
Towards the Automated Generation of Abstract Test

Cases from Requirements Models

Maria Fernanda Granda1

Department of Computer Science

University of Cuenca

Cuenca, Ecuador

fernanda.granda@ucuenca.edu.ec

Nelly Condori-Fernández

 Department of Computer Science

VU University

Amsterdam, Netherlands

n.condori-fernandez@vu.nl

Tanja E.J. Vos, Oscar Pastor
1DSIC

Universitat Politècnica de València

Valencia, Spain

{tvos, opastor}@dsic.upv.es

Abstract—In a testing process, the design, selection, creation and

execution of test cases is a very time-consuming and error-prone

task when done manually, since suitable and effective test cases

must be obtained from the requirements. This paper presents a

model-driven testing approach for conceptual schemas that

automatically generates a set of abstract test cases, from

requirements models. In this way, tests and requirements are

linked together to find defects as soon as possible, which can

considerably reduce the risk of defects and project reworking. The

authors propose a generation strategy which consists of: two meta-

models, a set of transformations rules which are used to generate a

Test Model, and the Abstract Test Cases from an existing approach

to communication-oriented Requirements Engineering; and an

algorithm based on Breadth-First Search. A practical application

of our approach is included.

Index Terms—Requirements-based testing, Communication

Analysis, Model-driven testing, Conceptual Schema Testing, Test

Model Generation, Test Case Generation.

I. INTRODUCTION

Testing aims to detect defects in a system by comparing the

expected results (expressed in system requirements) to the

observed results (the behaviour of the implementation of the

System Under Test (SUT). In order to detect defects before they

become extremely expensive to fix and manage the inevitable

changes during the software lifecycle, testing activities should

start as soon as possible (the requirements level) in the software

lifecycle.

In paradigms such as Testing-Driven Development (TDD)

[1] and Behaviour-Driven Development (BDD -an evolution of

TDD) [2], the tests are written in an incremental and iterative

way prior to the production code as a specification of functional

tests (e.g. TDD) or specifications of the product's behaviour (e.g.

BDD). But the tests are executed for testing the SUT at code

level.

Additionally, the Requirements-Based Testing [3]

methodology has emerged as a solution and considerably

reduces the causes of project failures, defects and reworking by

addressing two major issues: (i) validating that the requirements

are correct, complete, unambiguous and logically consistent;

and (ii) designing a necessary and sufficient set of test cases

from these requirements to ensure that the design and code fully

meet these requirements.

 However, in the testing process, the design, selection,

creation and execution of test cases is a very time-consuming

and error-prone task when done manually, because suitable and

effective test cases must be obtained. As the automatic

generation of test cases will reduce the cost of the testing

process, increase the effectiveness of the tests and optimize the

testing cycle [4], in this work we try to address the challenge of

automatically generating test cases of sufficient quality by

optimizing coverage and minimising testing costs.

Model-Driven Engineering (MDE) [5] advocates for the use

of models as development artefacts, which can be applied for

facilitating communication by hiding technical details,

specifying its structure and behaviour in an understandable way,

or even generating test cases. In this paradigm, the quality of the

conceptual schemas (the system model) becomes a key factor

that requires methodologies and procedures to assure that the

conceptual schema meets the requirements specified.

This paper presents an approach that automatically generates

a set of abstract test cases, for testing conceptual schemas, from

the requirements models. For this purpose, we apply the Model-

Driven Testing (MDT) paradigm [5], which means that it uses a

models transformation strategy for generating test models. MDT

has certain advantages, such as i) rules are specified once, then

the same derivation can be re-used for generating test cases from

multiple requirements models; and ii) platform independence,

the executables test cases can be generated in different target

codes.

The main contributions of the paper are the following:

 A model-driven testing approach to automatically

generate abstract test cases from the requirements

model, based on communication-oriented business

process specifications.

 Artefacts (meta-models, transformation rules and

algorithm to establish the different sequences of the test

items) that are defined and implemented to support the

MDT strategy.

The proposed approach is illustrated by means of an

example.

In the following, we briefly summarize the basic testing

concepts used in the study. Section III summarizes the

Requirements Model used in the proposed approach. Section IV

defines the meta-models and transformation rules used. Section

V presents an overview of the generation process of the test

model and the abstract test cases applied in the development of

the practical application given as an example. Section VI

describes related work. Finally, conclusions and future work are

summarized in Section VII.

