que...
sea visible. Esta medición debe excluir artefactos que pueden extender de manera falsa la longitud de la diáfisis (18,20,23).

Para la estimación del peso fetal actualmente se emplea varias escalas, éstas incluyen a la Escala de Shepard, Escala de Campbell, Escala de Osaka, Escala de Higginbottom, Escala de Vaccaro, Escala de Hadlock, Escala de Alarcón Pittaluga, entre otras (24).

En el Hospital Vicente Corral Moscoso de la ciudad de Cuenca se usan las escalas de Alarcón Pittaluga y Hadlock IV cuyas características describimos a continuación.

Las curvas de Pittaluga se publicaron en 2002. Estudió prematuros entre 23 y 36 semanas con datos recolectados entre 1990 a 1998 cuya muestra final fue de 2830 Recién Nacidos (RN). Alarcón para el 2008 analizó en cambio una muestra de 148395 neonatos de 24 a 42 semanas recogida desde el año 1988 a 2000 en el Hospital de Salvador y desde 2001 a 2005 en el Hospital Luis Tisné en Chile; en ambos casos incluyeron a embarazos únicos y sin patología materno-fetal (8).

Se consideró la edad gestacional confiable por fecha de última menstruación (FUM) coincidente en un margen de no más de 10 días con la edad pediátrica. Alarcón comparó los resultados con la información de las tablas de González, Juez y Pittaluga demostrando diferencias significativas en el percentil 10 en los rangos de 24 a 35 semanas y 36 a 42 semanas respectivamente (8).

Considerando las recomendaciones de la Organización Mundial de la Salud (OMS) y viendo que en los estudios seleccionados existieron similitudes y concordancia temporal entre las curvas de Alarcón y Pittaluga, se planteó la integración de ellas y su posterior uso (8).

Estas curvas se realizaron tomando en cuenta los siguientes parámetros biométricos fetales: DBP, LF, DFO, DAP y el DT. La CA utilizó en su cálculo el diámetro abdominal promedio (DAP) $\frac{DAP + DT}{2}$, en la siguiente fórmula (DAP * π). La CC se determinó según: $x = \frac{(DBP + DFO)}{2} + \pi$ (25).
Esta escala obtuvo una sensibilidad de 92% y una especificidad de 94%, con valor predictivo positivo de 39% y valor predictivo negativo de 99.9%, con un margen de error de 14.7% (26), obteniendo los siguientes valores según el percentil correspondiente.

<table>
<thead>
<tr>
<th>Edad gestacional (semanas)</th>
<th>Percentil 10</th>
<th>Percentil 50</th>
<th>Percentil 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>1828</td>
<td>2190</td>
<td>2558</td>
</tr>
<tr>
<td>34</td>
<td>2028</td>
<td>2411</td>
<td>2813</td>
</tr>
<tr>
<td>35</td>
<td>2226</td>
<td>2629</td>
<td>3064</td>
</tr>
<tr>
<td>36</td>
<td>2416</td>
<td>2839</td>
<td>3304</td>
</tr>
<tr>
<td>37</td>
<td>2596</td>
<td>3036</td>
<td>3529</td>
</tr>
<tr>
<td>38</td>
<td>2760</td>
<td>3218</td>
<td>3734</td>
</tr>
<tr>
<td>39</td>
<td>2904</td>
<td>3378</td>
<td>3913</td>
</tr>
<tr>
<td>40</td>
<td>3024</td>
<td>3514</td>
<td>4061</td>
</tr>
<tr>
<td>41</td>
<td>3115</td>
<td>3620</td>
<td>4173</td>
</tr>
</tbody>
</table>

Hadlock entre los años 1984 y 1985 aportó varios modelos matemáticos en el que se incluían como variables la CA, la LF, DBP y la CC; para la estimación del peso al nacer (PN). Quedando las siguientes fórmulas (27):

Hadlock I: \[\log_{10}(PN) = 1.304 + (0.5281 \times CA) + (0.1938 \times LF) - (0.004 \times CA \times LF) \]

Hadlock II: \[\log_{10}(PN) = 1.335 - (0.0034 \times CA \times LF) + (0.0316 \times DBP) + (0.0457 \times CA) + (0.1623 \times LF) \]

Hadlock III: \[\log_{10}(PN) = 1.326 - (0.00326 \times CA \times LF) + (0.0107 \times CC) + (0.0438 \times CA) + (0.158 \times LF) \]

Hadlock IV: \[\log_{10}(PN) = 0.3596 - (0.00061 \times DBP \times CA) + (0.0424 \times CA) + (0.174 \times LF) + (0.0064 \times CC) - (0.00386 \times CA \times LF) \]

Esta última fórmula tiene una sensibilidad de 71% y una especificidad de 95%, con valor predictivo positivo de 64% y valor predictivo negativo de 96%, con un margen de error del 15% (26). Con ello se creó la siguiente tabla:

<table>
<thead>
<tr>
<th>Edad gestacional (semanas)</th>
<th>Percentil 10</th>
<th>Percentil 50</th>
<th>Percentil 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>1479</td>
<td>2045</td>
<td>2575</td>
</tr>
<tr>
<td>34</td>
<td>1752</td>
<td>2319</td>
<td>2838</td>
</tr>
<tr>
<td>35</td>
<td>2085</td>
<td>2604</td>
<td>3290</td>
</tr>
</tbody>
</table>
2.3. Tablas de crecimiento fetal

Para llevarlas a cabo se debe cumplir con dos requisitos primordiales: conocer exactamente la edad gestacional del producto el cual se logra con el conocimiento exacto de la fecha de última menstruación o con ecografía precoz y la otra es que la tabla de referencia debe ser representativa de la población de estudio.

Las curvas normales para la realización de la biometría fetal son de gran importancia para diagnosticar RCIU, la condición de grande para la edad gestacional o ciertas malformaciones que presentan anormalidades en el tamaño de los segmentos corporales. Por ello se plantea disponer de curvas adecuadas para cada medio local (28–30).

Desde 1963, Lubchenco y colaboradores empezaron a emplear curvas de crecimiento intrauterino para niños americanos entre 24 y 42 semanas, los cuales son muy predictores de la estimación de pesos fetales para ese grupo poblacional (31). Más adelante, Battaglia y Lubchenco sugieren los términos, pequeño, adecuado y grande para edad gestacional; los mismo que se usan hasta la actualidad. Se sabe que desde 1970 la OMS recomienda el uso de tablas perinatológicas para predecir estos posibles acontecimientos. Las tablas elaboradas en poblaciones diferentes deben ser adecuadamente validadas en cada localidad (32,33).

