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RESUMEN 

El uso de modelos numéricos para la representación de procesos naturales es cada vez más común, 

gracias al desarrollo de herramientas avanzadas problemas cada vez más complejos pueden ser 

abordados. Sin embargo, mientras sistemas avanzados pueden ser solventados, la incertidumbre de la 

precisión de la solución obtenida se mantiene. La comparación entre los valores experimentales y los 

obtenidos mediante las simulaciones no es evidencia suficiente de la calidad de los resultados. El 

método del índice de convergencia de la grilla (GCI) se propone como una alternativa para calcular y 

reportar la estimación del error de discretización en la aplicación de mecánica de fluidos 

computacional (CFD) para las simulaciones, este método permite la estimación del error de 

discretización mediante la aplicación de la teoría de Extrapolación de Richardson, este procedimiento 

es aplicado a un caso de flujo laminar en una tubería que experimenta una expansión repentina. Los 

resultados de un estudio experimental se utilizan para verificar tanto la simulación numérica como los 

resultados de GCI. Como resultado de la aplicación de este método el orden de precisión del esquema 

numérico utilizado fue verificado. Comparando los resultados numéricos con los valores 

experimentales se obtuvo un máximo error de 6%. Finalmente, considerando las dos grillas más finas 

se puede concluir que el rango asintótico se ha alcanzado y que una grilla más fina no mejorara 

considerablemente la precisión de la solución como lo hará el costo del procedimiento. 

Palabras clave: Análisis de incertidumbre, dinámica de fluidos computacional, extrapolación de 

Richardson, error de discretización. 

 

 

ABSTRACT 

The use of numerical models to represent natural processes is increasingly common. The development 

of advanced numerical tools allows a more physically-based representation of complex flow 

phenomena. While more advanced systems can be solved, the uncertainty of the accuracy of the 

solutions obtained remains. The mere comparison between experiments and simulations is not enough 

proof of strength of the results. The Grid Convergence Index (GCI) methodology has been proposed 

with the aim to provide a mechanism to calculate and report discretization errors estimates in 

computational fluid dynamics (CFD) simulations. It permits the quantification of the uncertainty 

present in grid convergence. This method uses a grid convergence error estimator that is obtained by 

applying the generalized Richardson Extrapolation theory. The process is applied to an axisymmetric 

sudden expansion laminar flow case. Experimental results are used to verify the numerical simulation 

and GCI outcome. As a result of the application of this method the order of accuracy of the numerical 

scheme was verified. Additionally, comparing the numerical results with the experimental values, a 

maximum error of 6% was obtained. Finally, considering the two finest meshes, it can be concluded 
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that the asymptotic range has been reached and that a finer Mesh won’t improve the accuracy of the 

solution when considering the increased numerical cost.  

Keywords: Uncertainty analysis, computational fluid dynamics, Richardson extrapolation, 

discretization error. 

 

 

1. INTRODUCCIÓN 

 

The flow studied here consists of laminar flow in a pipe experiencing a sudden expansion. Laminar 

flow is characterized by low Reynolds number with no lateral mixing. Namely, there are no cross 

currents perpendicular to the mean direction of flow or eddies. Generally, laminar flow is known by its 

high momentum diffusion and low momentum convection (Batchelor, 2000; Geankoplis, 2003; Nayak 

& Bhuvana, 2012). In this particular case the pipe experiences a sudden expansion with a ratio of the 

outlet diameter to the inlet diameter of 2 (D/d=2, see Fig. 1) resulting in a variety of interesting flow 

features. At the entrance, the flow has a fully developed velocity profile. At the expansion the flow 

undergoes separation that in turn produces a recirculation zone. After what is known as the 

reattachment length, Lr, the flow reattaches and there is no more recirculation. The flow achieves a 

fully developed profile for the new diameter after the redevelopment length, Ld. 

 

Figure 1. Geometry and flow features for a sudden expansion in a pipe. 

 

The experimental work reported by (Hammad et al., 1999) consists of measurements of the 

velocity field for six different Reynolds numbers, Re=HU/ν, varying from 20 to 211. H represents the 

characteristic linear dimension, U the mean velocity and ν the kinematic viscosity. The measurements 

were made with real-time digital particle image velocimetry (PIV). The system is composed of an 

initial pipe 813 mm long of a diameter of 12.7 mm followed by a sudden expansion (965 mm long) to 

a 25.4 mm diameter. To avoid flow asymmetry due to buoyancy the experiment fluid is diethylene 

glycol that has an absolute viscosity of 0.038 Pa at a temperature of 20°C. This value represents 38 

times the viscosity of the water allowing the reduction of secondary currents.  

The results will be discussed in greater detail later in comparison with the numerical results. 

