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Abstract—In a testing process, the design, selection, creation and 

execution of test cases is a very time-consuming and error-prone 

task when done manually, since suitable and effective test cases 

must be obtained from the requirements. This paper presents a 

model-driven testing approach for conceptual schemas that 

automatically generates a set of abstract test cases, from 

requirements models. In this way, tests and requirements are 

linked together to find defects as soon as possible, which can 

considerably reduce the risk of defects and project reworking. The 

authors propose a generation strategy which consists of: two meta-

models, a set of transformations rules which are used to generate a 

Test Model, and the Abstract Test Cases from an existing approach 

to communication-oriented Requirements Engineering; and an 

algorithm based on Breadth-First Search. A practical application 

of our approach is included.  

Index Terms—Requirements-based testing, Communication 

Analysis, Model-driven testing, Conceptual Schema Testing, Test 

Model Generation, Test Case Generation. 

I. INTRODUCTION 

Testing aims to detect defects in a system by comparing the 

expected results (expressed in system requirements) to the 

observed results (the behaviour of the implementation of the 

System Under Test (SUT). In order to detect defects before they 

become extremely expensive to fix and manage the inevitable 

changes during the software lifecycle, testing activities should 

start as soon as possible (the requirements level) in the software 

lifecycle. 

In paradigms such as Testing-Driven Development (TDD) 

[1] and Behaviour-Driven Development (BDD -an evolution of 

TDD) [2], the tests are written in an incremental and iterative 

way prior to the production code as a specification of functional 

tests (e.g. TDD) or specifications of the product's behaviour (e.g. 

BDD). But the tests are executed for testing the SUT at code 

level.  

Additionally, the Requirements-Based Testing [3] 

methodology has emerged as a solution and considerably 

reduces the causes of project failures, defects and reworking by 

addressing two major issues: (i) validating that the requirements 

are correct, complete, unambiguous and logically consistent; 

and (ii) designing a necessary and sufficient set of test cases 

from these requirements to ensure that the design and code fully 

meet these requirements.  

 However, in the testing process, the design, selection, 

creation and execution of test cases is a very time-consuming 

and error-prone task when done manually, because suitable and 

effective test cases must be obtained. As the automatic 

generation of test cases will reduce the cost of the testing 

process, increase the effectiveness of the tests and optimize the 

testing cycle [4], in this work we try to address the challenge of 

automatically generating test cases of sufficient quality by 

optimizing coverage and minimising testing costs.  

Model-Driven Engineering (MDE) [5] advocates for the use 

of models as development artefacts, which can be applied for 

facilitating communication by hiding technical details, 

specifying its structure and behaviour in an understandable way, 

or even generating test cases. In this paradigm, the quality of the 

conceptual schemas (the system model) becomes a key factor 

that requires methodologies and procedures to assure that the 

conceptual schema meets the requirements specified.  

This paper presents an approach that automatically generates 

a set of abstract test cases, for testing conceptual schemas, from 

the requirements models. For this purpose, we apply the Model-

Driven Testing (MDT) paradigm [5], which means that it uses a 

models transformation strategy for generating test models. MDT 

has certain advantages, such as i) rules are specified once, then 

the same derivation can be re-used for generating test cases from 

multiple requirements models; and ii) platform independence, 

the executables test cases can be generated in different target 

codes. 

The main contributions of the paper are the following: 

 A model-driven testing approach to automatically 

generate abstract test cases from the requirements 

model, based on communication-oriented business 

process specifications. 

 Artefacts (meta-models, transformation rules and 

algorithm to establish the different sequences of the test 

items) that are defined and implemented to support the 

MDT strategy.  

The proposed approach is illustrated by means of an 

example. 

In the following, we briefly summarize the basic testing 

concepts used in the study. Section III summarizes the 

Requirements Model used in the proposed approach. Section IV 

defines the meta-models and transformation rules used. Section 

V presents an overview of the generation process of the test 

model and the abstract test cases applied in the development of 

the practical application given as an example. Section VI 

describes related work. Finally, conclusions and future work are 

summarized in Section VII. 
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II. BASIC CONCEPTS 

This section describes the concepts and testing artefacts used 

in the generation process of the test cases. 

A. Testing Concepts 

Following standard terminology [6], the following 

definitions are used in this paper.  

A test case is a set of input values, execution pre-conditions, 

expected results and execution post-conditions. 