La gran mayoría de estas tablas utilizadas como referencia han sido realizadas en grupos diferentes a nuestra población; sin embargo, se ha demostrado que cada parámetro evaluativo puede ser influenciado por diversos factores maternos. Es así como países como Chile, Colombia, Venezuela, Paraguay,
Perú, Brasil, México han implementado sus propias curvas basándose en estudios locales con cientos de pacientes, ya que la evaluación de la biometría fetal depende en gran medida de la elección de las tablas de referencia (34–38).

La OMS definió los criterios para que una curva de referencia sea considerada como un estándar apropiado; esto es, que sean realizadas en base a grandes poblaciones, que tengan al menos 200 niños en cada tramo de edad gestacional, deben incluir más de una variable antropométrica y con procedimientos muestrales definidos y reproducibles, entre otros factores (8).

Los valores normales de éstas tablas se encuentran entre los percentiles 10 y 90 de la curva de crecimiento. Por debajo de 10 se define como pequeño para edad gestacional (PEG) o RCIU y por encima del percentil 90 como grandes para edad gestacional (GEG) o macrosómicos (39).

En nuestro hospital utilizamos las curvas de BABSON-BENDA que consta en la hoja 016 de la historia clínica única del Ministerio de Salud Pública, la misma que reproduzco a continuación.
2.4. **Pequeños para edad gestacional y Restricción de crecimiento intrauterino**

Definido como productos que nacen con menos de 2500 g o por debajo del percentil 10 de acuerdo a las tablas de referencia por no haber alcanzado su potencial de crecimiento. Se debe diferenciar entre los PEG los mismos que sólo son constitucionalmente pequeños y la RCIU (40).

Según el informe de UNICEF entre 2009 y 2013 la prevalencia a nivel mundial oscila entre 6 a 28%. A nivel europeo y de Norte América va desde el 6% al 8%. En Latinoamérica está entre 6 y 10%. Paraguay con un 6% representa la menor frecuencia latinoamericana, mientras que Colombia alcanza el 10%. En nuestro país llega al 9% (41) como se demuestra en las siguientes tablas.
<table>
<thead>
<tr>
<th>PAÍSES Y ZONAS</th>
<th>Bajo peso al nacer (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DATOS CONSOLIDADOS</td>
<td>2009-2013</td>
<td></td>
</tr>
<tr>
<td>África Subsahariana</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>África oriental y meridional</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>África occidental y central</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>África Septentrional y Oriente Medio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia meridional</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Asia Oriental y Pacífico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>América Latina y el Caribe</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>ECE/CEI</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Países menos adelantados</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Mundo</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Estado mundial de la infancia, UNICEF. ECE: Europa Central y Oriental, CEI: Comunidad de Estados Independientes

<table>
<thead>
<tr>
<th>PAÍSES Y ZONAS</th>
<th>Bajo peso al nacer (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DATOS CONSOLIDADOS</td>
<td>2009-2013</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Brasil</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Paraguay</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Perú</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Uruguay</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Estado mundial de la infancia, UNICEF
Elaboración Md. Jorge Plaza Ronquillo.

Su importancia no solo radica en la morbi-mortalidad que podría tener al nacer, sino que influiría en su desarrollo físico e intelectual tanto en la niñez como en la adolescencia. Si se previniera esto con cada control, no tendrían un futuro sombrío.

Los factores que afectan el crecimiento intrauterino podemos clasificarlos de la siguiente manera:

- Factores preconcepcionales.
- Riesgos detectados durante el embarazo.
Riesgos ambientales y del comportamiento.

Factores de riesgo preconcepcionales:

- Bajo nivel socioeconómico y cultural.
- Edades extremas (< 16 y > 40 años).
- Talla baja: < 150 cm (42).
- Malnutrición severa.
- Enfermedades crónicas (hipertensión, nefropatías, diabetes, enfermedad pulmonar crónica, enfermedades del mesénquima).
- Antecedentes de PEG (43).

Factores de riesgo durante el embarazo:

- Embarazo múltiple.
- Aumento de peso menor a 8 kg en todo el embarazo.
- Periodo intergenésico menos de 12 meses.
- Hipertensión inducida por el embarazo, preeclampsia, eclampsia.
- Síndrome antifosfolipídico.
- Infecciones virales (rubéola, citomegalovirus, herpes) y parasitarias (toxoplasmosis, malaria).
- Malformaciones congénitas.
- Exposición a tóxicos.

Factores de riesgo ambientales y del comportamiento:

- Consumo de tabaco.
- Consumo de alcohol.
- Consumo de cafeína.
- Drogadicción.
- Elevada altitud sobre el nivel del mar.
- Controles prenatales inadecuados (44,45).

A los neonatos pequeños para la edad gestacional los podemos clasificar de la siguiente manera:

- Bajo peso al nacer: entre 1500 y 2500 g.
Muy bajo peso al nacer: entre 1000 y 1499 g.

Extremado peso al nacer: < 1000 g (46).

Los RN de bajo peso o con RCIU comparadas con los fetos que crecen adecuadamente tienen más tasa de mortalidad asociada a asfixia al nacimiento, hipotermia, hipoglucemia, aspiración de meconio y posterior secuela neurológica. Así mismo, según hipótesis de Barker ellos están expuestos para desarrollar enfermedades en su vida adulta como hipertensión, ateromatosis, intolerancia a la glucosa y síndrome metabólico (47).

2.5. Grandes para edad gestacional, macrosomías

La macrosomía se define como aquellos productos que tienen más de 4000 g o se encuentran por encima del percentil 90 de las tablas referenciales. Con ésta definición se deduce que está vinculado a mayor riego de morbilidad materna y fetal (48,49).

La incidencia de éste problema se ha ido incrementando paulatinamente y se reportan tasas que oscilan entre el 10 y 13%. Los factores de riesgo relacionados con esta entidad los podemos agrupar de la siguiente manera como lo plantea la Sociedad Española de Pediatría (50):

Factores maternos y paternos:

- Peso y talla elevados.
- Ganancia ponderal gestacional.
- Diabetes pregestacional y gestacional.
- Multiparidad.
- Edad > 35 años.
- Macrosomía previa.
- Nutrición materna.
- Raza.
- Factores socioeconómicos y culturales.