However, the main findings of (Hammad et al., 1999) are: (1) the velocity field is in fact 

axisymmetric; (2) the reattachment length shows a minor asymmetry throughout the top and bottom 

walls of the pipe (nevertheless this irregularity is notably smaller than the uncertainty in the 

measurements); (3) there is a non-linear relation between the strength of the corner eddies and the 

Reynolds number; and finally (4) the reattachment and re-development length present an increasing 

linear profile with increasing Reynolds number. The re-development length was found to be 

approximately two times the reattachment length. 

The numerical simulation was made with OpenFOAM (Open Source Field Operation and 

Manipulation), an open source computational fluid dynamics (CFD) program. All Reynolds numbers 

used in the experimental study were simulated. The numerical results were compared with the 
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experimental findings to determine the level of agreement. Finally the GCI methodology was applied 

to estimate the uncertainty due to the discretization. It is important to consider that the procedure 

applied just calculates and reports the error due to the discretization process. There are other sources of 

error including round-off error and iterative error that are not considered here. The total error estimate 

is the accumulation of each error. 

 

 

2. METHODS 

 

2.1. Governing equations and simulation parameters 

Considering the domain shown in Fig. 2, the governing equations are the 2D Navier-Stokes equations 

in cylindrical coordinates (Oosthuizen & Naylor, 1999): 
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where r = distance in radial direction, u = velocity in the radial direction, v = velocity in Z direction,   

ρ = fluid density, and ν = fluid viscosity. 

In reality this flow occurs in a 3D space. Nonetheless, it can be modeled in 2D because the flow is 

axisymmetric (Masatsuka, 2009). The actual flow geometry and the 2D representation are shown in 

Fig. 2. 

 

(a) 

 

(b) 

Figure 2. (a) Flow domain through a sudden expansion; and (b) Two-dimensional representation of 

the flow domain. Arrows indicate the direction of flow. 

 

The reduction from 3D to 2D has some benefits, the most important include: (1) a reduction in the 

computational cost; and (2) a simpler mesh parameters definition. To obtain comparable results 

Reynolds similarity is applied. To wit, rather than replicate all experimental variables the only 

parameter that needs to be reproduced exactly is the Reynolds number. The study analyzes six cases 

with Reynolds numbers of 20.6, 55.4, 77.6, 109, 156.1 and 211.1. For the numerical case, in order to 

match Reynolds numbers the following conditions were applied. The initial pipe cross-section has a 

diameter, d, of 2 m and the expanded section diameter, D, is 4 m to match the expansion ratio of the 
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laboratory experiments. The inlet pipe has a length of 20 m in the z direction and 1 m in the r 

direction. The outlet pipe has a length of 60 m in z direction and 2 m in the r direction. The kinematic 

viscosity was adjusted to obtain the desired Reynolds number. 

The following boundary conditions were applied to the domain. Along the central axis of the pipe 

an axisymmetric boundary condition was enforced. The pipe walls were given a wall no-slip, or zero 

velocity, condition. The entrance of the inlet pipe is given a constant uniform velocity of U=1 m/s for 

all cases. Additionally at the pipe outlet, a pressure value of zero was assigned. 

 

2.2. Mesh generation 

Three grids were used for all Reynolds numbers to analyze the convergence. In all cases the meshes 

have a uniform size in both the r and z directions. Starting with the coarse grid, refinement was carried 

out with a relation fine/coarse grid size of 2. In others words, the mesh density was doubled for each 

successively finer mesh. A summary of the meshes configuration is presented in Table 1. 

 

Table 1. Mesh configuration. 

Mesh Δz and Δr (m) 
Number of cells inlet pipe Number of cells outlet pipe 

z direction r direction z direction r direction 

Coarse 0.0500 400 20 1200 40 

Medium 0.0250 800 40 2400 80 

Fine 0.0125 1600 80 4800 160 

 

2.3. Numerical methods and schemes 

The numerical method used by OpenFOAM in the present simulation is the finite volume method. The 

Gauss linear scheme is used for the gradient, divergence, and Laplacian operators. The interpolation 

scheme is set to linear. Additionally, for the component of gradient normal to a cell face the option 

orthogonal is selected. The Gauss linear scheme used has second order of accuracy (Open∇Foam, 

2014). Simulations were considered converged when the residuals for the continuity, pressure, and 

momentum equations drop below the value of 1×10
-6

. 