978-1-4799-6334-8/14/$31.00 c© 2014 IEEE RET 2014, Karlskrona, Sweden39

II. BASIC CONCEPTS

This section describes the concepts and testing artefacts used

in the generation process of the test cases.

A. Testing Concepts

Following standard terminology [6], the following

definitions are used in this paper.

A test case is a set of input values, execution pre-conditions,

expected results and execution post-conditions.

An abstract test case is a test case without concrete

(implementation level) values for input data and expected

results.

A concrete test case is a test case with concrete

(implementation level) values for input data and expected

results.

B. Testing Artefacts Involved

The requirement model describes the system requirements at

business level. The requirement model is specified by the

domain experts and system analysts and is an instance of the

Requirements Meta-model proposed by España [7].

A conceptual schema (CS) defines the general knowledge

that an information system needs in order to perform its

functions [8].

The conceptual schema under test (CSUT) is a conceptual

schema in an executable form (e.g. Foundational subset for

Executable UML Models –fUML [9] with Action Language for

Foundational UML –Alf [10]).

The test model (TM) contains information about the test

items and their order of precedence, which are generated from

the requirements model. This model conforms to the Test Model

Meta-model (TMM). The meta-model is discussed in Section

IV.

The abstract test cases are obtained from the test Model.

These are structured sequences of the test cases (e.g. services,

triggers, assertions and links) for conceptual schemas

exemplifying the interaction of actors with the system. The test

cases are abstracts in the sense that they do not contain concrete

objects.

The concrete test cases (test code) are generated from the

abstract test cases with concrete data.

The executable test cases are the concrete test cases

converted into executable script files. For this purpose,

languages such as Alf can be used.

Since our proposal complies with the principles of Model-

Driven Testing, it distinguishes different types of models at

various levels of abstraction, such as those shown in Fig. 1, the

Platform-Independent Test model (PIT) and the Platform-

Specific Test model (PST).

Our MDT process requires three transformations: (i) the first

one is a model to model transformation (M2M): from the

requirements model (which is a Platform Independent Model -

PIM) to the test model; (ii) the test model (PIT) is converted into

an abstract test cases model (PST –M2M transformation); (iii)

finally, the concrete and executable test cases will be generated

into test script using a vertical transformation (PST to code –

model to text transformation).

Fig. 1. An overview of our MDT approach from requirements models

The scope of this paper includes the first two transformations

(see Fig 1).

In the next section, we identify the most relevant elements

of the Requirements meta-model from a testing viewpoint.

III. REQUIREMENTS MODEL: IDENTIFYING THE MAIN

PRIMITIVES FROM A TESTING VIEWPOINT

Communication Analysis (CA) is a Requirements

Engineering method which aims to analyse and structure

requirements focuses on communicative interactions that occur

between an enterprise Information Systems (IS) and its

environment [11]. For this purpose, a requirements structure

with five levels (i.e. system/subsystem, process, communicative

interaction, usage environment; and operational environment) is

proposed in this method [11].

Our proposal covers the requirements related to

communicative events. They have been structured in three wide

categories [11]: contact (requirements related to the triggering

of the event by an actor to communicate something to the

information system, e.g. preconditions), message (specify the

contents of the message being communicated to or from the IS,

e.g. message fields, domain of the message fields, message

constraints); and reaction requirements (information system

reaction, e.g. linked behaviours and linked communications).

Actually, Communication Analysis has been integrated into

the OO-Method, an object-oriented Model-Driven Development

framework [12] that is UML-compliant.

A model transformation strategy has been defined to derive,

from Communication Analysis requirements models, initial

versions of OO-Method conceptual models that can already be

compiled to automatically generate software code [13], [7].

Among the techniques for requirements specification using

CA, the Communicative Event Diagram and the Event

Specification Templates are the main artefacts used in the

present approach.

40

A. Communicative Event Diagram (CED)

CED is a graphical modelling technique to represent a

business process model, where the notation is similar to the

UML Activity Diagrams, but differs from the Activity diagram

and other proposals (e.g. Business Process Modelling Notation

-BPMN) in that it includes the primitives (Event Specification

Template primitives) that a model-driven method needs (fine-

grained enough to be represented directly in code) to express the

structure and dynamics of an IS. Figure 2 shows the

communicative event diagram of the business process of the

Online Conference Review System (for further information on

this system see Appendix I).