Factores fetales:

- Sexo masculino.
- Edad gestacional.
- Síndromes genéticos:
 - Wiedemann-Beckwith.
 - Sotos.
 - Weaver.
 - Marschall-Smith.
 - Banayan (50).

Dentro de la clasificación de los productos grandes para edad gestacional tenemos:

- Grado I: recién nacidos entre 4000 y 4499 g.
- Grado II: recién nacidos entre 4500 y 4999 g.
- Grado III: recién nacidos > 5000 g (51).

La verdadera preocupación radica en el riesgo de su nacimiento. Así, los productos entre 4000 a 4499 g complican en un 10% los partos vaginales, aquellos que pesan más de 4500 g un 23% comparados con la población general (23).

Las complicaciones fetales incluirían distocia de hombros, lesiones del plexo braquial, lesiones óseas y asfixias intraparto (52). Otras complicaciones son: hipoglicemia, hipocalcemia, hipomagnesemia, hiperbilirrubinemia, síndrome de dificultad respiratoria, policitemia, trombosis de la vena renal, infecciones, cardiomiopatías y malformaciones congénitas (53).

De la misma manera se extendiera el trabajo de parto, aumentaría el riesgo de hemorragia por hipotonía uterina o atonía, los desgarros y traumatismos del cérvix se ven incrementados. Por ello el aumento de cesáreas en una relación de 2 a 1 comparada con fetos de peso normal (48).

Como hemos observado, resulta de vital importancia la utilización de tablas referenciales de crecimiento fetal adecuadas que nos permitan obtener una aceptable sensibilidad y especificidad para con ello reducir la morbimortalidad asociada especialmente en la RCIU.
CAPÍTULO III

3. Hipótesis

La escala de Alarcón Pittaluga estima el peso fetal y lo correlaciona significativamente con el peso al nacer en comparación con la estimación del peso con la escala de Hadlock en las parturientas atendidas en el Hospital “Vicente Corral Moscoso”.

Objetivo General

Comparar la validez de la escala de Alarcón Pittaluga y Hadlock IV para la estimación del Peso Neonatal en parturientas atendidas en el Hospital “Vicente Corral Moscoso”.

Objetivos específicos

- Evaluar la Escala de Alarcón y Pittaluga en el diagnóstico de restricción del crecimiento intrauterino o macrosomías en parturientas atendidas en el Hospital “Vicente Corral Moscoso”.
- Evaluar la sensibilidad y especificidad entre las curvas de Alarcón Pittaluga y Hadlock IV para estimar el peso neonatal en parturientas atendidas en el Hospital “Vicente Corral Moscoso”.
- Establecer la escala de Alarcón y Pittaluga como parámetro de control y diagnóstico antenatal en parturientas atendidas en el Hospital “Vicente Corral Moscoso”.
CAPÍTULO IV

4. Metodología

El presente estudio se llevó a cabo en el Hospital Vicente Corral Moscoso de la ciudad de Cuenca durante los meses de enero hasta diciembre del año 2014, en el que participaron las pacientes que ingresaron al servicio de Ginecología y Obstetricia en labor de parto, por cesárea electiva o de urgencia.

4.1. Diseño de la investigación

4.1.1. Tipo de estudio: se realizó un estudio analítico comparativo de diagnóstico entre los pesos estimado por método de Alarcón Pittaluga y Hadlock IV comparándolas con el peso al nacer.

4.1.2. Población de estudio: todas las maternas que acudieron al servicio de Ginecología y Obstetricia del Hospital Vicente Corral Moscoso en labor de parto o para cesáreas electivas o de urgencia. Durante el periodo de enero a diciembre del año 2014.

4.1.3. Tamaño de la muestra: para el cálculo del tamaño de la muestra para una prueba diagnóstica se utilizó el programa EpiDat 4.0. Entre los índices que se consideraron para su cálculo estaban la sensibilidad y especificidad. Los valores utilizados fueron: prueba 1: sensibilidad de 92%, especificidad de 94%, prueba 2: sensibilidad de 71%, especificidad de 95%.

Para el estudio se tomó como referente una prevalencia de la enfermedad (RCIU) del 15%, dato tomado de la UNICEF a nivel mundial, por cuanto la condición a estudiar en nuestro medio no se conocía. Se consideró un nivel de confianza del 95%, una precisión del 6%. Con éstos valores el tamaño de la muestra a estudiar fue de 524 pacientes.

4.1.4. Unidad de análisis: todas las pacientes que ingresaron al servicio de Ginecología y Obstetricia que estuvieron en labor de parto y se les realizó cesárea electiva o de urgencia y que cumplieron con los criterios de inclusión y exclusión.
4.1.5. **Asignación de pacientes:** todas las pacientes que firmaron el consentimiento informado y que cumplieron los criterios de inclusión y exclusión, hasta completar la muestra.

4.1.6. **Criterios de inclusión:** parturientas con embarazo único de bajo riesgo, en las que se documente con confiabilidad su edad gestacional.

4.1.7. **Criterios de exclusión:** fetos con malformaciones como encefaloceles o ventrículomegalías, onfalocele, gastrosquisis, ascitis o evidente patología osteomuscular.

4.1.8. **Operacionalización de las variables:** podemos observar la operacionalización de variables en el anexo 1.

4.2. Recolección de la información

La recolección de datos se realizó mediante un formulario diseñado por el autor, el cual fue validado con un estudio piloto de 30 pacientes previo a la utilización del formato (Anexo 2).

4.3. Procedimientos y técnicas

La recolección de datos se realizó en un formulario que contó con datos de identificación de la paciente, datos ecográficos y el peso al nacer del neonato, para lo cual, una vez firmado el consentimiento por las parturientas incluidas en el estudio, se les realizó una ecografía previa antes de obtener el producto de la gestación en el departamento de Ecosonografía del servicio, la misma que duró aproximadamente 10 minutos. Para este estudio de imagen se utilizó un ultrasonido marca GENERAL ELECTRIC modelo VOLUSON S6 de 5-9MHZ que fue maniobrado por 1 médico ginecólogo ecografista experimentado encargado del área de imágenes obstétricas, el mismo que cuenta con un nivel alto de experiencia. Para realizar el procedimiento se pidió a la paciente colocarse en posición de decúbito dorsal con el abdomen descubierto sobre el cual se le colocará un gel transductor y luego se exploró el mismo con un instrumento romo llamado transductor, con el que se ejerció una ligera presión que podría incomodar a la paciente, pero no generó dolor. Luego se midió los parámetros requeridos en milímetros, tanto para la escala de Alarcón Pittaluga (DBP, LF,
DFO, DAP, DT) como para la escala de Hadlock IV (DBP, CC, CA, LF). El valor del peso estimado para la escala Alarcón y Pittaluga se utilizó la aplicación FETTUP versión 1.0 mientras que para la escala de Hadlock IV lo dio automáticamente el software diseñado en el equipo.