 

2.4. Richardson extrapolation 

Considering the dependent variable f, a continuous and differentiable function of a representative grid 

size, h, the error of a numerical solution can be expressed as (Richardson, 1910): 
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For small values of h and keeping just the leading term the following equations are obtained. fexact 

is replaced by fext to denote an extrapolated value: 
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where C represents a coefficient that can be a function of the coordinates, but not of h, n the apparent 

order of the method, and αi and fi (i = 1, 2, 3) are the grid refinement factors (i.e. relation between grid 

sizes h/h1, h/h2, and h/h3) and the simulated values respectively corresponding to the hi grid size. h1 can 

be assumed equal to h. Solving the three previous equations for the three unknowns the following is 

obtained (Celik & Karatekin, 1997): 
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2.5. Grid convergence index 

The Grid Convergence Index (GCI) methodology emerged as a procedure to determine and report 

discretization errors estimates in CFD simulations (Roache, 1994). It permits the quantification of the 

uncertainty present due to grid discretization. This method uses a grid convergence error estimator that 

is obtained by applying generalized Richardson Extrapolation theory to two different grid size 

solutions, one on a coarse grid and the other on a fine grid. Through the application of this method an 

error band for the fine grid solution can be determined. This band is not as an error bound, but a range 

with a reliable chance of containing the solution (Celik & Zhang, 1995). With the Richardson 

Extrapolation methodology the following expressions are obtained: 
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where Fs = the factor of safety of the method, r = grid refinement ratio (h2/h1), and p = the order of 

accuracy of the numerical solution. 

An important consideration requires the determination of the factor of safety, Fs, with 

recommendations ranging from 1.0 to 3.0 (Celik & Zhang, 1995). A value of 3.0 represents a 

conservative factor required in cases when a major level of uncertainty of the error estimate exists and 

when solutions from two grids are used to estimate the error. The necessity of a high factor value 

increases with the proliferation of uncertainty present in the error estimate. However, a better 

knowledge or understanding of the processes will allow using smaller values. The general 

recommendation states a factor Fs = 1.25 when a minimum of three grids are used to verify the order 

of convergence, p (Roache, 1998). 

 

 

3. RESULTS 

 

The results corresponding to Re=20.6 and the medium grid are presented in Fig. 3. First, the whole 

domain is shown with the corresponding velocity magnitudes (Fig. 3a). It can be verified that after the 

constant velocity profile assigned at the inlet the profile achieves the fully developed parabolic profile. 

Subsequently, after the expansion the flow has a decrease in the velocity and a recirculation zone 

develops. This zone is marked with the smallest velocity values throughout the domain. The 

recirculation zone can be observed more clearly in Fig. 3b). 

In Fig. 4 the centerline velocity, Vc, profile is shown. In the figure the dimensionless parameter 

Vc/U, is used. For fully developed conditions, the maximum velocity is twice the bulk average velocity 

(White, 2011). Therefore, from the pipe expansion and normalizing the velocity by the upstream bulk 

velocity, the centerline velocity profile starts with a value of 2.0 and ends (when the fully developed 

state is again reached) with a value of 0.5. It can be seen in this figure that the value of 0.5 is attained 

within the length given in the domain. Specifically this value occurs at z/d=3.28 from the pipe 

expansion for Re=20.6. In Fig. 5 the stream lines in the domain are presented. Here both the 

recirculation zone and the flow redevelopment region can be clearly observed. 

The reattachment length was determined by measuring the distance from the expansion to the last 

point where the flow is negative in the z direction. For each one of the cases the obtained values were 

compared with the results in (Hammad et al., 1999; Macagno & Hung, 1967). 
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(a) (b) 

Figure 3. (a) Contour map of axial velocity magnitude; and (b) Velocity vectors within the 

recirculation zone. 

 

 

Figure 4. Centerline velocity profile. 

 

 

Figure 5. Stream lines in the recirculation zone. 

 

 

Figure 6. Variation of the reattachment length with Reynolds number. The straight line presented in 

the graph represents the best fit line for the fine mesh. The other two meshes present a similar profile. 
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As can be seen in Fig. 6 all the results reported follow a linear tend. The slope reported in 

(Hammad et al., 1999) is 0.0440. The slopes obtained for each of the grids simulated (fine, medium, 

and coarse) are 0.0431, 0.0430, and 0.0426 respectively, presenting a percentage difference of 2.0%, 

2.3%, and 3.2% from the experimental data. Considering just the result of the numerical simulation, 

for the three meshes the relation between the reattachment length and the Reynolds number follows a 

linear profile. 

Considering the PIV measurements as a reference, the error in the simulations is presented in 

Table 2. It can be observed that a tendency related with the Reynolds number is not registered. The 

error values oscillate with the increase in Reynolds numbers similarly, considering the different grid 

sizes used the error in some cases increases and in other cases decreases. The greatest error is 

registered for Re=109 and the coarse mesh and the smallest for Re=77.6 and the medium and small 

meshes. 

 

Table 2. PIV study and numerical simulation results. 