Fig. 2. OCR system requirement model based on a communicative event

diagram

The following modelling primitives are of interest for the

purpose of automatically deriving Test Models.

A Communicative Event is a set of actions related to

information (acquisition, storage, processing, retrieval and / or

distribution) carried out when an external stimulus occurs and

have to be performed completely and uninterruptedly according

to the unity criteria [11] (e.g. events CONF1, MEM1 and so on,

in Fig. 2). For each communicative event a message containing

meaningful information is transmitted to the IS.

An event variant (i.e. events 4.1, 4.2, 5.1 and 5.2 in Fig. 2)

refers to each alternative behaviour within a specialised

communicative event (i.e. events 4 and 5 in Fig. 2).

Even though actors are essential for the requirements model

based on communication analysis, as yet they are not considered

to play a significant role in the derivation of the Test Model for

Conceptual Schemas, because they are only responsible for

communicating the new meaningful information to the

information system. However, this information is not complete

enough to formulate requirements such as access control

requirements.

A precedence relation between two communicative events

A and B indicate that “A is a precedent communicative event of

B“(see arrows between communicative events in Fig. 2). The

temporal ordering of the CED communicative interactions

facilitates obtaining the sequence of the test items in a

systematic way.

Logical gate Or. The or-merge indicates that only one of the

incoming precedence relations needs to hold (see diamond in

Fig. 2).

Logical gate And. The and-fork and the and-join are

implicitly represented by two or more precedence relations

leaving from (or arriving at) a communicative event; however,

they can be explicitly drawn if needed to express complex

logical expressions.

A start node indicates the beginning of the CED and end

node represents the end of the CED.

B. Event Specification Template (EST)

An event specification template is a textual specification

technique that is used to describe, by means of a Message

Structure, both ingoing and outgoing messages transmitted to

the IS in a Communicative Event [14]. TABLE 1 shows the

message structure for the communicative event SUB1 (an author

submits a paper) in our example. The following grammatical

constructs are of interest for the purpose of Test Model

derivation (see [14] for further information on this technique).

A Substructure is an element that is part of a message

structure. For example, VERSION, AUTHOR, TOPICS and

CONFLICTS are substructures of SUBMISSION.

The initial substructure is the first level of a message

structure. In our case SUBMISSION = <id Submission +

Abstract + Keywords + Tittle + VERSIONS + AUTHORS +

TOPICS + CONFLICTS>.

There exist two classes of substructures;

1) Field: Basic informational element of the message and is

not composed of other elements.

41

TABLE 1. PARTIAL VIEW OF THE MESSAGE STRUCTURE FOR

COMMUNICATIVE EVENT SUB1

Field OP Domain Example Value

SUBMISSION =

<id Submission
 Abstract +

 Keywords +

 Title +
 VERSIONS =

 { VERSION =

 < id File +
 File +

 Type +

 Date> }
 AUTHORS =

 {AUTHOR =

 < id Author +
 Name +

 Last Name +

 Username +
 Password +

 Organization+

 Country +
 Email > }

 TOPICS =

 { Topic }
 CONFLICTS=

{ PCMEMBER } >

g
i

i

i

g
i

g

i

g
i

i

i
i

i

i
i

i

i

text
text

text

text

text
text

text

text

text
text

text

text
text

text

text
text

Topic

PCMember

Submission10
There is an …

Test Cases, …

Towards …

F0010-01
Submis10.pdf

Submission

10-04-2014

A00345
Fernanda

Granda

fgranda
21212

UPV

Spain
fg@pr.upv.es

T01,..

None

a) Data Field: Piece of data with a basic domain1. For

instance, Abstract, Title.

b) Reference Field: Field whose domain is a type of

business object. For instance, Topic references is a

topic that is already known to the IS.

2) Complex substructure: Any substructure that has an

internal composition.

a) Aggregation Substructure: Specify the composition of

several substructures in such a way that they remain

grouped as a whole. It is represented by angle brackets

< >. For instance, VERSION= <id File + File + Type

+ Date>.

b) Iteration Substructure: Specify a set or repetition of the

substructures it contains. It is represented by curly

brackets { }. For instance, a submission can be related

to several VERSIONS, AUTHORS, TOPICS and

CONFLICTS.