La toma del peso del recién nacido se realizó en el área de Neonatología del Centro Obstétrico, para el cual utilizó una balanza pediátrica digital HEALTH O METER PROFESSIONAL, con una precisión de 10 g, el mismo que fue llevado a cabo por un médico postgradista (R2) de turno de la especialidad de pediatría. Para la realización del mismo se colocó al neonato completamente desnudo en la balanza digital en decúbito dorsal y se procedió a la lectura del mismo registrando el valor en gramos en la historia clínica materna.

4.4. Plan de análisis de datos

Una vez recolectados los datos se procedió su ingreso a una base de datos en el programa IBM SPSS versión 22.0, tras lo cual se realizó el análisis estadístico utilizando las herramientas en este programa, dando como resultados tablas de frecuencia como estadísticos descriptivos, valor de correlación de Pearson, gráfico de distribución de pesos de acuerdo al estimado y al peso real. Además, se realizó tabla ROC con su respectiva área y creando tablas de 2x2 se obtuvo valores de sensibilidad y especificidad de los métodos utilizados para estimar el peso al nacer versus el peso real agrupándolos en peso adecuado y no adecuado, es decir los pesos dentro del percentiles 10 a 90 y los que se encuentra fuera de esos rangos respectivamente.

Finalmente se expuso en tablas y gráficos dentro del informe final para su respectiva interpretación y análisis de acuerdo a la prueba estadística utilizada.

4.5. Aspectos éticos

Aprobación del Comité de Especialidad, Comisión de Investigación de la Facultad de Ciencias Médicas de la Universidad de Cuenca; aprobación de la Dirección Técnica de Docencia y Jefes de servicio de la institución involucrada.
Reclutamiento: las parturientas seleccionadas fueron informadas prolijamente acerca del estudio alentándolas a participar. Se inició la investigación en enero de 2014 y continuó hasta completar la muestra.

Firma del consentimiento informado (Anexo 3). A toda parturienta que acudió a la institución o que haya sido programada para cesárea electiva o se les realice cesárea de urgencia, el residente de Gineco-obstetricia, le explicó en qué consistía el estudio de manera sencilla pero concisa indicándole de qué forma colaborará y que no existen riesgos para la salud de la madre e hijo. Posteriormente se le solicitó que firme el consentimiento informado por escrito y en caso de no tener instrucción, impregnaron la huella digital. El procedimiento no tuvo ningún costo y se guardó el anonimato en todo momento.
CAPÍTULO V

5. Resultados

Cumplidos los parámetros especificados en la metodología, se procedió a realizar la base de datos y el análisis de los mismos de acuerdo al plan de tabulación y análisis obteniendo los siguientes resultados:

Tabla Nº 1

Distribución de 524 mujeres en labor de parto, según edad, edad gestacional y paridad del atendidas en El Hospital Vicente Corral Moscoso, Cuenca, 2014.

<table>
<thead>
<tr>
<th>Variable</th>
<th>nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-19</td>
<td>70</td>
<td>13,4</td>
</tr>
<tr>
<td>20-24</td>
<td>146</td>
<td>27,9</td>
</tr>
<tr>
<td>25-29</td>
<td>129</td>
<td>24,6</td>
</tr>
<tr>
<td>30-34</td>
<td>92</td>
<td>17,6</td>
</tr>
<tr>
<td>35-39</td>
<td>54</td>
<td>10,3</td>
</tr>
<tr>
<td>40-44</td>
<td>22</td>
<td>4,2</td>
</tr>
<tr>
<td>45-50</td>
<td>11</td>
<td>2,1</td>
</tr>
<tr>
<td>Edad Gestacional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>5</td>
<td>1,0</td>
</tr>
<tr>
<td>35</td>
<td>16</td>
<td>3,1</td>
</tr>
<tr>
<td>36</td>
<td>38</td>
<td>7,3</td>
</tr>
<tr>
<td>37</td>
<td>81</td>
<td>15,5</td>
</tr>
<tr>
<td>38</td>
<td>119</td>
<td>22,7</td>
</tr>
<tr>
<td>39</td>
<td>113</td>
<td>21,6</td>
</tr>
<tr>
<td>40</td>
<td>114</td>
<td>21,8</td>
</tr>
<tr>
<td>41</td>
<td>33</td>
<td>6,3</td>
</tr>
<tr>
<td>42</td>
<td>5</td>
<td>1,0</td>
</tr>
<tr>
<td>Paridad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>113</td>
<td>21,6</td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td>24,6</td>
</tr>
<tr>
<td>3</td>
<td>146</td>
<td>27,9</td>
</tr>
<tr>
<td>4</td>
<td>92</td>
<td>17,6</td>
</tr>
<tr>
<td>5</td>
<td>37</td>
<td>7,1</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>1,1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0,2</td>
</tr>
<tr>
<td>Total</td>
<td>524</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Fuente: Base de datos
La población estudiada se encuentra en una edad promedio de 27 años con un desvío estándar de 7, en su mayoría presentaron una edad entre 20 a 29 años. Las mujeres que acudieron al Hospital Vicente Corral Moscoso en labor de parto presentaron una edad gestacional en promedio de 38 semanas, se observa que en su mayoría cursaban un embarazo a término, con una desviación estándar de 1,66, con un mínimo de 33,4 SG y un máximo de 42 SG. En cuanto a la paridad se observa que el 21,6% tuvieron su primer embarazo y en su mayoría han tenido de 2 a 3 embarazos con una mediana de 3 gestaciones.

Tabla Nº 2

Distribución de 524 mujeres en labor de parto por peso fetal estimado por ultrasonido con la fórmula de Alarcón–Pittaluga, Hadlock IV y peso al nacer atendidas en el Hospital Vicente Corral Moscoso, Cuenca, 2014.