Re 
PIV Coarse mesh Medium mesh Fine mesh 

Lr/d Lr/d % Lr/d % Lr/d % 

20.6 0.89 0.92 2.8 0.93 4.3 0.93 4.6 

55.4 2.50 2.38 4.8 2.40 3.8 2.41 3.5 

77.6 3.37 3.33 1.0 3.37 0.0 3.37 0.0 

109 4.98 4.69 5.8 4.74 4.9 4.75 4.7 

156.1 6.63 6.71 1.3 6.78 2.2 6.79 2.4 

211.1 9.43 9.02 4.4 9.10 3.5 9.11 3.3 

 

3.1. Order of accuracy 

The theoretical order of accuracy of the numerical solution is second order. The Richardson 

Extrapolation method is applied to verify it. Table 3 below shows the results of applying the method. 

 

Table 3. Richardson extrapolation method applied to the simulated reattachment length Lr. 

Reynolds Number 
f3 f2 f1 n fext Coarse Medium Fine 

20.6 1.84 1.86 1.87 2.21 1.87 

55.4 4.75 4.81 4.82 2.17 4.82 

77.6 6.67 6.74 6.76 2.02 6.76 

109 9.39 9.48 9.50 2.12 9.50 

156.1 13.43 13.55 13.58 2.21 13.58 

211.1 18.03 18.19 18.22 2.27 18.23 

 

As can be observed the order of the method is confirmed with all the n values obtained greater 

than 2. Additionally, in Table 3 the extrapolated value obtained with equation (9) is reported. This 

value represents a more accurate solution, but as can be seen in the table it does not differ considerably 

from the fine mesh solution. This value is reported for demonstration purposes, but the further analysis 

has been conducted with the obtained numerical results. 

 

3.2. Grid convergence index 

For the application of this method in the present problem the two finest grids were used. Because the 

order of accuracy of the method has been confirmed, a factor of safety of 1.25 is used (Roache, 1998; 

Roache, 2003). Furthermore, the theoretical order (p=2) is maintained for this procedure. The r value 

is 2 since the grid size is doubled. In Table 4 and Fig. 7 the results of the GCI calculations are 

presented and compared with the experimental values. As can be seen in the figure, the PIV limits 

enclose the GCI values (upper, lower and mean). Moreover, the PIV range is much larger than the GCI 

especially as Reynolds number increases. Furthermore, the GCI limits differ from the numerical 

solution by less than 0.2%. This leads to the conclusion that the asymptotic range is reached. 
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Therefore, a finer mesh won’t represent a significant improvement to the solution in terms of the 

discretization error, while the cost of increasing the mesh resolution can grow considerably. 

 

Table 4. GCI and PIV limits of the relation reattachment length/pipe diameter. 

Reynolds Number 
Numerical solution GCI Limits PIV Limits 

Medium Fine GCI Upper Lower Upper Lower 

20.6 0.931 0.934 0.00129 0.935 0.933 1.049 0.629 

55.4 2.403 2.409 0.00102 2.410 2.407 2.751 2.105 

77.6 3.369 3.378 0.00105 3.379 3.377 3.703 2.917 

109 4.738 4.749 0.00092 4.750 4.748 5.482 4.329 

156.1 6.775 6.789 0.00081 6.790 6.788 7.310 5.790 

211.1 9.096 9.112 0.00075 9.113 9.111 10.461 8.252 

 

 

Figure 7. Comparison between GCI and PIV range of variation. 

 

 

4. CONCLUSIONS 

 

In the present work a numerical analysis of laminar pipe flow with a sudden expansion is presented. 

The different flow features (recirculation, reattachment, and redevelopment) are observed in the 

results. For the reattachment length, its behavior was investigated in terms of the numerical solution 

and also compared with experimental results from the literature. Generally, it can be said that for all 

cases evaluated (three meshes and six Reynolds numbers) the maximum error due to discretization of 

the numerical simulation with respect to the experimental results, is around 6%, with a mean error of 

3.2%. The relation between the Reynolds number and the reattachment length is confirmed with the 

numerical results obtaining a linear behavior for the three meshes analyzed with a value of the 

correlation coefficient (R
2
) equal to 1.000 in all cases. There is a maximum 3.2% error in the slope of 

these lines with respect to the slope reported in the experimental work. Considering the Richardson 

Extrapolation method and the GCI analysis, the following points are emphasized: (1) the order of 

convergence of the scheme was verified; (2) the numerical results are within the variation range of the 

experimental measurements; and (3) the GCI variation is quite small compared with the PIV interval. 

Therefore, the uncertainty due to discretization has been overcome and the fine mesh can be used with 

confidence. Additionally, based on the results, it can be said that the grid independence state 

(asymptotic range) has been reached. Supporting this, in Table 2 can be observed that the medium and 

fine meshes have almost the same results suggesting that these solutions are in the asymptotic range. 
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Even though in the present study the discretization error represents a minor percentage of the solution, 

additional work is needed to determine the other error components and to conclude that the solution is 

sufficient. Namely, just as with the determination of discretization error, it cannot be verified that the 

total error is less than the maximum allowed for a numerical solution. 
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