Each field is characterised by properties, some of which are

described below.

It must have a significant Name (e.g. Abstract).

An acquisition operation (OP) specifies the origin of the

information that the field represents.

 Input (i): The information of the field is provided by the

primary actor.

 Generation (g): The IS can automatically generate the

field information.

 Derivation (d): The field information is already known

by the IS and therefore can be derived from its memory;

i.e. it was previously communicated in a preceding

communicative event. This operation can have an

associated derivation formula.

1 It specifies the type of information that field contains (e.g. number, text).

If the attribute operation is of the “derivation” type, the

derivation formula indicates the formula in natural language, or

Object Constraint Language (OCL2).

A Domain specifies the type of information that the field

contains.

An Example Value is a value for the field, provided by the

organisation.

The minimum Cardinality is a value that indicates the

minimum cardinality of the data field.

The maximum Cardinality is a value that indicates the

maximum cardinality of the data field.

An isIdentifier is a Boolean value. It indicates if a data field

is an identifier field of a substructure.

For each Communicative Event in the CED a message

structure is required with information needed to express its

behaviour.

C. Generating Test Cases from Communication Analysis

Our first motive for using Communication Analysis is to

obtain a single model to specify the functionality of an IS and to

generate the respective test cases. In this way the use of different

artefacts by requirements analysts, testers and developers is

avoided, thus making their work easier. As the events sequence

describes the expected exchanges of messages between the actor

and the system, this can be used to define the test cases. In

particular, while the communicative events indicate the actions

to be performed in a complete and uninterrupted way under

certain constraints, the message structures for each

communicative event contain references to the types involved

that represent actors, or business concepts, the relationships

between them and parameterized messages with data types

existing in the conceptual schema of the system (the class

diagram and state machines).

However, this forces the requirement analyst to be precise

and rigorous in the semantics given to each CA concept and,

thus, may not be so easy to build. To reduce this complexity, we

use the existing editor tool [15], which is a Domain Specific

Language to create a CED and introduce a message structure for

each communicative event.

Our second motive comes from the fact that requirements-

based testing [3], particularly model-driven testing [16], is being

increasingly used. There is thus a need for a systematic approach

to generating test cases from requirements model.

Our third motivate is in the context of MDD, where it is

possible to obtain a test model from a requirements model by

means of model transformations, so that the process can

continue to generate the executables test cases. This means when

a modification is made in the requirements model, not only is

the test model automatically re-generated, but so are the

concrete test cases.

Our approach is therefore designed to make generating test

models and abstract test cases from requirement models easier.

IV. META-MODELS AND TRANSFORMATION RULES

This section describes the different meta-models and the

transformation rules used in our proposal.

2 OCL: http://www.omg.org/spec/OCL/

42

A. Test Model Meta-model (TMM)

The meta-model defines the abstract syntax of the test model

and the transformation rules are defined according to it. Fig. 3

shows the meta-model for generating the test models. A TMM

instance is the PIT for our MDT proposal and consists of the

principal class TestModel. This class has a name that identifies

it, which is the same as the requirements model name. Some

meta-model classes (i.e. TestModel, Precedence,

TestComponent, TestItem and Parameter) inherit the attribute

name from the class Element.

The class TestModel, which models the test component,

consists of one or more classes of the type TestComponent,

which contains all the necessary items to test the respective

communicative event. It also contains the attribute

eventReference which has one trace with the communicative

event of the requirements model.

The class Precedence allows two test components (TCi and

TCj) to be related, where TCi (source) must necessarily occur

before TCj (target). The class TestItem models the test items; it

contains owner (it is the object to which the test item belongs).

A TestItem can be specialized in the type Call (i.e. services,

triggers and links) and Assertion.

The class Call has the attribute type to indicate the type of

service, trigger or link. The class Assertion has the attribute

constraint modelled. The classes Service and Trigger may or not

have Input Parameter. However, only class Service can have an

Output Parameter. Additionally, the class Service has the

attribute visibility (i.e. public, private) to define its behaviour.

The class Parameter models parameters that have the class

Call, and contains the attributes type, lowerBound and

upperBound (these are used as boundary values of the parameter

range). A Parameter can be specialized as Input (optional in

Service and Trigger) and Output (required for Services). Finally,

the class Link allows testing the relationship between two

objects specified by both the Input Parameter and Output

Parameter values.