An abstract test case is a test case without concrete 

(implementation level) values for input data and expected 

results.  

A concrete test case is a test case with concrete 

(implementation level) values for input data and expected 

results. 

B. Testing Artefacts Involved 

The requirement model describes the system requirements at 

business level. The requirement model is specified by the 

domain experts and system analysts and is an instance of the 

Requirements Meta-model proposed by España [7]. 

A conceptual schema (CS) defines the general knowledge 

that an information system needs in order to perform its 

functions [8].  

The conceptual schema under test (CSUT) is a conceptual 

schema in an executable form (e.g. Foundational subset for 

Executable UML Models –fUML [9] with Action Language for 

Foundational UML –Alf [10]). 

The test model (TM) contains information about the test 

items and their order of precedence, which are generated from 

the requirements model. This model conforms to the Test Model 

Meta-model (TMM). The meta-model is discussed in Section 

IV.  

The abstract test cases are obtained from the test Model. 

These are structured sequences of the test cases (e.g. services, 

triggers, assertions and links) for conceptual schemas 

exemplifying the interaction of actors with the system. The test 

cases are abstracts in the sense that they do not contain concrete 

objects.  

The concrete test cases (test code) are generated from the 

abstract test cases with concrete data.  

The executable test cases are the concrete test cases 

converted into executable script files. For this purpose, 

languages such as Alf can be used. 

Since our proposal complies with the principles of Model-

Driven Testing, it distinguishes different types of models at 

various levels of abstraction, such as those shown in Fig. 1, the 

Platform-Independent Test model (PIT) and the Platform-

Specific Test model (PST).  

Our MDT process requires three transformations: (i) the first 

one is a model to model transformation (M2M): from the 

requirements model (which is a Platform Independent Model -

PIM) to the test model; (ii) the test model (PIT) is converted into 

an abstract test cases model (PST –M2M transformation); (iii) 

finally, the concrete and executable test cases will be generated 

into test script using a vertical transformation (PST to code –

model to text transformation).  

 

Fig. 1. An overview of our MDT approach from requirements models 

The scope of this paper includes the first two transformations 

(see Fig 1). 

In the next section, we identify the most relevant elements 

of the Requirements meta-model from a testing viewpoint. 

III. REQUIREMENTS MODEL: IDENTIFYING THE MAIN 

PRIMITIVES FROM A TESTING VIEWPOINT 

Communication Analysis (CA) is a Requirements 

Engineering method which aims to analyse and structure 

requirements focuses on communicative interactions that occur 

between an enterprise Information Systems (IS) and its 

environment [11]. For this purpose, a requirements structure 

with five levels (i.e. system/subsystem, process, communicative 

interaction, usage environment; and operational environment) is 

proposed in this method [11].  

Our proposal covers the requirements related to 

communicative events. They have been structured in three wide 

categories [11]: contact (requirements related to the triggering 

of the event by an actor to communicate something to the 

information system, e.g. preconditions), message (specify the 

contents of the message being communicated to or from the IS, 

e.g. message fields, domain of the message fields, message 

constraints); and reaction requirements (information system 

reaction, e.g. linked behaviours and linked communications).  

Actually, Communication Analysis has been integrated into 

the OO-Method, an object-oriented Model-Driven Development 

framework [12] that is UML-compliant.  

A model transformation strategy has been defined to derive, 

from Communication Analysis requirements models, initial 

versions of OO-Method conceptual models that can already be 

compiled to automatically generate software code [13], [7].  

Among the techniques for requirements specification using 

CA, the Communicative Event Diagram and the Event 

Specification Templates are the main artefacts used in the 

present approach.  
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A. Communicative Event Diagram (CED) 

CED is a graphical modelling technique to represent a 

business process model, where the notation is similar to the 

UML Activity Diagrams, but differs from the Activity diagram 

and other proposals (e.g. Business Process Modelling Notation 

-BPMN) in that it includes the primitives (Event Specification 

Template primitives) that a model-driven method needs (fine-

grained enough to be represented directly in code) to express the 

structure and dynamics of an IS. Figure 2 shows the 

communicative event diagram of the business process of the 

Online Conference Review System (for further information on 

this system see Appendix I).  

 
Fig. 2. OCR system requirement model based on a communicative event 

diagram 

The following modelling primitives are of interest for the 

purpose of automatically deriving Test Models.  