<table>
<thead>
<tr>
<th>Peso</th>
<th>n<sup>2</sup></th>
<th>%</th>
<th>n<sup>2</sup></th>
<th>%</th>
<th>n<sup>2</sup></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000-1499</td>
<td>5</td>
<td>1,0</td>
<td>5</td>
<td>1,0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1500-1999</td>
<td>5</td>
<td>1,0</td>
<td>43</td>
<td>8,2</td>
<td>11</td>
<td>2,1</td>
</tr>
<tr>
<td>2000-2499</td>
<td>108</td>
<td>20,6</td>
<td>152</td>
<td>29,0</td>
<td>38</td>
<td>7,3</td>
</tr>
<tr>
<td>2500-2999</td>
<td>189</td>
<td>36,1</td>
<td>243</td>
<td>46,4</td>
<td>211</td>
<td>40,3</td>
</tr>
<tr>
<td>3000-3499</td>
<td>163</td>
<td>31,1</td>
<td>54</td>
<td>10,3</td>
<td>205</td>
<td>39,1</td>
</tr>
<tr>
<td>3500-3999</td>
<td>38</td>
<td>7,3</td>
<td>22</td>
<td>4,2</td>
<td>43</td>
<td>8,2</td>
</tr>
<tr>
<td>4000-4499</td>
<td>11</td>
<td>2,1</td>
<td>5</td>
<td>1,0</td>
<td>16</td>
<td>3,1</td>
</tr>
<tr>
<td>4500-5000</td>
<td>5</td>
<td>1,0</td>
<td>5</td>
<td>1,0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>524</td>
<td>100,0</td>
<td>524</td>
<td>100,0</td>
<td>524</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Fuente: Base de datos

Según el peso estimado por ultrasonido con la fórmula de Alarcón Pittaluga, se obtuvo un peso con un rango entre 1340 g a 4569 g con una media de 2880 g y una desviación estándar de 507 g. El peso fetal estimado por ultrasonido con la fórmula de Hadlock IV estuvo en un rango de 1453 g a 4743 g con una media de 3126 g y una desviación estándar de 487,5 g.

En cuanto al peso real se encontró que el rango está entre 1880 g a 4315 g con una media de 3020 g y un desvío estándar de 425 g, con estos datos se observa una diferencia entre rangos de resultados con la estimación ecográfica y el peso real para lo cual se realizará una prueba estadística de diferencia de medias para comprobar que estas diferencias sean estadísticamente significativas.
Distribución de 524 mujeres en labor de parto por percentil de peso fetal estimado por ultrasonido con la fórmula de Alarcon Pittaluga, Hadlock IV, y peso al nacer, atendidas en el hospital Vicente Corral Moscoso, Cuenca, 2014.

<table>
<thead>
<tr>
<th>Percentil</th>
<th>Percentil estimado por Alarcon Pittaluga</th>
<th>Percentil estimado por Hadlock IV</th>
<th>Percentil del Peso al nacer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nº</td>
<td>%</td>
<td>nº</td>
</tr>
<tr>
<td>> 90</td>
<td>21</td>
<td>4,0</td>
<td>22</td>
</tr>
<tr>
<td>10 Y 90</td>
<td>281</td>
<td>53,6</td>
<td>373</td>
</tr>
<tr>
<td>< 10</td>
<td>222</td>
<td>42,4</td>
<td>129</td>
</tr>
<tr>
<td>Total</td>
<td>524</td>
<td>100,0</td>
<td>524</td>
</tr>
</tbody>
</table>

Según la estimación con las tablas de peso por percentiles de peso al nacer, Alarcon Pittaluga y Hadlock IV, la mayoría de los recién nacidos se encontraron entre los percentiles 10-90.

Diferencia de medias del peso fetal estimado por ultrasonido con la fórmula de Alarcon Pittaluga, Hadlock IV y peso al nacer.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Peso estimado por Alarcon Pittaluga</th>
<th>Peso estimado por Hadlock IV</th>
<th>Peso al nacer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>2880</td>
<td>3126</td>
<td>3020</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>507</td>
<td>487</td>
<td>425</td>
</tr>
<tr>
<td>Diferencia de medias</td>
<td>140,4</td>
<td>105,7</td>
<td></td>
</tr>
<tr>
<td>Intervalo de confianza</td>
<td>54,44-226,4</td>
<td>31,9-179,48</td>
<td></td>
</tr>
<tr>
<td>Significancia</td>
<td>0,002</td>
<td>0,005</td>
<td></td>
</tr>
</tbody>
</table>

Al realizar el análisis estadístico por diferencia de medias para contraste de hipótesis se encontró una diferencia significativa entre la media del peso estimado ya sea por la estimación con Alarcon Pittaluga y el de Hadlock IV obteniendo una diferencia de 105,7 g y 140,4 g respectivamente con la media del peso al nacer.
Índice de correlación del peso al nacer y los pesos estimados por ultrasonido utilizando el método de Alarcón Pittaluga y Hadlock IV.

<table>
<thead>
<tr>
<th>Peso Estimado por Ultrasonido</th>
<th>Índice de correlación</th>
<th>Valor de p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarcón Pittaluga</td>
<td>0.594</td>
<td>0.0001</td>
</tr>
<tr>
<td>Hadlock IV</td>
<td>0.686</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Fuente: Base de datos

Se realizó la prueba de correlación de Pearson entre el peso al nacer y el peso estimado por ultrasonido por los dos métodos encontrando que el peso estimado por la fórmula de Alarcón Pittaluga presenta menor correlación con el peso real en comparación con la correlación que presenta el método de Hadlock IV. Ambos métodos de estimación del peso fetal con una correlación positiva moderada. Con un valor de p estadísticamente significativo.

Tabla Nº 6

Validación de prueba diagnóstica, comparación de la estimación del peso por ultrasonido por el método de Alarcon Pittaluga y Hadlock IV comparado con el peso al nacer.