Fig. 3. Test model meta-model

3 ATL: http://www.eclipse.org/atl/

B. Abstract Test Cases Model Meta-model (ATCMM)

For the second transformation from PIT to PST (instance of

the Meta-model of the Abstract Test Cases Model) we have

defined another meta-model (see Fig. 4) that allows platform-

specific properties required in the abstract test cases to be added,

such as resolving data type for the attribute type of the class

Parameter, adding the attributes type in the class TestCase and

targetLanguage in the class TestModel. Additionally, the class

Data permits values for parameter as well as the expected values

of the Test Items to be related. In class TestItem the attributes

verdict (i.e. none, pass, inconclusive, fail and error) and type (i.e.

positive and negative) has been added. This model is the PST

for our MDT proposal.

C. Transformation Rules

A transformation definition is a set of transformation rules

that together describe how models in the source language can be

transformed into models in the target language [5].

Twelve transformation rules (R) were defined for the first

transformation (PIM to PIT). Fig. 5 (Part a) shows the mappings

between the RM to TM concepts. TABLE 2 shows an example

of a transformation rule created in Atlas Transformation

Language (ATL)3, which transforms the primitives

EventVariant from RM to the primitives Test Component of the

TM. For the transformation (PIT to PST) the second meta-model

is used (see Fig. 4). Eleven transformation rules (R’) were

defined to traverse the test model and generate test items of each

test component grouped into the different abstract test cases (see

Fig. 5 Part b).

Fig. 4. Meta-model of the abstract test cases

43

Fig. 5. Mappings for a) RM to TM primitives and b) TM to ATCM primitives

This transformation allows the test model to be refined

(generate the abstract test cases) and enriched with test-specific

properties, such as those mentioned in the meta-model

description.

V. OVERVIEW OF THE GENERATION PROCESS

A. Step 1: Generation of Test Model

As seen in Fig. 6, the derivation strategy starts with loading

the requirement model (RM), the requirement meta-model

(RMM) and test model meta-model (TMM). The XML

Metadata Interchange (XMI)4 file stores the RM which is

created by the requirements engineer, based on the

Communication Analysis method previously introduced in

Section III. Once the models have been loaded, the requirement

model is transformed into the test model (TM), where the test

cases are ordered according to the precedence relationships.

Given the transformation rules defined in Section IV, the

first step consists of processing each primitive of the CED (Fig.

2) together with the associated message structure (see the

example in TABLE 1) in order to generate the Test Items

grouped by each Test Component, which are related to each

communicative event (all-events coverage). Each Test

Component is made up of a set of statements (i.e. assertions as

preconditions, call of services and triggers and call of links) to

be tested. The different test components are then integrated in a

single Test Model. Fig. 7 shows the Test Model generated for

our example (OCR system) with the corresponding detailed test

items only for the test component called SUBMIT_PAPER

(TC_3).

TABLE 2. TRANSFORMATION RULE 1

rule R4_CE_with_EventVariant2TestComponent{

from cametamodel:

cametamodel!CommunicativeEvent(self.has_EventVaria

nt(cametamodel))

to

testcomponent: distinct tcmetamodel!TestComponent

foreach (c in cametamodel.specialisations)(

name<- self.format_to_without_space(c.name),

eventReference<-cametamodel.name+':EventVariant',

testItems<-

self.R5_EventVariant2Trigger(cametamodel))}

4 http://www.omg.org/spec/XMI/

Fig. 6. Test cases code generation workflow

Fig. 7. TM with two detailed TCs for MEM1 and SUB1 respectively

44

B. Step 2: Generation of the Abstract Test Cases Model

The second step consists of processing the test model

obtained to generate the abstract test cases. For this purpose, the

models and meta-models (i.e. TM, TMM and ATCMM) have to

be loaded.

Our approach traverses the test model using an algorithm

based on Breadth-First Search (BFS) [17]. This algorithm was

adapted to generate the different test item sequences from the

test model. The different sequences are generated considering

the alternative paths (i.e. event variant) in the model.

This process then generates 3 abstract test cases

(Abs_TCase), each one with 9, 8 and 7 test components,

respectively, and each test component with 27, 24 and 23 test

items, respectively (see Fig. 8).

These two steps permit the test model and abstract test cases

to be generated from a requirements model.

The requirements covered by the generated abstract test

cases are:

 Contact requirements; assertions (preconditions).