A Communicative Event is a set of actions related to 

information (acquisition, storage, processing, retrieval and / or 

distribution) carried out when an external stimulus occurs and 

have to be performed completely and uninterruptedly according 

to the unity criteria [11] (e.g. events CONF1, MEM1 and so on, 

in Fig. 2). For each communicative event a message containing 

meaningful information is transmitted to the IS.  

An event variant (i.e. events 4.1, 4.2, 5.1 and 5.2 in Fig. 2) 

refers to each alternative behaviour within a specialised 

communicative event (i.e. events 4 and 5 in Fig. 2). 

Even though actors are essential for the requirements model 

based on communication analysis, as yet they are not considered 

to play a significant role in the derivation of the Test Model for 

Conceptual Schemas, because they are only responsible for 

communicating the new meaningful information to the 

information system. However, this information is not complete 

enough to formulate requirements such as access control 

requirements. 

A precedence relation between two communicative events 

A and B indicate that “A is a precedent communicative event of 

B“(see arrows between communicative events in Fig. 2). The 

temporal ordering of the CED communicative interactions 

facilitates obtaining the sequence of the test items in a 

systematic way. 

Logical gate Or. The or-merge indicates that only one of the 

incoming precedence relations needs to hold (see diamond in 

Fig. 2).  

Logical gate And. The and-fork and the and-join are 

implicitly represented by two or more precedence relations 

leaving from (or arriving at) a communicative event; however, 

they can be explicitly drawn if needed to express complex 

logical expressions. 

A start node indicates the beginning of the CED and end 

node represents the end of the CED. 

B. Event Specification Template (EST) 

An event specification template is a textual specification 

technique that is used to describe, by means of a Message 

Structure, both ingoing and outgoing messages transmitted to 

the IS in a Communicative Event [14]. TABLE 1 shows the 

message structure for the communicative event SUB1 (an author 

submits a paper) in our example. The following grammatical 

constructs are of interest for the purpose of Test Model 

derivation (see [14] for further information on this technique). 

A Substructure is an element that is part of a message 

structure. For example, VERSION, AUTHOR, TOPICS and 

CONFLICTS are substructures of SUBMISSION.  

The initial substructure is the first level of a message 

structure. In our case SUBMISSION = <id Submission + 

Abstract + Keywords + Tittle + VERSIONS + AUTHORS + 

TOPICS + CONFLICTS>.  

There exist two classes of substructures; 

1) Field: Basic informational element of the message and is 

not composed of other elements. 
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TABLE 1. PARTIAL VIEW OF THE MESSAGE STRUCTURE FOR 

COMMUNICATIVE EVENT SUB1  

Field OP Domain Example Value 

SUBMISSION = 

<id Submission 
  Abstract + 

  Keywords + 

  Title + 
 VERSIONS = 

 { VERSION = 

   < id File +  
      File + 

      Type + 

      Date>  } 
  AUTHORS = 

  {AUTHOR = 

    < id Author + 
       Name + 

       Last Name + 

       Username + 
       Password +  

      Organization+ 

      Country + 
      Email >   } 

   TOPICS = 

  { Topic  } 
  CONFLICTS=   

{ PCMEMBER } > 
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Submission10 
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Spain 
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T01,.. 
 

None 

a) Data Field: Piece of data with a basic domain1. For 

instance, Abstract, Title. 

b) Reference Field: Field whose domain is a type of 

business object. For instance, Topic references is a 

topic that is already known to the IS. 

2) Complex substructure: Any substructure that has an 

internal composition.  

a) Aggregation Substructure: Specify the composition of 

several substructures in such a way that they remain 

grouped as a whole. It is represented by angle brackets 

< >. For instance, VERSION= <id File + File + Type 

+ Date>.  

b) Iteration Substructure: Specify a set or repetition of the 

substructures it contains. It is represented by curly 

brackets { }. For instance, a submission can be related 

to several VERSIONS, AUTHORS, TOPICS and 

CONFLICTS. 

Each field is characterised by properties, some of which are 

described below. 

It must have a significant Name (e.g. Abstract). 

An acquisition operation (OP) specifies the origin of the 

information that the field represents. 

 Input (i): The information of the field is provided by the 

primary actor. 

 Generation (g): The IS can automatically generate the 

field information. 

 Derivation (d): The field information is already known 

by the IS and therefore can be derived from its memory; 

i.e. it was previously communicated in a preceding 

communicative event. This operation can have an 

associated derivation formula. 