<table>
<thead>
<tr>
<th>Peso estimado por ultrasonido</th>
<th>Peso al nacer</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adecuado</td>
<td>No adecuado</td>
</tr>
<tr>
<td>Alarcon-Pittaluga</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adecuado</td>
<td>76</td>
<td>167</td>
</tr>
<tr>
<td>No adecuado</td>
<td>38</td>
<td>243</td>
</tr>
<tr>
<td>Total</td>
<td>114</td>
<td>410</td>
</tr>
<tr>
<td>Chi cuadrado</td>
<td>24,12</td>
<td></td>
</tr>
<tr>
<td>Valor de p:</td>
<td>0,00001</td>
<td></td>
</tr>
<tr>
<td>Hadlock IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adecuado</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>No adecuado</td>
<td>38</td>
<td>335</td>
</tr>
<tr>
<td>Total</td>
<td>113</td>
<td>411</td>
</tr>
</tbody>
</table>

Fuente: Base de datos.
Tabla Nº 7
Comparación entre la escala de Alarcón Pittaluga y Hadlock IV con respecto a diferentes variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Resultado en % (IC 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alarcon-Pittaluga</td>
</tr>
<tr>
<td>Sensibilidad</td>
<td>66,67 (57,57 - 75,76)</td>
</tr>
<tr>
<td>Especificidad</td>
<td>59,27 (54,39 - 64,15)</td>
</tr>
<tr>
<td>Valor predictivo positivo</td>
<td>31,28 (25,24 - 37,31)</td>
</tr>
<tr>
<td>Valor predictivo negativo</td>
<td>86,48 (82,3 - 90,65)</td>
</tr>
<tr>
<td>Prevalencia</td>
<td>21 (18,13 - 25,38)</td>
</tr>
<tr>
<td>Razón de verosimilitud positiva</td>
<td>1,64 (1,37 - 1,95)</td>
</tr>
<tr>
<td>Razón de verosimilitud negativa</td>
<td>0,56 (0,43 - 0,74)</td>
</tr>
</tbody>
</table>

Fuente: Base de datos.

Según los resultados de validez de la prueba con una sensibilidad del 66,67% se puede diagnosticar a un feto con peso no adecuado por la estimación con método de Alarcon Pittaluga, y con una especificidad del 59,27% un feto fue estimado dentro de los percentiles 10 y 90 fue bien estimado con este método.

En cambio, con la escala de Hadlock IV la sensibilidad es del 66,3% y la especificidad del 81,5%.

En cuanto a la seguridad de la prueba se encontró que hay un 31,28% de probabilidad que los fetos con peso no adecuado fueran bien estimados en su peso por ultrasonido; por otra parte, el 86,48% de los pesos estimados en fetos con peso adecuado fueron bien estimados y con Hadlock IV se encontró que hay un 50% de probabilidad de que un feto con peso no adecuado finalmente sea bien estimado en su peso por ultrasonido. Por otra parte, el 90% de los pesos estimados en fetos con peso adecuado fueron bien estimados.

Con esto podemos decir que la estimación del peso fetal con el método de Alarcón Pittaluga tiene menor validez y seguridad al detectar fetos con peso adecuado y no adecuado en comparación con el método de Hadlock IV de acuerdo a los resultados expuestos.
Fuente: Base de datos

<table>
<thead>
<tr>
<th>Variable(s) de resultado de prueba</th>
<th>Área</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso Alarcón Pittaluga</td>
<td>0.598</td>
</tr>
<tr>
<td>Peso Hadlock IV</td>
<td>0.706</td>
</tr>
</tbody>
</table>

Con el análisis con las curvas ROC se evidencia que hay un área menor bajo la curva con el peso estimado por método de Alarcón Pittaluga siendo este método menos sensible y específico que el método de Hadlock IV.
CAPÍTULO VI

6. Discusión

La estimación del peso fetal a través de la realización de ecografías seguirá being un parámetro importante que permite la evaluación del crecimiento y estado nutricional del feto. Con una evaluación oportuna se lograría tomar las conductas clínicas adecuadas y con ello planificar el seguimiento de los productos en riesgo, así como la vía de terminación de la gestación con lo que se logra disminuir el índice de complicaciones materno-neonatales durante el parto y el puerperio.

En el presente estudio se incluyó a 524 mujeres parturientas que acudieron al servicio de ginecología del Hospital Vicente Corral Moscoso, durante el 2014. Tuvieron una edad promedio de 27 años con un desvío estándar de 7, en su mayoría con embarazos a término con una edad gestacional mínima de 33 semanas y máxima de 42 semanas y con una mediana de paridad de 3 gestaciones. Es comparable con el estudio diseñado por Lagos R. en Temuco-Chile en 2003 donde se compara las escalas de Hadlock y la de Juez, en la que encontraron un promedio de edad de la población de 27 años, una paridad promedio de 1 y en su mayoría embarazos a término, con una muestra de 565 individuos (26). También, con el realizado en Kingston, Jamaica por Simms T. en 2013 en el que utilizaron la escala de Hadlock siendo la media de edad 28 años, la paridad de 2 gestaciones y embarazos a término (54).

En cuanto a los pesos estimados se evidenció que por el método de Alarcón Pittaluga se encontró un promedio de 2880 g con un desvío estándar de 507 g en comparación con el peso estimado por el método de Hadlock IV que tuvo una media de 3126 g con un desvío estándar de 487,5 g. Una vez terminado el embarazo se encontró el peso al nacer con un promedio de 3020 g y un desvió estándar de 425. Al tratarse de un estudio piloto, la bibliografía internacional no posee datos comparables con el presente estudio.

A partir de los datos se realizó la prueba estadística de diferencia de medias en la cual se encontró que si hay diferencia significativa entre la media del peso al nacer y el peso estimado con una diferencia de 140 g y 105 g para Alarcón
Pittaluga y Hadlock IV respectivamente. Según los datos obtenidos por Ferreiro R. et al, en la Habana, Cuba en 2010 en su estudio sobre eficacia de las distintas fórmulas para estimación del peso fetal, se obtuvo una diferencia de medias utilizando la escala de Hadlock de 186,7 g la cual es mayor a la observada en el presente estudio la cual es estadísticamente significativa de acuerdo al valor de p (55).

Según el estudio de Fiestas C. en el Hospital Cayetano Pereira de Piura, Perú en 2003, se encontró un índice de correlación de 0,871 del peso estimado por Hadlock y su relación con el peso al nacer (56). También en el estudio de Aedo S. et al, sobre la validez del peso fetal ultrasonográfico realizado en el Hospital Luis Tisné Brousse, Chile, en 2011 obtuvieron una correlación de 0,823 siendo estas de alta correlación (25); sin embargo, en el presente estudio se encontró una correlación moderada. No se dispone en la bibliografía internacional de estudios que comparen a la escala de Alarcon Pittaluga.