 Communication requirements; triggers and services

with parameters and their data types.

 Reaction requirements: object links.

Fig. 8. Abstract Test Cases for OCR system

VI. RELATED WORK

In this paper we define an MDT approach for automatically

generating a set of abstract test cases from a requirements

model, which will be used to validate the requirements in

conceptual schemas in an MDD environment.

Other approaches to generating test cases from functional

requirements have been developed, such as those summarized

by Escalona et al. [18]. However, only a few approaches can

automatically generate test cases from requirements [19].

The major differences between our approach and the others

are: that we focus on automated test model generation using

MDT, while the others automate the tracing tasks for manual

testing (e.g. tracing out a specific scenario and the tasks of

inputting data and expected result preparation for each

scenario). Also, our approach applies the test cases on CS and

the other approaches on system code.

There are also works which focus on CS testing [20] [21],

[22], [23], however only one of these [20] validates the CSs with

respect to requirements, and none of them is integrated into an

overall MDT process, unlike our proposal.

On the other hand, although there are many model-based

testing approaches, such as those summarized by Utting et al.

[4], we only consider model-based testing that follows an MDE

paradigm (MDT), in which the test cases are derived from

models and not from the system code [4], [24], [16].

However, the major differences with our proposal are: (i) the

level of abstraction for testing artefacts (code level), in our case

the testing is for CSs; (ii) testing purpose (verify the correctness

of the system), in our case validating the correctness,

completeness and consistency of CS with respect to

requirements; (iii) these works use design models that are parts

of CS (e.g. class diagram, sequence diagram, component

diagram) to automatically derive the test cases, in our work the

CSs are the artefacts (CSUT) for testing; (iv) we take advantage

of a requirements model, allowing us to specify IS as well as the

test cases in an MDE context, hence facilitating the requirements

validation phase.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents an approach for automatically

generating abstract test cases from a requirements model. This

means testers and developers can be use the same artefacts and

reduces the costs of the testing process.

A Model transformation strategy (MDT) has been defined to

derive initial versions of test models and abstract test cases from

Communication Analysis requirements models. To do this,

twelve transformation rules were defined to facilitate the

generation of the test models; and eleven refinement rules were

defined for obtaining the abstract test cases from the test model.

An overview of our approach has been illustrated with a case

example of an online Conference Review System, in which 3

abstract test cases are obtained from the test model. The abstract

test cases are formed by 9, 8, and 7 test components respectively,

each one with 27, 24 and 23 test items (i.e. assertions, services,

trigger and links). The test cases cover the requirements at the

communicative iteration level (i.e. contact, message and

reaction) related to the communicative events.

45

With the purpose of obtaining a “good” set of abstract test

cases, we plan to conduct various experimental studies to

validate the completeness (e.g. [25]), correctness and scalability

of our proposal.

Additionally we will try to assess the cost impact of the

testing process using our approach.

Finally, we will test a number of strategies to concretize our

abstract test cases. Executable test cases will also be obtained

using the Alf model execution language [8].

ACKNOWLEDGMENTS

This work has been supported by The Secretary of Higher

Education, Science and Technology (SENESCYT: Secretaría

Nacional de Educación Superior, Ciencia y Tecnología) of the

Republic of Ecuador.

REFERENCES

[1] K. Beck, Test-Driven Development by Example, Pearson

Education, 2003.

[2] M. Wynne and A. Hellesoy, The Cucumber Book: Behaviour-

Driven Development for Testers and Developers, Pragmatic

Programmers, 2012.

[3] P. Skoković and M. Rakić-Skoković, “Requirements-Based

Testing Process in Practice,” IJIEM, vol. 1, no. 4, pp. 155-161,

2010.

[4] M. Utting, A. Pretschner and B. Legeard, “A taxonomy of model-

based testing approaches,” Softw. Test. Verif. Reliab, pp. 1-15,

2010.

[5] Z. Dai, “Model-driven testing with UML 2.0,” in Computer

Science at Kent, 2004.

[6] ISTQB, “Standard glossary of terms used in software testing,”

2012.

[7] S. España, “Methodological integration of Communication

Analysis into a Model-Driven,” Valencia, 2011.

[8] A. Olivé, Conceptual Modeling of Information System.,

Springer, 2007.