                                                           
1 It specifies the type of information that field contains (e.g. number, text). 

If the attribute operation is of the “derivation” type, the 

derivation formula indicates the formula in natural language, or 

Object Constraint Language (OCL2). 

A Domain specifies the type of information that the field 

contains. 

An Example Value is a value for the field, provided by the 

organisation. 

The minimum Cardinality is a value that indicates the 

minimum cardinality of the data field. 

The maximum Cardinality is a value that indicates the 

maximum cardinality of the data field. 

An isIdentifier is a Boolean value. It indicates if a data field 

is an identifier field of a substructure. 

For each Communicative Event in the CED a message 

structure is required with information needed to express its 

behaviour.  

C. Generating Test Cases from Communication Analysis 

Our first motive for using Communication Analysis is to 

obtain a single model to specify the functionality of an IS and to 

generate the respective test cases. In this way the use of different 

artefacts by requirements analysts, testers and developers is 

avoided, thus making their work easier. As the events sequence 

describes the expected exchanges of messages between the actor 

and the system, this can be used to define the test cases. In 

particular, while the communicative events indicate the actions 

to be performed in a complete and uninterrupted way under 

certain constraints, the message structures for each 

communicative event contain references to the types involved 

that represent actors, or business concepts, the relationships 

between them and parameterized messages with data types 

existing in the conceptual schema of the system (the class 

diagram and state machines).  

However, this forces the requirement analyst to be precise 

and rigorous in the semantics given to each CA concept and, 

thus, may not be so easy to build. To reduce this complexity, we 

use the existing editor tool [15], which is a Domain Specific 

Language to create a CED and introduce a message structure for 

each communicative event. 

Our second motive comes from the fact that requirements-

based testing [3], particularly model-driven testing [16], is being 

increasingly used. There is thus a need for a systematic approach 

to generating test cases from requirements model. 

Our third motivate is in the context of MDD, where it is 

possible to obtain a test model from a requirements model by 

means of model transformations, so that the process can 

continue to generate the executables test cases. This means when 

a modification is made in the requirements model, not only is 

the test model automatically re-generated, but so are the 

concrete test cases.  

Our approach is therefore designed to make generating test 

models and abstract test cases from requirement models easier. 

IV. META-MODELS AND TRANSFORMATION RULES 

This section describes the different meta-models and the 

transformation rules used in our proposal. 

2 OCL: http://www.omg.org/spec/OCL/ 
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A. Test Model Meta-model (TMM) 

The meta-model defines the abstract syntax of the test model 

and the transformation rules are defined according to it. Fig. 3 

shows the meta-model for generating the test models. A TMM 

instance is the PIT for our MDT proposal and consists of the 

principal class TestModel. This class has a name that identifies 

it, which is the same as the requirements model name. Some 

meta-model classes (i.e. TestModel, Precedence, 

TestComponent, TestItem and Parameter) inherit the attribute 

name from the class Element.  

The class TestModel, which models the test component, 

consists of one or more classes of the type TestComponent, 

which contains all the necessary items to test the respective 

communicative event. It also contains the attribute 

eventReference which has one trace with the communicative 

event of the requirements model.  

The class Precedence allows two test components (TCi and 

TCj) to be related, where TCi (source) must necessarily occur 

before TCj (target). The class TestItem models the test items; it 

contains owner (it is the object to which the test item belongs). 

A TestItem can be specialized in the type Call (i.e. services, 

triggers and links) and Assertion.  

The class Call has the attribute type to indicate the type of 

service, trigger or link. The class Assertion has the attribute 

constraint modelled. The classes Service and Trigger may or not 

have Input Parameter. However, only class Service can have an 

Output Parameter. Additionally, the class Service has the 

attribute visibility (i.e. public, private) to define its behaviour. 

The class Parameter models parameters that have the class 

Call, and contains the attributes type, lowerBound and 

upperBound (these are used as boundary values of the parameter 

range). A Parameter can be specialized as Input (optional in 

Service and Trigger) and Output (required for Services). Finally, 

the class Link allows testing the relationship between two 

objects specified by both the Input Parameter and Output 

Parameter values.  