Se realizó además un análisis descriptivo de los datos obtenidos con la estimación del peso ecográfico con los dos métodos, junto con el peso al nacer dividiéndolo de acuerdo a las escalas de percentiles en 3 grupos: peso alto, sobre el percentil 90; peso adecuado entre el percentil 10 y 90 y peso bajo para los cuales se encuentran por debajo del percentil 10. Al realizar eso se encontró que la mayoría de los fetos estudiados se encontraban con un peso adecuado al igual que el peso al nacer. Luego se agrupó a los pesos altos y bajos y se procedió a crear dos tablas tetracóricas, una por cada método, para su posterior análisis estadístico de prueba diagnóstica.

Al realizar la validación de la prueba diagnóstica se encuentra que el método de Alarcón Pittaluga presenta una menor especificidad que Hadlock IV, sin embargo ambos métodos presenta una sensibilidad del 66%, es decir, el segundo diagnostica bien a los fetos con un peso dentro de rangos adecuados y ambos tiene aproximadamente la misma capacidad para diagnosticar a los fetos con peso por encima del percentil 90 o por debajo del 10; pero al calcular los valores de valor predictivo y comprobar la seguridad de la prueba se encontró que Alarcón Pittaluga presenta menor seguridad al momento de diagnóstico ya sea
en producto adecuado o no adecuado por tener un valor predictivo positivo de 31,28%.

En el estudio de Lagos R. et al, en Temuco-Chile en 2003 la escala de Alarcón Pittaluga tuvo una sensibilidad de 92% y una especificidad del 94% (26), comparado con el presente estudio los resultados están por debajo de lo encontrado en la bibliografía por lo cual sería necesario realizar un estudio de mayor envergadura para confirmar estos datos obtenidos ya que no se disponen de otros estudios internacionales.

Así mismo, en la escala de Hadlock IV, comparando los estudios de: Ferreiro R. et al, en la Habana, Cuba en 2010 en su estudio antes mencionado describen una sensibilidad de 88,4% y especificidad 84,2% con un valor predictivo positivo de 95,3% y negativo de 66,6% (55); el de Lagos R. et al, en Temuco-Chile en 2003 una sensibilidad de 71% y especificidad de 95% un valor predictivo positivo de 64% y negativo de 96% (26) y el de Kumara D. et al, en su estudio Evaluation of six commonly used formulae for sonographic estimation of fetal weight in a Sri Lankan population realizado en 2009 en Japón se obtuvo una sensibilidad de 75% y especificidad de 94,9% (57), con el presente trabajo se observa que a nivel de estudios internacionales hay resultados con una mayor sensibilidad y especificidad.

De acuerdo al estudio de Kumara D. et al, en Japón 2009 en el análisis de sus curvas ROC se encontró un área bajo la curva graficada con los pesos estimados con la escala de Hadlock IV de 0,849 (57), Camayo J. et al, en Lima Perú, 2009 de 0.763 (27) las cuales son comparables con la del presente estudio que se obtuvo 0,706. Además, utilizando dicha curva se encontró que la curva debajo de la línea graficada con los datos del método de Alarcón Pittaluga es menor al de Hadlock IV con lo cual se comprueba su menor sensibilidad y especificidad para la estimación del peso fetal por ecografía.

La idea de la OMS de crear curvas locales para cada país o centro perinatológico, nos llevó a plantearnos la necesidad de realizar éste estudio piloto que nos ayudó a acercarnos a la realidad de nuestro hospital. Al tratarse de una idea original, no existen estudios de características similares que nos
permitan comparar los resultados entre ellos y los nuestros. Sin embargo, a pesar de que los resultados sigan apoyando el uso de la escala de Hadlock en percentiles de peso normales, no nos desalienta a usar también la escala de Alarcón Pittaluga en los percentiles de pesos extremos ya que no los subestiman como se da con la escala nombrada anteriormente. Se seleccionó esta escala chilena ya que la población de estudio es de similares características a las nuestras. De esta manera queda demostrado que no debemos quedarnos con los brazos cruzados y seguir utilizando tablas con población diferente, sino más bien realizar las nuestras y proyectarlas hacia un estudio de escala nacional. Queda plasmada la idea de investigar más y comparar todas las escalas posibles que más se acerquen a nuestra realidad para con ello cumplir el objetivo de disminuir los riesgos perinatales que se dan, al no precisar un diagnóstico prenatal exacto.
CAPÍTULO VII

7. Conclusiones

A sabiendas de que la ecografía es netamente operador dependiente y nos asigna según protocolo a posicionar y concentrar marcadores de un correcto corte en cada una de las mediciones fetales, nuestro estudio revela al comparar la validez de la escala de Alarcón Pittaluga y Hadlock IV que la segunda escala tiene una mayor especificidad; es decir, diagnostica mejor a los fetos con peso normal.

Al evaluar la escala de Alarcón Pittaluga y Hadlock IV en el diagnóstico de restricción del crecimiento intrauterino o macrosomía presentaron similar sensibilidad, es decir son válidas para estimar a los fetos menores y mayores al percentil 10 y 90. Sin embargo Hadlock IV presenta mayor seguridad en el diagnóstico, lo que ha sido por lo general un puntal de estudio en varias poblaciones ya que ahí encontramos un desequilibrio en comparación con otras escalas.

Con esto concluimos que nuestra hipótesis se rechaza ya que la estimación del peso fetal por Hadlock presenta mayor sensibilidad y especificidad.
8. **Recomendaciones**

Recomendamos basados en nuestro estudio que la mejor escala para medir pesos normales y alterados es la de Hadlock IV por su validez y seguridad de prueba diagnóstica, ya que muestra diferencia significativa en nuestra población.

Apegarse estrictamente a los parámetros de las normas internacionales de medición para mejorar la sensibilidad y especificidad en las curvas propuestas y demos pie para continuar con la investigación de escalas antropométricas y nomogramas para apegarnos cada vez más a la realidad del peso fetal y por consiguiente a la reducción de la mortalidad perinatal y así diseñar un estudio de mayor envergadura donde se pueda obtener tablas de referencia para pesos de acuerdo a nuestra población y así no utilizar tablas de referencia de otras poblaciones como lo hacemos actualmente.
9. Referencias bibliográficas

1. De Apuril M. Evaluación del crecimiento fetal por ultrasonografía, relación con los resultados neonatales inmediatos. [citado 13 de septiembre de 2013]; Recuperado a partir de: http://scielo.iics.una.py/scielo.php?pid=S1816-89492008000100003&script=sci_arttext

2. Becerra I. Correlación y concordancia entre el peso fetal estimado por ecografía y el peso real obtenido por báscula de los recién nacidos a término en el Hospital Vicente Corral Moscoso durante el 2012 [Internet]. [Cuenca]: Universidad de Cuenca; 2012 [citado 13 de septiembre de 2013]. Recuperado a partir de: http://dspace.ucuenca.edu.ec/bitstream/123456789/4008/1/doi878.pdf

5. Libardo M, Benjamín R. Construction of fetal growth curves and charts For cartagena and barranquilla population in Colombia.