[9] OMG, “Semantics of a Foundational Subset for Executable UML

Models (FUML),” OMG, 2011.

[10] OMG, “Concrete Syntax For A UML Action Language: Action

Language For Foundational UML (ALF),” OMG, 2013.

[11] S. España, A. González and O. Pastor, “Communication

Analysis: a Requirements Engineering Method for Information

Systems,” in CAiSE, Amsterdam, The Netherlands, 2009.

[12] O. Pastor and J. Molina, Model-Driven Architecture in practice:

a software production, Springer,, 2007.

[13] S. España, M. Ruiz and A. González, “Systematic derivation of

conceptual models from requirements models: a controlled

experiment,” in in Sixth International Conference on Research

Challenges in Information Science (RCIS), 2012.

[14] A. González, M. Ruiz, S. España and O. Pastor, “Message

Structures: a modelling technique for information systems

analysis and design,” in WER, 2011.

[15] M. Ruiz, S. España, A. Gonzalez and O. Pastor, “Análisis de

Comunicaciones como un enfoque de requisitos para el

desarrollo dirigido por modelos,” in DSDM, Valencia, España,

2010.

[16] M. Mussa, S. Ouchani, W. A. Sammane and A. Hamou-Lhadj,

“A Survey of Model-Driven Testing Techniques,” in QSIC, Jeju,

Korea, , 2009.

[17] J. Kleinberg and E. Tardos, Algorithm Design, Boston: Pearson

Education, 2006.

[18] M. J. Escalona, J. J. Gutierrez, M. Mejías, G. Aragón, I. Ramos,

J. Torres and F. J. Domínguez, “An overview on test generation

from functional requirements,” Journal of Systems and Software,

vol. 84, no. 8, p. 1379–1393, 2011.

[19] C. Nebut, F. Fleurey, Y. Le Traon and J.-M. Jezequel,

“Automatic test generation: a use case driven approach,” in

Software Engineering, IEEE Transactions on , 2006.

[20] A. Tort and A. Olivé, “An approach to testing conceptual

schemas,” Data & Knowledge Engineering, pp. 598-618, 2010.

[21] D. A. Sadilek and S. Weißleder, “Testing Metamodels,” in Model

Driven Architecture – Foundations and Applications, vol. 5095,

Springer Berlin Heidelberg, 2008, pp. 294-309.

[22] O. Pilskalns, A. Andrews, A. Knight, S. Ghosh and R. France,

“Testing UML designs,” vol. 49, pp. 892-912, 2006.

[23] T. Dinh-Trong, N. Kawane, S. Ghosh, R. France and A.

Andrews, “A tool-supported approach to testing UML design

models,” in Proc. of the ICECCS, CO, USA, 2005.

[24] B. P. Lamancha, M. Polo, D. Caivano, M. Piattini and G.

Visaggio, “A Model Based Testing Approach for Model-Driven

Development and Software Product Lines,” vol. 55, pp. 301-319,

2013.

[25] M. F. Granda, “An experiment design for validating a Test Cases

Generation Strategy from a Requirements Model,” in Empire,

Karlskrona, Sweden, 2014.

[26] R. Van de Stadt, “CyberChair,” [Online]. Available:

http://www.borbala.com/cyberchair/. [Accessed 03 2014].

[27] P. D. V. N. T. Mohagheghi, “Definitions and approaches to

model quality in model-based software development– A review

of literature,” vol. 51, pp. 1646-1669, 2009.

APPENDIX I. DESCRIPTION OF ONLINE CONFERENCE REVIEW

SYSTEM

In order to exemplify the application of our generation

approach of a test model throughout this paper, we will use a

system called Online Conference Review (OCR) based on the

description of the CyberChair System [26].

In this system there is a program committee chair (PcChair)

that determines the topics of interest and selects the members of

the program committee (PcMember).

Authors are responsible for sending their paper submissions

indicating potential conflicts of interests with PcMembers.

The PcChair allocates items to the members of the program

committee (PcMember), resolving the conflicts of interest, if

applicable.

Reviewers (PcMember) are responsible for assessing the

submissions assigned to them and recording their assessments.

PcChair resolves the conflict of evaluations, if applicable,

and sends notifications of acceptance or rejection of the

submission authors.

Finally, if the submission is accepted the authors of the

papers will be invited to revise and submit (camera-ready)

improved versions of their papers.

46