 
Fig. 3. Test model meta-model  

                                                           
3 ATL: http://www.eclipse.org/atl/ 

B. Abstract Test Cases Model Meta-model (ATCMM) 

For the second transformation from PIT to PST (instance of 

the Meta-model of the Abstract Test Cases Model) we have 

defined another meta-model (see Fig. 4) that allows platform-

specific properties required in the abstract test cases to be added, 

such as resolving data type for the attribute type of the class 

Parameter, adding the attributes type in the class TestCase and 

targetLanguage in the class TestModel. Additionally, the class 

Data permits values for parameter as well as the expected values 

of the Test Items to be related. In class TestItem the attributes 

verdict (i.e. none, pass, inconclusive, fail and error) and type (i.e. 

positive and negative) has been added. This model is the PST 

for our MDT proposal.  

C. Transformation Rules 

A transformation definition is a set of transformation rules 

that together describe how models in the source language can be 

transformed into models in the target language [5].  

Twelve transformation rules (R) were defined for the first 

transformation (PIM to PIT). Fig. 5 (Part a) shows the mappings 

between the RM to TM concepts. TABLE 2 shows an example 

of a transformation rule created in Atlas Transformation 

Language (ATL)3, which transforms the primitives 

EventVariant from RM to the primitives Test Component of the 

TM. For the transformation (PIT to PST) the second meta-model 

is used (see Fig. 4). Eleven transformation rules (R’) were 

defined to traverse the test model and generate test items of each 

test component grouped into the different abstract test cases (see 

Fig. 5 Part b). 

 
Fig. 4. Meta-model of the abstract test cases  

 
 

43



 
Fig. 5. Mappings for a) RM to TM primitives and b) TM to ATCM primitives 

This transformation allows the test model to be refined 

(generate the abstract test cases) and enriched with test-specific 

properties, such as those mentioned in the meta-model 

description. 

V. OVERVIEW OF THE GENERATION PROCESS 

A. Step 1: Generation of Test Model  

As seen in Fig. 6, the derivation strategy starts with loading 

the requirement model (RM), the requirement meta-model 

(RMM) and test model meta-model (TMM). The XML 

Metadata Interchange (XMI)4 file stores the RM which is 

created by the requirements engineer, based on the 

Communication Analysis method previously introduced in 

Section III. Once the models have been loaded, the requirement 

model is transformed into the test model (TM), where the test 

cases are ordered according to the precedence relationships.  

Given the transformation rules defined in Section IV, the 

first step consists of processing each primitive of the CED (Fig. 

2) together with the associated message structure (see the 

example in TABLE 1) in order to generate the Test Items 

grouped by each Test Component, which are related to each 

communicative event (all-events coverage). Each Test 

Component is made up of a set of statements (i.e. assertions as 

preconditions, call of services and triggers and call of links) to 

be tested. The different test components are then integrated in a 

single Test Model. Fig. 7 shows the Test Model generated for 

our example (OCR system) with the corresponding detailed test 

items only for the test component called SUBMIT_PAPER 

(TC_3). 

TABLE 2. TRANSFORMATION RULE 1 

rule R4_CE_with_EventVariant2TestComponent{ 

from cametamodel: 

cametamodel!CommunicativeEvent(self.has_EventVaria

nt(cametamodel)) 

to 

testcomponent: distinct tcmetamodel!TestComponent 

foreach (c in cametamodel.specialisations)( 

name<- self.format_to_without_space(c.name), 

eventReference<-cametamodel.name+':EventVariant', 

testItems<-

self.R5_EventVariant2Trigger(cametamodel))} 

                                                           
4 http://www.omg.org/spec/XMI/ 

  
Fig. 6. Test cases code generation workflow 

 
Fig. 7. TM with two detailed TCs for MEM1 and SUB1 respectively 
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B. Step 2: Generation of the Abstract Test Cases Model 

The second step consists of processing the test model 

obtained to generate the abstract test cases. For this purpose, the 

models and meta-models (i.e. TM, TMM and ATCMM) have to 

be loaded.  

Our approach traverses the test model using an algorithm 

based on Breadth-First Search (BFS) [17]. This algorithm was 

adapted to generate the different test item sequences from the 

test model. The different sequences are generated considering 

the alternative paths (i.e. event variant) in the model.  

This process then generates 3 abstract test cases 

(Abs_TCase), each one with 9, 8 and 7 test components, 

respectively, and each test component with 27, 24 and 23 test 

items, respectively (see Fig. 8). 

These two steps permit the test model and abstract test cases 

to be generated from a requirements model.  