17. Vega D, Medina ML others. Coeficiente de concordancia del peso fetal estimado por el método de Johnson y Toshach y el peso de neonatos nacidos en un hospital público de Bogotá [Internet]. Universidad Nacional de Colombia; [citado 23 de noviembre de 2015]. Recuperado a partir de: http://www.bdigital.unal.edu.co/47173/

23. Morales C, Hernando D. Concordancia de las fórmulas ecográficas para estimar el peso real obtenido al nacer a término en el Hospital del instituto ecuatoriano de seguridad social Ambato desde el 01 de abril al 30 de junio

41. Unicef, others. Estado mundial de la infancia 2012 [Internet]. Fondo de las Naciones Unidas para la Infancia (UNICEF); 2012 [citado 28 de noviembre de 2015]. Recuperado a partir de: http://bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base=BDENF&lang=p&nextAction=lnk&exprSearch=22443&indexSearch=ID

10. Anexos

Anexo 1

Operacionalización de las variables.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>DEFINICIÓN</th>
<th>DIMENSIÓN</th>
<th>INDICADOR</th>
<th>ESCALA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escala de Hadlock</td>
<td>Escala de estimación de peso fetal ecográfica que considera el DBP, LF, CC, CA para su cálculo</td>
<td>Escala de estimación de peso fetal</td>
<td>Percentiles</td>
<td>< p10 p10-p90 > p90</td>
</tr>
<tr>
<td>Escala de Alarcón Pittaluga</td>
<td>Escala de estimación de peso fetal ecográfica que considera el DBP, LF, DOF, DAP, DT para su cálculo</td>
<td>Escala de estimación de peso fetal</td>
<td>Percentiles</td>
<td>< p10 p10-p90 > p90</td>
</tr>
<tr>
<td>Peso al Nacer</td>
<td>Primera medida del peso del producto de la concepción (feto o recién nacido), hecha después del nacimiento</td>
<td>Peso</td>
<td>Gramos</td>
<td>Numérica</td>
</tr>
<tr>
<td>Fecha de Última Menstruación</td>
<td>Periodo de tiempo que corresponde al día de inicio, mes y año del último periodo menstrual</td>
<td>Tiempo</td>
<td>Semanas</td>
<td>Numérica</td>
</tr>
<tr>
<td>Edad de la Madre</td>
<td>Periodo de tiempo comprendido desde el nacimiento hasta la fecha de ingreso</td>
<td>Tiempo</td>
<td>Años cumplidos</td>
<td>Numérica</td>
</tr>
<tr>
<td>Paridad</td>
<td>Número de partos con finalización del alumbramiento, más allá de la semana 20, o con un recién nacido de peso mayor a 500 gramos.</td>
<td>Gestación</td>
<td>Número de partos.</td>
<td>Nulípara Primípara Secundípara Multipara Gran multipara</td>
</tr>
</tbody>
</table>
Anexo 2

Validación de la estimación ecográfica del peso fetal, frente al peso al nacer, obtenido mediante balanza mecánica en el Hospital Vicente Corral Moscoso.

| Nº Formulario: …… | Nº HC: ………………………………………… |
| Datos de Filiación de la madre |
Nombre…………………………………………	Edad: ………………………
Fecha: ………………………	Fecha de la última menstruación: ……………
Paridad: …………………………………	Semanas de gestación:…………………………………

1. Edad gestacional en semanas-días: ……………………………
2. Peso Ecográfico:
 - Escala de Alarcón Pittaluga: …………………………………
 - Escala de Hadlock IV: …………………………………
 - DBP: ………mm.
 - CC: …………mm.
 - CA: …………mm.
 - LF: …………mm.
 - DFO: ………mm.
 - DAP: ………mm.
 - DT:………..mm.

Datos del Recién Nacido
Peso al nacer en gramos:…………………………………………………

Estimada paciente:

Yo, Md Jorge Darwin Plaza Ronquillo estudiante del postgrado de Ginecología, como parte del requisito previo a la obtención del título de especialista en ginecología y obstetricia, realizaré la presente investigación que tiene como finalidad comprobar la validez de las curvas de percentiles de crecimiento fetal de Alarcón Pittaluga para la estimación del Peso fetal y Neonatal en pacientes atendidas en el Hospital “Vicente Corral Moscoso”.

Procedimiento:

Se le realizará una ecografía previa hasta un máximo de 72 horas antes de que se produzca su parto, en el departamento de Ecosonografía del servicio, la misma que durará aproximadamente 10 minutos, que será realizada por médicos ginecólogos ecografistas. Con esta técnica de imagen se tomarán los parámetros requeridos para mi estudio, tanto para la escala de Hadlock IV (DBP, CC, CA, LF) como para la escala de Alarcón Pittaluga (DBP, LF, DFO, DAP, DT). No habrá complicaciones durante y después de este procedimiento.

La toma del peso del recién nacido se realizará en el área de Neonatología del Centro Obstétrico, el mismo que será llevado a cabo por un médico residente de turno de la especialidad de Pediatría. Para la realización del mismo se colocará al neonato completamente desnudo en la balanza digital en decúbito dorsal y se
procederá a la lectura del mismo registrando el valor en gramos en la historia clínica materna.

Beneficios:

El presente estudio nos permitirá conocer el peso fetal antes de parto, seleccionando la mejor técnica, para predecir el peso del neonato y con ello brindarle un tratamiento individualizado y de mejor calidad a su hijo y a todos los recién nacidos en el Hospital Vicente Corral Moscoso. El estudio no tendrá costo para usted, además los datos individuales obtenidos no serán divulgados, solo serán socializados los datos finales.

He leído lo anteriormente expuesto, me he informado y he escuchado las respuestas a mis inquietudes, por lo cual acepto voluntariamente mi participación y la de mi hijo en este estudio, y entiendo que tengo el derecho de retirarme en cualquier momento, sin que esto signifique ningún perjuicio para mi persona.

Nombre: ……………………………………………… CI: …………………………………

Firma: …………………………………