The requirements covered by the generated abstract test 

cases are: 

 Contact requirements; assertions (preconditions). 

 Communication requirements; triggers and services 

with parameters and their data types. 

 Reaction requirements: object links. 

 
Fig. 8.  Abstract Test Cases for OCR system 

VI. RELATED WORK 

In this paper we define an MDT approach for automatically 

generating a set of abstract test cases from a requirements 

model, which will be used to validate the requirements in 

conceptual schemas in an MDD environment. 

Other approaches to generating test cases from functional 

requirements have been developed, such as those summarized 

by Escalona et al. [18]. However, only a few approaches can 

automatically generate test cases from requirements [19]. 

The major differences between our approach and the others 

are: that we focus on automated test model generation using 

MDT, while the others automate the tracing tasks for manual 

testing (e.g. tracing out a specific scenario and the tasks of 

inputting data and expected result preparation for each 

scenario). Also, our approach applies the test cases on CS and 

the other approaches on system code.  

There are also works which focus on CS testing [20] [21], 

[22], [23], however only one of these [20] validates the CSs with 

respect to requirements, and none of them is integrated into an 

overall MDT process, unlike our proposal. 

On the other hand, although there are many model-based 

testing approaches, such as those summarized by Utting et al. 

[4], we only consider model-based testing that follows an MDE 

paradigm (MDT), in which the test cases are derived from 

models and not from the system code [4], [24], [16].  

However, the major differences with our proposal are: (i) the 

level of abstraction for testing artefacts (code level), in our case 

the testing is for CSs; (ii) testing purpose (verify the correctness 

of the system), in our case validating the correctness, 

completeness and consistency of CS with respect to 

requirements; (iii) these works use design models that are parts 

of CS (e.g. class diagram, sequence diagram, component 

diagram) to automatically derive the test cases, in our work the 

CSs are the artefacts (CSUT) for testing; (iv) we take advantage 

of a requirements model, allowing us to specify IS as well as the 

test cases in an MDE context, hence facilitating the requirements 

validation phase. 

VII. CONCLUSIONS AND FUTURE WORK 

This paper presents an approach for automatically 

generating abstract test cases from a requirements model. This 

means testers and developers can be use the same artefacts and 

reduces the costs of the testing process. 

A Model transformation strategy (MDT) has been defined to 

derive initial versions of test models and abstract test cases from 

Communication Analysis requirements models. To do this, 

twelve transformation rules were defined to facilitate the 

generation of the test models; and eleven refinement rules were 

defined for obtaining the abstract test cases from the test model. 

An overview of our approach has been illustrated with a case 

example of an online Conference Review System, in which 3 

abstract test cases are obtained from the test model. The abstract 

test cases are formed by 9, 8, and 7 test components respectively, 

each one with 27, 24 and 23 test items (i.e. assertions, services, 

trigger and links). The test cases cover the requirements at the 

communicative iteration level (i.e. contact, message and 

reaction) related to the communicative events.  
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With the purpose of obtaining a “good” set of abstract test 

cases, we plan to conduct various experimental studies to 

validate the completeness (e.g. [25]), correctness and scalability 

of our proposal.  

Additionally we will try to assess the cost impact of the 

testing process using our approach. 

Finally, we will test a number of strategies to concretize our 

abstract test cases.  Executable test cases will also be obtained 

using the Alf model execution language [8]. 
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APPENDIX I. DESCRIPTION OF ONLINE CONFERENCE REVIEW 

SYSTEM 

In order to exemplify the application of our generation 

approach of a test model throughout this paper, we will use a 

system called Online Conference Review (OCR) based on the 

description of the CyberChair System [26].  

In this system there is a program committee chair (PcChair) 

that determines the topics of interest and selects the members of 

the program committee (PcMember).  

Authors are responsible for sending their paper submissions 

indicating potential conflicts of interests with PcMembers.  

The PcChair allocates items to the members of the program 

committee (PcMember), resolving the conflicts of interest, if 

applicable.  

Reviewers (PcMember) are responsible for assessing the 

submissions assigned to them and recording their assessments.  

PcChair resolves the conflict of evaluations, if applicable, 

and sends notifications of acceptance or rejection of the 

submission authors.  

Finally, if the submission is accepted the authors of the 

papers will be invited to revise and submit (camera-ready) 

improved versions of their papers.
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